首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Endothelial progenitor cells (EPCs) contribute to the tumor vasculature during tumor progression. Decursin isolated from the herb Angelica gigas is known to possess potent anti‐inflammatory activities. Recently, we reported that decursin is a novel candidate for an angiogenesis inhibitor [Jung et al., 2009 ]. In this study, we investigated whether decursin regulates EPC differentiation and function to inhibit tumor vasculogenesis. We isolated AC133+ cells from human cord blood and decursin significantly decreased the number of EPC colony forming units of human cord blood‐derived AC133+ cells that produce functional EPC progenies. Decursin dose‐dependently decreased the cell number of EPC committing cells as demonstrated by EPC expansion studies. Decursin inhibited EPC differentiation from progenitor cells into spindle‐shaped EPC colonies. Additionally, decursin inhibited proliferation and migration of early EPCs isolated from mouse bone marrow. Furthermore, decursin suppressed expression of angiopoietin‐2, angiopoietin receptor Tie‐2, Flk‐1 (vascular endothelial growth factor receptor‐2), and endothelial nitric oxide synthase in mouse BM derived EPCs in a dose‐dependent manner. Decursin suppressed tube formation ability of EPCs in collaboration with HUVEC. Decursin (4 mg/kg) inhibited tumor‐induced mobilization of circulating EPCs (CD34 + /VEGFR‐2+ cells) from bone marrow and early incorporation of Dil‐Ac‐LDL‐labeled or green fluorescent protein (GFP)+ EPCs into neovessels of xenograft Lewis lung carcinoma tumors in wild‐type‐ or bone‐marrow‐transplanted mice. Accordingly, decursin attenuated EPC‐derived endothelial cells in neovessels of Lewis lung carcinoma tumor masses grown in mice. Together, decursin likely affects EPC differentiation and function, thereby inhibiting tumor vasculogenesis in early tumorigenesis. J. Cell. Biochem. 113: 1478–1487, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Blood vessels are composed of endothelial cells (EC) and mural cells, and the interaction between EC and mural cells is essential for the development and maintenance of the vasculature. EC differentiate from bone marrow-derived endothelial progenitor cells (EPC). Recently, we established a conditionally immortalized bone marrow EPC-derived cell line, TR-BME2, and a brain capillary EC (BCEC) line, TR-BBB, from temperature-sensitive-SV40 T-antigen gene transgenic rats. To understand the function of EPC, it is important to analyze the difference between EPC and mature EC such as BCEC. In this study, we identified EPC-specific genes by means of subtractive hybridization between TR-BME2 and TR-BBB. There was no significant difference between TR-BME2 and TR-BBB in the mRNA level of annexin II, which is expressed in EC. In contrast, the mRNA level of smooth muscle cell (SMC) markers such as smooth muscle protein 22 (SM22), calvasculin, and platelet-derived growth factor (PDGF) receptor-beta, was higher in TR-BME2 than in TR-BBB. Moreover, the mRNA level of contractile SMC markers, such as smooth muscle alpha-actin and SM22, was increased in the absence of EC growth factors, such as vascular endothelial growth factor. The mRNA level of synthetic SMC markers, such as matrix Gla protein, was increased by the addition of PDGF-BB. The SMC derived from TR-BME2 showed an altered phenotype, from contractile-type to synthetic-type, when they were cultured in the absence of PDGF-BB. These results show that TR-BME2 cells have higher levels of SMC markers compared with mature EC, and can differentiate into contractile- or synthetic-type SMC.  相似文献   

