首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
S Cory  J M Adams 《Cell》1977,11(4):795-805
The organization of the 18S, 28S and 5.8S rRNA genes in the mouse has been elucidated by mapping with restriction endonucleases Eco RI, Hind III and Bam HI. Ribosomal DNA fragments were detected in electrophoretically fractionated digests of total nuclear DNA by in situ hybridization with radioiodinated rRNAs or with complementary RNA synthesized directly on rRNA templates. A map of the rDNA which includes 13 restriction sites was constructed from the sizes of rDNA fragments and their labeling by different probes The map indicates that the rRNA genes lie within remarkably large units of reiterated DNA, at least 44,000 base pairs long. At least two, and possibly four, classes of repeating unit can be distinguished, the heterogeneity probably residing in the very large nontranscribed spacer region. The 5.8S rRNA gene lies in the transcribed region between the 18S and 28S genes.  相似文献   

3.
4.
The structural organization of ribosomal DNA in Drosophila melanogaster.   总被引:66,自引:0,他引:66  
P K Wellauer  I B Dawid 《Cell》1977,10(2):193-212
  相似文献   

5.
Plasmodium falciparum contains two extrachromosomal DNAs, a 6 kb linear element and a 35 kb circular DNA; both encode rDNA sequences. The 6 kb element rDNAs comprise fragments of both large and small subunit rRNAs. Comparison of these with corresponding rDNA sequences from the 35 kb DNA and E. coli show that sequences conserved between the three are largely confined to highly conserved core regions; in fact, most of the 6 kb rDNA sequences correspond to core regions. Both the 6 kb element and 35 kb rDNAs show less conservation to each other than to E. coli sequences, suggesting that the two extrachromosomal DNAs of P. falciparum are not closely related. The characteristics of the fragmented rRNAs from the 6 kb element suggest they are functional, possibly in mitochondrial ribosomes.  相似文献   

6.
A major limiting factor for DGGE-based microbial community studies is that the fragments should not be much longer than 500 bp for successful analysis. However, relatively high-resolution was achieved based on DGGE of the long 18S rDNA fragment (>1500 bp), which might be surprising due to the known decrease in DGGE resolution of DNA molecules with large melted regions. A unique sequence characteristic was found in a specific region (ca. 275 bp, named the NS1-end region) of 18S rDNAs, and fungal communities separated from Hong Qu glutinous rice wine brewing system was used to reveal the relationship between high resolution capacity and the unique sequence characteristics. The results showed that DGGE separation of the long 18S rDNA fragments depended on their NS1-end regions. The region is composed of a sequence-variable and short-length GC-poor region (ca. 160 bp) and a GC-rich region (ca. 110 bp), which contribute to the high resolution capacity achieved for DGGE of the long 18S rDNA fragments. Thus DGGE of the long 18S rDNA fragment is recommended as a target fragment for studies of fungal communities whose 18S rDNAs possess similar sequence characteristics. Good resolution and almost full-length 18S rDNA sequences can thus be obtained to provide more accurate and reliable analysis of fungal communities. Since more sequences are obtained directly from the PCR product through the long rDNA fragment approach, this is a convenient and effective approach for sequence-based analysis without using other complementary methods such as an rDNA clone library method.  相似文献   

7.
A complete single unit of a ribosomal RNA gene (rDNA) of M. croslandi was sequenced. The ends of the 18S, 5.8S and 28S rRNA genes were determined by using the sequences of D. melanogaster rDNAs as references. Each of the tandemly repeated rDNA units consists of coding and non-coding regions whose arrangement is the same as that of D. melanogaster rDNA. The intergenic spacer (IGS) contains, as in other species, a region with subrepeats, of which the sequences are different from those previously reported in other insect species. The length of IGSs was estimated to be 7-12 kb by genomic Southern hybridization, showing that an rDNA repeating unit of M. croslandi is 14-19 kb-long. The sequences of the coding regions are highly conserved, whereas IGS and ITS (internal transcribed spacer) sequences are not. We obtained clones with insertions of various sizes of R2 elements, the target sequence of which was found in the 28S rRNA coding region. A short segment in the IGS that follows the 3' end of the 28S rRNA gene was predicted to form a secondary structure with long stems.  相似文献   

