共查询到20条相似文献,搜索用时 0 毫秒
1.
Cellular mechanisms that sustain health or contribute to disease emerge mostly from the complex interplay among various molecular entities. To understand the underlying relationships between genotype, environment and phenotype, one has to consider the intricate and nonsequential interaction patterns formed between the different sets of cellular players. Biological networks capture a variety of molecular interactions and thus provide an excellent opportunity to consider physiological characteristics of individual molecules within their cellular context. In particular, the concept of network biology and its applications contributed largely to recent advances in biomedical research. In this review, we show (i) how biological networks, i.e., protein-protein interaction networks, facilitate the understanding of pathogenic mechanisms that trigger the onset and progression of diseases and (ii) how this knowledge can be translated into effective diagnostic and therapeutic strategies. In particular, we focus on the impact of network pharmacological concepts that go beyond the classical view on individual drugs and targets aiming for combinational therapies with improved clinical efficacy and reduced safety risks. 相似文献
2.
Erwin De Genst Anne Messer Christopher M. Dobson 《Biochimica et Biophysica Acta - Proteins and Proteomics》2014,1844(11):1907-1919
Protein misfolding disorders, including the neurodegenerative conditions Alzheimer's disease (AD) and Parkinson's disease (PD) represent one of the major medical challenges or our time. The underlying molecular mechanisms that govern protein misfolding and its links with disease are very complex processes, involving the formation of transiently populated but highly toxic molecular species within the crowded environment of the cell and tissue. Nevertheless, much progress has been made in understanding these events in recent years through innovative experiments and therapeutic strategies, and in this review we present an overview of the key roles of antibodies and antibody fragments in these endeavors. We discuss in particular how these species are being used in combination with a variety of powerful biochemical and biophysical methodologies, including a range of spectroscopic and microscopic techniques applied not just in vitro but also in situ and in vivo, both to gain a better understanding of the mechanistic nature of protein misfolding and aggregation and also to design novel therapeutic strategies to combat the family of diseases with which they are associated. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody. 相似文献
3.
4.
Structural changes of the prion protein in lipid membranes leading to aggregation and fibrillization 总被引:7,自引:0,他引:7
Kazlauskaite J Sanghera N Sylvester I Vénien-Bryan C Pinheiro TJ 《Biochemistry》2003,42(11):3295-3304
Prion diseases are associated with a major refolding event of the normal cellular prion protein, PrP(C), where the predominantly alpha-helical and random coil structure of PrP(C) is converted into a beta-sheet-rich aggregated form, PrP(Sc). Under normal physiological conditions PrP(C) is attached to the outer leaflet of the plasma membrane via a GPI anchor, and it is plausible that an interaction between PrP and lipid membranes could be involved in the conversion of PrP(C) into PrP(Sc). Recombinant PrP can be refolded into an alpha-helical structure, designated alpha-PrP isoform, or into beta-sheet-rich states, designated beta-PrP isoform. The current study investigates the binding of beta-PrP to model lipid membranes and compares the structural changes in alpha- and beta-PrP induced upon membrane binding. beta-PrP binds to negatively charged POPG membranes and to raft membranes composed of DPPC, cholesterol, and sphingomyelin. Binding of beta-PrP to raft membranes results in substantial unfolding of beta-PrP. This membrane-associated largely unfolded state of PrP is slowly converted into fibrils. In contrast, beta-PrP and alpha-PrP gain structure with POPG membranes, which instead leads to amorphous aggregates. Furthermore, binding of beta-PrP to POPG has a disruptive effect on the integrity of the lipid bilayer, leading to total release of vesicle contents, whereas raft vesicles are not destabilized upon binding of beta-PrP. 相似文献
5.
Endogenous angiogenesis inhibitors and their therapeutic implications 总被引:22,自引:0,他引:22
Cao Y 《The international journal of biochemistry & cell biology》2001,33(4):357-369
A number of endogenous inhibitors targeting the tumor vasculature have recently been identified using in vitro and in vivo antiangiogenesis models. While many of these angiogenesis inhibitors display a broad spectrum of biological actions on several systems in the body, several inhibitors including angiostatin, endostatin, and serpin antithrombin seem to act specifically on the proliferating endothelial cell compartment of the newly formed blood vessels. The discovery of these specific endothelial inhibitors not only increases our understanding of the functions of these molecules in the regulation of physiological and pathological angiogenesis, but may also provide an important therapeutic strategy for the treatment of cancer and other angiogenesis dependent diseases, including diabetic retinopathy and chronic inflammations. Systemic administration of these angiogenesis inhibitors in animals significantly suppresses the growth of a variety of tumors and their metastases. However, their production as functional recombinant proteins has been proven to be difficult. In addition, high dosages of these inhibitors are required to suppress tumor growth in animal studies. Other disadvantages of the antiangiogenic protein therapy include repeated injections, prolonged treatment, transmission of toxins and infectious particles, and high cost for manufacturing large amounts of protein molecules. Thus, alternative strategies need to be developed in order to improve the clinical settings of antiangiogenic therapy. Developments of these strategies are ongoing and they include identification of more potent inhibitors, antiangiogenic gene therapy, improvement of protein/compound half-lives in the circulation, increase of their concentrations at the disease location, and combinatorial therapies with approaches including chemotherapy, radiotherapy, and immunotherapy. Despite the above-mentioned disadvantages, a few inhibitors have entered into the early stages of clinical trials and they may bring new hopes for the treatment of cancer and other angiogenesis dependent diseases. 相似文献
6.