3.
Bone repair involves bone resorption through osteoclastogenesis and the stimulation of neovascularization and osteogenesis by endothelial progenitor cells (EPCs). However, the role of EPCs in osteoclastogenesis is unclear. In this study, we assess the effects of EPC‐derived exosomes on the migration and osteoclastic differentiation of primary mouse bone marrow‐derived macrophages (BMMs) in vitro using immunofluorescence, western blotting, RT‐PCR and Transwell assays. We also evaluated the effects of EPC‐derived exosomes on the homing and osteoclastic differentiation of transplanted BMMs in a mouse bone fracture model in vivo. We found that EPCs cultured with BMMs secreted exosomes into the medium and, compared with EPCs, exosomes had a higher expression level of LncRNA‐MALAT1. We confirmed that LncRNA‐MALAT1 directly binds to miR‐124 to negatively control miR‐124 activity. Moreover, overexpression of miR‐124 could reverse the migration and osteoclastic differentiation of BMMs induced by EPC‐derived exosomes. A dual‐luciferase reporter assay indicated that the integrin ITGB1 is the target of miR‐124. Mice treated with EPC‐derived exosome‐BMM co‐transplantations exhibited increased neovascularization at the fracture site and enhanced fracture healing compared with those treated with BMMs alone. Overall, our results suggest that EPC‐derived exosomes can promote bone repair by enhancing recruitment and differentiation of osteoclast precursors through LncRNA‐MALAT1.  相似文献   

4.
5.

Background

Cilostazol(CLZ) has been used as a vasodilating anti-platelet drug clinically and demonstrated to inhibit proliferation of smooth muscle cells and effect on endothelial cells. However, the effect of CLZ on re-endothelialization including bone marrow (BM)-derived endothelial progenitor cell (EPC) contribution is unclear. We have investigated the hypothesis that CLZ might accelerate re-endothelialization with EPCs.

Methodology/Principal Findings

Balloon carotid denudation was performed in male Sprague-Dawley rats. CLZ group was given CLZ mixed feed from 2weeks before carotid injury. Control group was fed normal diet. CLZ accelerated re-endothelialization at 2 weeks after surgery and resulted in a significant reduction of neointima formation 4 weeks after surgery compared with that in control group. CLZ also increased the number of circulating EPCs throughout the time course. We examined the contribution of BM-derived EPCs to re-endothelialization by BM transplantation from Tie2/lacZ mice to nude rats. The number of Tie2-regulated X-gal positive cells on injured arterial luminal surface was increased at 2 weeks after surgery in CLZ group compared with that in control group. In vitro, CLZ enhanced proliferation, adhesion and migration activity, and differentiation with mRNA upregulation of adhesion molecule integrin αvβ3, chemokine receptor CXCR4 and growth factor VEGF assessed by real-time RT-PCR in rat BM-derived cultured EPCs. In addition, CLZ markedly increased the expression of SDF-1α that is a ligand of CXCR4 receptor in EPCs, in the media following vascular injury.

Conclusions/Significance

CLZ promotes EPC mobilization from BM and EPC recruitment to sites of arterial injury, and thereby inhibited neointima formation with acceleration of re-endothelialization with EPCs as well as pre-existing endothelial cells in a rat carotid balloon injury model. CLZ could be not only an anti-platelet agent but also a promising tool for endothelial regeneration, which is a key event for preventing atherosclerosis or restenosis after vascular intervention.  相似文献   

6.
This study reports the culture and purification of murine bone marrow endothelial progenitor cells (EPCs) using endothelial cell-conditioned medium (EC-CM). Endothelial-like cells appeared at day 5 in culture of bone marrow mononuclear cells in the presence of EC-CM in the culture system, and these cells incorporated acetylated low-density lipoproteins (Ac-LDL) and reacted with endothelial-specific Ulex Europaeus Lectin. Continued incubation of these cells at low density with EC-CM for longer than 10 days resulted in the formation of endothelial cell colonies which gave rise to colonies of endothelial progeny and can be passed for many generations in the EC-CM culture system. Cells derived from these colonies expressed endothelial cell markers such as vWF and CD31, incorporated Dil-Ac-LDL, stained positive for Ulex Europaeus Lectin, formed capillary-like structures on Matrigel, and demonstrated a high proliferative capacity in culture. These bone marrow-derived adherent cells were identified as EPCs. The purification and the formation of EPC colonies by using EC-CM were associated with the cytokines secreted in the EC-CM. VEGF, bFGF, and GM-CSF in the EC-CM stimulated the proliferation and growth of EPCs, whereas AcSDKP (tetrapeptide NAc-Ser-Asp-Lys-Pro) in EC-CM suppressed the growth of mesenchymal stem cells (MSC) and fibroblasts. This approach is efficient for isolation/purification and outgrowth of bone marrow EPCs in vitro, a very important cell source in angiogenic therapies and regenerative medicine.  相似文献   