8.
W E Stumph  J R Wu  J Bonner 《Biochemistry》1979,18(13):2864-2871
The empoyment of a novel method of affinity chromatography, which makes use of antibodies that specifically bind DNA/RNA hybrids, has made it possible to enrich for rat rDNA molecules which contain R loops formed with the 18S and 28S rRNAs. An approximately 150-fold enrichment of the ratrRNA coding sequences was obtained by this affinity chromatography procedure. This degree of enrichment made it possible to visualize these R loop containing molecules in the electron microscope and, thus, to obtain a map of the transcribed and spacer regions of rat rDNA. Eleven of the molecules that were observed contained either 3 or 4 R loops, or else 2 R loops separated by a long spacer. Thus, these molecules provided direct information in regard to the length of rat rDNA repeating units. The mean length of the repeating units was 37.2 kbp with a standard deviation of 1.3 kbp. Within the errors of the measurements, these could all represent repeating units of exactly the same length, although a certain degree of length heterogeneity, possibly up to 4 or 5 kbp, cannot be ruled out by the data. If significantly longer or shorter rDNA repeating units exist in the rat genome, they are probably much less common than the 37.2 kbp unit. These electron microscopic measurements provide the most definitive data yet available on the size of the repeating units of mammalian rRNA genes.  相似文献   

9.
The ribosomal DNA of the teleost fish--loach has been isolated from sperm DNA by CsCl density gradient centrifugation. The rDNA sediments on density gradients by two heavy satellites beta = 1.715 and greater than 1.720. The DNA of the first satellite (1.715) was separated and treated by restrictases EcoRI and BamHI. It was shown that there are two EcoRI-sites in rDNA of loach, locating in 18S and 28S rRNA coding sequences. From tandem of repeating ribosomal genes EcoRI cuts out the fragment with homogeneous length-3 megadaltons (constant fragment) and heterogeneous population of fragments 11-13 megadaltons (major) and 7-8 megadaltons (minor fraction). The constant fragment contains mostly 28S coding sequence, and the heterogeneous fragment--18S coding sequence. The data indicate that the ribosomal genes of the loach as well as other higher eucaryotes were organized in genome as tandem of repeating units with heterogeneous length (10-16 megadaltons, 14.5-24 kb) due to heterogeneity of the length of nontranscribed spacer.  相似文献   

10.
We have analysed the Eco RI restriction pattern of rDNA of the newt Triturus vulgaris and of some other amphibian species by Southern blotting and hybridization with nick-translated Xenopus rDNA prepared from the recombinant plasmids pXlr11 and pXlr12 (21). After hybridization with r11, the 28S coding fragments become visible in two bands, a prominent one of 5.3 kb and a weak band of 5.9 kb representing about 8% of the 28S genes. The evidence obtained so far by additional digestions with Bam HI and Bgl II indicates that in this species and in Triturus helveticus the coding regions of the 5.9 kb fragments are interrupted by an insertion 0.6 kb in length located in a 1.6 kb Bgl II fragment at the 3' end of the Eco RI fragment, which we believe to be the first described in a vertebrate.  相似文献   

11.
A discrete heterogeneity has been detected in Chinese hamster ribosomal DNA after Eco R1 digestion of total DNA followed by a Southern transfer and hybridization with [125I]18S or [125I]28S ribosomal RNA. Digestion with Eco R1 produces three fragments, 4.3, 6.0 and 9.5×106 daltons respectively, which hybridize with 18S RNA. The smallest fragment also hybridizes with 28S RNA. Either length heterogeneity or sequence heterogeneity (i.e. presence of an additional Eco R1 site in some of the rDNA molecules) must be invoked to account for the two larger Eco R1 fragments that contain 18S but not 28S sequences. Eco R1 and Hind III maps, consistent with either length or sequence heterogeneity, are presented. The data at this time, however, do not distinguish between the two alternatives.  相似文献   