Alpha-synuclein multistate folding thermodynamics: implications for protein misfolding and aggregation 总被引:1,自引:0,他引:1
Alpha-synuclein aggregation has been tightly linked with the pathogenesis of Parkinson's disease and other neurodegenerative disorders. Despite the protein's putative function in presynaptic vesicle regulation, the roles of lipid binding in modulating alpha-synuclein conformations and the aggregation process remain to be fully understood. This study focuses on a detailed thermodynamic characterization of monomeric alpha-synuclein folding in the presence of SDS, a well-studied lipid mimetic. Far-UV CD spectroscopy was employed for detection of conformational transitions induced by SDS, temperature, and pH. The data we present here clearly demonstrate the multistate nature of alpha-synuclein folding, which involves two predominantly alpha-helical partially folded thermodynamic intermediates that we designate as F (most folded) and I (intermediately folded) states. Likely structures of these alpha-synuclein conformational states are also discussed. These partially folded forms can exist in the presence of either monomeric or micellar forms of SDS, which suggests that alpha-synuclein has an intrinsic propensity for adopting multiple alpha-helical structures even in the absence of micelle or membrane binding, a feature that may have implications for its biological activity and toxicity. Additionally, we discuss the relation between alpha-synuclein three-state folding and its aggregation, within the context of isothermal titration calorimetry and transmission electron microscopy measurements of SDS-initiated oligomer formation. 相似文献
7.
Eastman A 《Journal of cellular biochemistry》2004,91(2):223-231
Cells contain numerous pathways designed to protect them from the genomic instability or toxicity that can result when their DNA is damaged. The p53 tumor suppressor is particularly important for regulating passage through G1 phase of the cell cycle, while other checkpoint regulators are important for arrest in S and G2 phase. Tumor cells often exhibit defects in these checkpoint proteins, which can lead to hypersensitivity; proteins in this class include ataxia-telangiectasia mutatated (ATM), Meiotic recanbination 11 (Mre11), Nijmegen breakage syndrome 1 (Nbs 1), breast cancer susceptibility genes 1 and 2 (BRCA1), and (BRCA2). Consequently, tumors should be assessed for these specific defects, and specific therapy prescribed that has high probability of inducing response. Tumors defective in p53 are frequently considered resistant to apoptosis, yet this defect also provides an opportunity for targeted therapy. When their DNA is damaged, p53-defective tumor cells preferentially arrest in S or G2 phase where they are susceptible to checkpoint inhibitors such as caffeine and UCN-01. These inhibitors preferentially abrogate cell cycle arrest in p53-defective cells, driving them through a lethal mitosis. Wild type p53 can prevent abrogation of arrest by elevating levels of p21(waf1) and decreasing levels of cyclins A and B. During tumorigenesis, tumor cells frequently loose checkpoint controls and this facilitates the development of the tumor. However, these defects also represent an Achilles heel that can be targeted to improve current therapeutic strategies. 相似文献
8.
蛋白质聚集在生物医药生产中是一个关键问题。在蛋白质的生产、运输和储存的过程中,多种因素都能导致蛋白质发生聚集。随着对蛋白质聚集这一现象的深入研究,发现蛋白质聚集的产生存在不同途径和各种影响因素,如理化因素、翻译修饰和蛋白质结构等。由于蛋白质的聚集对于蛋白质的活性和均一性具有重大影响,因此了解蛋白质聚集的途径以及研究如何控制聚集对获得均质蛋白是十分有意义的。本文主要阐述了3D结构域交换、盐桥的形成、氧化应激3种蛋白质的聚集途径,以及在蛋白质生产、运输、储存过程中控制蛋白质聚集的方法,这有助于减少由于蛋白质聚集体形成而造成的损失,并提高实验研究和商业生产中的蛋白质纯度和均质性。 相似文献
9.