12.
P K Wellauer  I B Dawid  K D Tartof 《Cell》1978,14(2):269-278
In Drosophila melanogaster, the genes coding for 18S and 28S ribosomal RNA (rDNA) are clustered at one locus each on the X and the Y chromosomes. We have compared the structure of rDNA at the two loci. The 18S and 28S rRNAs coded by the X and Y chromosomes are very similar and probably identical (Maden and Tartof, 1974). In D. melanogaster, many rDNA repeating units are interrupted in the 28S RNA sequence by a DNA region called the insertion. There are at least two sequence types of insertions. Type 1 insertions include the most abundant 5 kilobase (kb) class and homologous small (0.5 and 1 kb) insertions. Most insertions between 1.5 and 4 kb have no homology to the 5 kb class and are identified as type 2 insertions. In X rDNA, about 49% of all rDNA repeats have type 1 insertions, and another 16% have type 2 insertions. On the Y chromosome, only 16% of all rDNA repeats are interrupted, and most if not all insertions are of type 2.rDNA fragments derived from the X and Y chromosomes have been cloned in E. coli. The homology between the nontranscribed spacers in X and Y rDNA was studied with cloned fragments. Stable heteroduplexes were found which showed that these regions on the two chromosomes are very similar.The evolution of rDNA in D. melanogaster might involve genetic exchange between the X and Y chromosomal clusters with restrictions on the movement of type 1 insertions to the Y chromosome.  相似文献   

13.
Characterisation of the genes for ribosomal RNA in flax   总被引:18,自引:4,他引:14       下载免费PDF全文
DNA coding for the 18S and 25S rRNAs in flax (Linum usitatissimum) has been purified and is arranged in tandem arrays with a repeat length of 8.6 kb. There is no detectable variation in the size of this repeat unit. Single repeat units have been cloned in the plasmid pAT 153. The coding sequences for the 25S, 18s and 5.85 rRNAs have been localised by hybridisation. The cloned rDNA has been used to compare two genotrophs, L1 ad S1, where the number of rRNA cistrons has been altered by growth under different environmental conditions. In terms of the size of the repeat unit and the position of a number of restriction enzyme sites the rDNAs from L1 and S1 were identical.  相似文献   

14.
Structure and organization of ribosomal DNA.   总被引:9,自引:0,他引:9  
  相似文献   

15.
We have cloned and partially characterized Bam HI fragments of Syrian hamster DNA containing most of the ribosomal RNA-coding region. Several restriction site polymorphisms within the transcribed portions of the hamster rDNA repeats have been noted. Approximately three-fifths of the repeats contain a Bam HI site upstream of the 18 S coding sequences. Approximately four-fifths of the repeats contain a Bam HI site very close to the 5' end of the 28 S coding sequences. This microheterogeneity has been maintained in the DNA of baby hamster kidney (BHK)-21 cells, a cell line established nearly 20 years ago. R-loop analysis with homologous hamster rRNAs has established the size of the coding regions and the internal transcribed spacer. Heterologous R-loop analyses with cloned hamster rDNAs and human rRNAs reveal several well-defined regions within the 28 S gene where the homology between human and hamster RNAs is greatly reduced. These regions are not detectable in heteroduplexes of hamster and human rDNAs. Sequences encoding the 18 S gene do not exhibit such reduced homology.  相似文献   

16.
Summary The nucleotide sequence of a spacer region between rice 17S and 25S rRNA genes (rDNAs) has been determined. The coding regions for the mature 17S, 5.8S and 25S rRNAs were identified by sequencing terminal regions of these rRNAs. The first internal transcribed spacer (ITS1), between 17S and 5.8S rDNAs, is 194–195 bp long. The second internal transcribed spacer (ITS2), between 5.8S and 25S rDNAs, is 233 bp long. Both spacers are very rich in G+C, 72.7% for ITS1 and 77.3% for ITS2. The 5.8S rDNA is 163–164 bp long and similar in primary and secondary structures to other eukaryotic 5.8S rDNAs. The 5.8S rDNA is capable of interacting with the 5′ terminal region of 25S rDNA.  相似文献   