The emerging role of immune activation and inflammation in the pathogenesis of human immunodeficiency virus (HIV) disease has stimulated the search for new approaches for managing HIV infection. Recent evidence suggests that an imbalance between matrix metalloproteinases (MMPs) and endogenous tissue inhibitors of MMPs (TIMPs) might contribute to HIV-associated pathology by inducing remodelling of the extracellular matrix. Here, we discuss the evidence and the potential mechanisms for altered MMP or TIMP function in HIV infection and disease. Furthermore, we outline the possible medical implications for the use of compounds that target MMP activity, and we propose that antiretroviral drugs, particularly HIV protease inhibitors (PIs), and compounds with anti-inflammatory properties, such as statins, natural omega-3 fatty acids and tetracyclines, which inhibit MMP function, might represent useful therapeutic approaches to mitigate potential MMP-related damage during HIV infection. 相似文献
10.
Demeule B Lawrence MJ Drake AF Gurny R Arvinte T 《Biochimica et biophysica acta》2007,1774(1):146-153
In this paper, a therapeutic immunoglobulin (Antibody A) has been characterized in two solutions: (1) 0.1% acetic acid containing 50 mM magnesium chloride, a solution in which the immunoglobulin is stable, and (2) 10 mM sodium phosphate buffer pH approximately 7. The protein solutions were characterized by microscopy, asymmetrical flow field-flow fractionation (FFF), light scattering, circular dichroism, fluorescence and fluorescence lifetime spectroscopy. The results show that Antibody A dissolved in 0.1% acetic acid containing 50 mM magnesium chloride exists as 88% monomer, 2% low molecular weight aggregates and 10% high molecular weight aggregates (>1 million Dalton). In phosphate buffer, Antibody A formed micrometre-sized aggregates that were best characterized by fluorescence microscopy. The aggregation of Antibody A in phosphate buffer was shown to be concomitant with conformational changes in amino acid residue side chains. The aggregates formed in phosphate buffer were easily disrupted during FFF analysis, indicating that they are formed by weak interactions. The combination of microscopy, asymmetrical flow field-flow fractionation (FFF) and spectroscopy allowed a reliable assessment of protein self association and aggregation. 相似文献
11.
James Arthos Claudia Cicala Tavis D Steenbeke Tae-Wook Chun Charles Dela Cruz Douglas B Hanback Prateeti Khazanie Daniel Nam Peter Schuck Sara M Selig Donald Van Ryk Margery A Chaikin Anthony S Fauci 《The Journal of biological chemistry》2002,277(13):11456-11464
Drug toxicities associated with HAART lend urgency to the development of new anti-HIV therapies. Inhibition of viral replication at the entry stage of the viral life cycle is an attractive strategy because it prevents de novo infection. Soluble CD4 (sCD4), the first drug in this class, failed to suppress viral replication in vivo. At least three factors contributed to this failure: sCD4 demonstrated poor neutralizing activity against most primary isolates of HIV in vitro; it demonstrated an intrinsic capacity to enhance viral replication at low concentrations; and it exhibited a relatively short half-life in vivo. Many anti-gp120 monoclonal antibodies, including neutralizing monoclonal antibodies also enhance viral replication at suboptimal concentrations. Advances in our understanding of the events leading up to viral entry suggest strategies by which this activity can be diminished. We hypothesized that by constructing a sCD4-based molecule that is large, binds multiple gp120s simultaneously, and is highly avid toward gp120, we could remove its capacity to enhance viral entry. Here we describe the construction of a polymeric CD4-IgG1 fusion protein. The hydrodynamic radius of this molecule is approximately 12 nm. It can bind at least 10 gp120 subunits with binding kinetics that suggest a highly avid interaction toward virion-associated envelope. This protein does not enhance viral replication at suboptimal concentrations. These observations may aid in the design of new therapeutics and vaccines. 相似文献
12.
l ‐Arginine (Arg), l ‐homoarginine (HArg), l ‐arginine ethylester (ArgEE), and l ‐arginine methylester (ArgME) were found effective in inhibiting protein aggregation, but the molecular mechanisms are not clear. Herein, stopped‐flow fluorescence spectroscopy, isothermal titration calorimetry, and mass spectroscopy were used to investigate the folding kinetics of lysozyme and the interactions of the additives with lysozyme. It was found that the interactions of ArgME and ArgEE with lysozyme were similar to that of guanidine hydrochloride and were much stronger than those of Arg and HArg. The binding forces were all mainly hydrogen bonding and cation‐π interaction from the guanidinium group, but their differences in molecular states led to the significantly different binding strengths. The additives formed molecular clusters in an increasing order of ArgEE, ArgME, HArg, and Arg. Arg and HArg mainly formed annular clusters with head‐to‐tail bonding, while ArgME and ArgEE formed linear clusters with guanidinium groups stacking. The interactions between the additives and lysozyme were positively related to the monomer contents. That is, the monomers were the primary species that participated in the direct interactions due to their intact guanidinium groups and small sizes, while the clusters performed as barriers to crowd out the protein–protein interactions for aggregation. Thus, it is concluded that the effects of Arg and its derivatives on protein aggregation stemmed from the direct interactions by the monomers and the crowding effects by the clusters. Interplay of the two effects led to the differences in their inhibition effects on protein aggregation. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1316–1324, 2013 相似文献
13.
Tracking structural features leading to resistance of activated protein C to alpha 1-antitrypsin 总被引:1,自引:0,他引:1
Activated protein C (APC) is a multi-modular anticoagulant serine protease, which degrades factor V/Va and factor VIIIa. Human APC (hAPC) is inhibited by human alpha 1-antitrypsin (AAT), while the bovine enzyme (bAPC) is fully resistant to this serpin. Structural features in the catalytic domains between the two species cause this difference, but detailed knowledge about the causal molecular difference is missing. To gain insight into the APC-AAT interaction and to create a human protein C resistant to AAT inhibition, we have used molecular modeling and site-directed mutagenesis. First, a structural model for bAPC based on the Gla-domainless X-ray structure of hAPC was built. Screening the molecular surface of the human and bovine APC enzymes suggested that a hAPC molecule resistant to AAT inhibition could be constructed by substituting only a few amino acids. We thus produced recombinant hAPC molecules with a single mutation (S173E, the numbering follows the chymotrypsinogen nomenclature), two mutations (E60aS/S61R) or a combination of all these substitutions (E60aS/S61R/S173E). Amidolytic and anticoagulant activities of the three mutant APC molecules were similar to those of wild-type hAPC. Inhibition of wild-type hAPC by AAT was characterized by a second-order rate constant (k2) of 2.71 M-1 s-1. The amino acid substitution at position 173 (S173E mutant) led to partial resistance to AAT (k2 = 0.84 M-1 s-1). The E60aS/S61R mutant displayed mild resistance to AAT inhibition (k2 = 1.70 M-1 s-1), whereas the E60aS/S61R/S173E mutant was inefficiently inactivated by AAT (k2 = 0.40 M-1 s-1). Inhibition of recombinant APC molecules by the serpin protein C inhibitor (PCI) in the presence and absence of heparin was also investigated. 相似文献
14.
Inheriting a mutant misfolding-prone protein that cannot be efficiently folded in a given cell type(s) results in a spectrum of human loss-of-function misfolding diseases. The inability of the biological protein maturation pathways to adapt to a specific misfolding-prone protein also contributes to pathology. Chemical and biological therapeutic strategies are presented that restore protein homeostasis, or proteostasis, either by enhancing the biological capacity of the proteostasis network or through small molecule stabilization of a specific misfolding-prone protein. Herein, we review the recent literature on therapeutic strategies to ameliorate protein misfolding diseases that function through either of these mechanisms, or a combination thereof, and provide our perspective on the promise of alleviating protein misfolding diseases by taking advantage of proteostasis adaptation. 相似文献
15.
16.
《Molecular medicine today》1996,2(10):425-431
Multiple myeloma is characterized by excess plasma cells within the bone marrow in association with monoclonal antibody protein in the serum and/or urine. Tumor cells localize within the marrow via an interaction of cell-surface adhesion molecules with their respective ligands on marrow stromal cells and extracellular matrix proteins. Stimulation of myeloma cells via these cell-surface molecules, either directly or via tumor cell adhesion to stromal cells, can induce autocrine or paracrine tumor cell growth mediated by interleukin 6. It might therefore be possible to develop innovative treatment strategies either to inhibit interleukin 6 production or to interrupt interleukin 6 signal transduction in multiple myeloma. 相似文献
17.