17.
The relationships among ant subfamilies were studied by phylogenetic analysis of rDNA sequences of 15 species from seven subfamilies. PCR primers were designed on the basis of the rDNA sequence of the Australian bulldog ant, Myrmecia croslandi, previously determined. Phylogenetic trees were constructed using sequences of a fragment of 18S rDNA (1.8 kb), a fragment of 28S rDNA (0.7 kb excluding variable regions) and a combination of the 18S and 28S rDNAs, by neighbor-joining (NJ), maximum parsimony (MP) and maximum likelihood (ML). rDNA sequences corresponding to the same fragments from three non-ant hymenopteran species (a sawfly, a bee and a wasp) were employed as outgroups. These trees indicated that the ant subfamilies were clustered singly, and, among the seven subfamilies examined, Ponerinae and six other subfamilies are in a sister-groups relationship. The relationship among the six subfamilies, however, was not clarified. The phylogenetic trees constructed in the present study are not in contradiction to the tree from cladistic analysis of morphological data by Baroni Urbani et al. (1992) and the tree from morphological and molecular data (Ward and Brady, 2003), but are inconsistent with the traditional phylogeny. The present results thus raise a question as to the status of some traditionally employed "key" morphological characters. The present results also call for a reexamination of Amblyopone traditionally treated as a member of Ponerinae as belonging to a new subfamily.  相似文献   

18.
Summary We have characterized the nuclear rDNA unit of Euglena gracilis var. bacillaris and compared it to that of the Z strain. We have localized restriction sites for Eco R1, Sal 1, Sma 1, Hind III, Bam H1 and Bgl II on this unit as well as the coding region for 20 S and 25 S rRNAs. For both strains, results suggest an homogeneity of the 11.6 kbp rDNA units. Comparison between strains shows differences characterized by two additional Sal 1 sites in bacillaris and the likely methylation of one Sma 1 site in Z. Both differences are localized in a non-coding region of the rDNA unit. Analyses of 18 Euglena strains from various origins confirm these differences and allow easy recognition of bacillaris and Z type strains.Abbreviations kb kilo base - kpb kilo base pair - plasmids pRH 59 and pRH 57 contain a Hind III-HInd III nuclear DNA fragment from W3BUL of 5.9 and 5.7 kbp respectively, pRB 48 and pRB 35 contain a Bam H1-Bam H1 nuclear DNA fragment from wild-type Z of 4.8 and 3.5 kbp respectively - SDS sodium dodecyl sulfate - UV ultra-violet  相似文献   

19.
Fragments of rDNA3 from Drosophila melanogaster produced by the restriction endonuclease EcoRI were cloned in the form of recombinant plasmids in Escheriehia coli. Maps were prepared showing the location of the coding regions and of several restriction endonuclease sites. Most rDNA repeats have a single EcoRI site in the 18 S gene region. Thus, 19 of 24 recombinant clones contained a full repeat of rDNA. Ten repeats with continuous 28 S genes and repeats containing insertions in the 28 S gene of 0.5, 1 and 5 kb were isolated. The 0.5 and 1 kb insertion sequences are homologous to segments of the 5 kb insertions; because of this homology they are grouped together and identified as type 1 insertions. Four recombinant clones contain an rDNA fragment that corresponds to only a portion of a repeating unit. In these fragments the 28 S gene is interrupted by a sequence which had been cleaved by EcoRI. The interrupting sequences in these clones are not homologous to any portion of type 1 insertions and are therefore classified as type 2. In one of the above clones the 28 S gene is interrupted at an unusual position; such a structure is rare or absent in genomic rDNA from the fly. Another unusual rDNA fragment was isolated as a recombinant molecule. In this fragment the entire 18 S gene and portions of the spacer regions surrounding it are missing from one repeat. A molecule with the same structure has been found in uncloned genomic rDNA by electron microscopic examination of RNA/DNA hybrids.  相似文献   

20.
The nuclear DNA of several different rat strains and rat tumor lines have been analyzed with respect to Eco R1 fragments homologous to the amplified 5.8 kb Eco R1 fragment (fragment A) of Novikoff hepatoma cells. Two Eco R1 fragments, 4.8 and 4.4 kb, which hybridized to the 5.8 kb Eco R1 fragment, were found in all the genomes investigated. Although none of the examined genomes exhibited evidence of the same degree of amplification of fragment A related sequences as that of Novikoff hepatoma, several had Eco R1 fragments of various other sizes which were homologous to fragment A. These results indicate that the family of fragment A homologous sequences consists of two populations, the constant 4.8 and 4.4 kb fragments, and a second group of sequences which varies with respect to size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号