The initial steps of heat-induced inactivation and aggregation of the enzyme rhodanese have been studied and found to involve the early formation of modified but catalytically active conformations. These intermediates readily form active dimers or small oligomers, as evident from there being only a small increase in light scattering and an increase in fluorescence energy homotransfer from rhodanese labeled with fluorescein. These species are probably not the domain-unfolded form, as they show activity and increased protection of hydrophobic surfaces. Cross-linking with glutaraldehyde and fractionation by gel filtration show the predominant formation of dimer during heat incubation. Comparison between the rates of aggregate formation at 50 degrees C after preincubation at 25 or 40 degrees C gives evidence of product-precursor relationships, and it shows that these dimeric or small oligomeric species are the basis of the irreversible aggregation. The thermally induced species is recognized by and binds to the chaperonin GroEL. The unfoldase activity of GroEL subsequently unfolds rhodanese to produce an inactive conformation and forms a stable, reactivable complex. The release of 80% active rhodanese upon addition of GroES and ATP indicates that the thermal incubation induces an alteration in conformation, rather than any covalent modification, which would lead to formation of irreversibly inactive species. Once oligomeric species are formed from the intermediates, GroEL cannot recognize them. Based on these observations, a model is proposed for rhodanese aggregation that can explain the paradoxical effect in which rhodanese aggregation is reduced at higher protein concentration. 相似文献
18.
Vitale Miceli Giovanni Zito Matteo Bulati Alessia Gallo Rosalia Bus Gioacchin Iannolo Pier Giulio Conaldi 《World journal of stem cells》2023,15(5):400-420
Mesenchymal stromal/stem cells (MSCs) have shown significant therapeutic potential, and have therefore been extensively investigated in preclinical studies of regenerative medicine. However, while MSCs have been shown to be safe as a cellular treatment, they have usually been therapeutically ineffective in human diseases. In fact, in many clinical trials it has been shown that MSCs have moderate or poor efficacy. This inefficacy appears to be ascribable primarily to the heterogeneity of MSCs. Recently, specific priming strategies have been used to improve the therapeutic properties of MSCs. In this review, we explore the literature on the principal priming approaches used to enhance the preclinical inefficacy of MSCs. We found that different priming strategies have been used to direct the therapeutic effects of MSCs toward specific pathological processes. Particularly, while hypoxic priming can be used primarily for the treatment of acute diseases, inflammatory cytokines can be used mainly to prime MSCs in order to treat chronic immune-related disorders. The shift in approach from regeneration to inflammation implies, in MSCs, a shift in the production of functional factors that stimulate regenerative or anti-inflammatory pathways. The opportunity to fine-tune the therapeutic properties of MSCs through different priming strategies could conceivably pave the way for optimizing their thera peutic potential. 相似文献
19.
Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies 总被引:3,自引:0,他引:3
Angiogenesis, the growth of a network of blood vessels, is a crucial component of solid tumour growth, linking the relatively harmless avascular growth phase and the potentially fatal vascular growth phase. As a process, angiogenesis is a well-orchestrated sequence of events involving endothelial cell migration, proliferation; degradation of tissue; new capillary vessel (sprout) formation; loop formation (anastomosis) and, crucially, blood flow through the network. Once there is blood flow associated with the nascent network, the subsequent growth of the network evolves both temporally and spatially in response to the combined effects of angiogenic factors, migratory cues via the extracellular matrix and perfusion-related haemodynamic forces in a manner that may be described as both adaptive and dynamic. In this paper we present a mathematical model which simultaneously couples vessel growth with blood flow through the vessels--dynamic adaptive tumour-induced angiogenesis (DATIA). This new mathematical model presents a theoretical and computational investigation of the process and highlights a number of important new targets for therapeutic intervention. In contrast to earlier flow models, where the effects of perfusion (blood flow) were essentially evaluated a posteriori, i.e. after generating a hollow network, blood flow in the model described in this paper has a direct impact during capillary growth, with radial adaptations and network remodelling occurring as immediate consequences of primary anastomoses. Capillary network architectures resulting from the dynamically adaptive model are found to differ radically from those obtained using earlier models. The DATIA model is used to examine the effects of changing various physical and biological model parameters on the developing vascular architecture and the delivery of chemotherapeutic drugs to the tumour. Subsequent simulations of chemotherapeutic treatments under different parameter regimes lead to the identification of a number of new therapeutic targets for tumour management. 相似文献
20.
Transthyretin amyloidosis represents a spectrum of clinical syndromes that, in all cases except senile systemic amyloidosis, are dependent on the mutation present in the transthyretin (TTR) protein. Although the role of amyloid deposits in the pathogenesis of the disease is not clear, preventing their formation or promoting their disaggregation is necessary to control the development of clinical symptoms. The design of therapies aiming at preventing amyloid formation or promoting its dissociation requires detailed knowledge of the fibrils' molecular structure and a complete view about the factors responsible for protein aggregation. This review is focused on the structural studies, performed on amyloid fibrils and amyloidogenic TTR variants, aiming at understanding the aggregation mechanism as well as the atomic structure of the fibril assembly. Based on the available information possible therapies are also surveyed. 相似文献