7.
Neovascularization is essential for tumor growth. We have previously reported that the chemokine receptor CXCR2 is an important regulator in tumor angiogenesis. Here we report that the mobilization of bone marrow (BM)-derived endothelial progenitor cells (EPCs) is impaired in CXCR2 knockout mice harboring pancreatic cancers. The circulating levels of EPCs (positive for CD34, CD117, CD133, or CD146) are decreased in the bone marrow and/or blood of tumor-bearing CXCR2 knockout mice. CXCR2 gene knockout reduced BM-derived EPC proliferation, differentiation, and vasculogenesis in vitro. EPCs double positive for CD34 and CD133 increased tumor angiogenesis and pancreatic cancer growth in vivo. In addition, CD133(+) and CD146(+) EPCs in human pancreatic cancer are increased compared with normal pancreas tissue. These findings indicate a role of BM-derived EPC in pancreatic cancer growth and provide a cellular mechanism for CXCR2 mediated tumor neovascularization.  相似文献   

8.
S Meng  J Cao  L Wang  Q Zhou  Y Li  C Shen  X Zhang  C Wang 《PloS one》2012,7(7):e40323
Endothelial progenitor cells (EPCs) play an important role in tissue repair after ischemic heart disease. In particular, the recovery of endothelial function is reliant on the ability and rate of EPCs differentiate into mature endothelial cells. The present study evaluated the effect of microRNA 107 (miR-107) on the mechanism of EPCs differentiation. EPCs were isolated from rats' bone marrow and miR-107 expression of EPCs in hypoxic and normoxic conditions were measured by real-time qualitative PCR. CD31 was analyzed by flow cytometry and eNOS was examined by real-time qualitative PCR and western blotting and these were used as markers of EPC differentiation. In order to reveal the mechanism, we used miR107 inhibitor and lentiviral vector expressing a short hairpin RNA (shRNA) that targets miR-107 and hypoxia-inducible factor-1 β (HIF-1β) to alter miR107 and HIF-1β expression. MiR-107 expression were increased in EPCs under hypoxic conditions. Up-regulation of miR-107 partly suppressed the EPCs differentiation induced in hypoxia, while down-regulation of miR-107 promoted EPC differentiation. HIF-1β was the target. This study indicated that miR-107 was up-regulated in hypoxia to prevent EPCs differentiation via its target HIF-1β. The physiological mechanisms of miR-107 must be evaluated if it is to be used as a potential anti-ischemia therapeutic regime.  相似文献   

9.
10.
Loss of Id1 in the bone marrow (BM) severely impairs tumor angiogenesis resulting in significant inhibition of tumor growth. This phenotype has been associated with the absence of circulating endothelial progenitor cells (EPCs) in the peripheral blood of Id1 mutant mice. However, the manner in which Id1 loss in the BM controls EPC generation or mobilization is largely unknown. Using genetically modified mouse models we demonstrate here that the generation of EPCs in the BM depends on the ability of Id1 to restrain the expression of its target gene p21. Through a series of cellular and functional studies we show that the increased myeloid commitment of BM stem cells and the absence of EPCs in Id1 knockout mice are associated with elevated p21 expression. Genetic ablation of p21 rescues the EPC population in the Id1 null animals, re-establishing functional BM-derived angiogenesis and restoring normal tumor growth. These results demonstrate that the restraint of p21 expression by Id1 is one key element of its activity in facilitating the generation of EPCs in the BM and highlight the critical role these cells play in tumor angiogenesis.  相似文献   

11.
Circulating endothelial progenitor cells (EPCs) play a pivotal role in angiogenesis. Hepatocyte growth factor (HGF) is known to induce proliferation and motility in endothelial cells, and to play a role in mitogenic and morphogenic actions. However, the role of HGF in EPC mobilization has not been clearly described yet. We investigated the effect of HGF on mobilizing EPCs and on angiogenesis in elastase-induced lung injury. HGF significantly increased the triple-positive (Sca-1(+), Flk-1(+), and c-kit(+)) fraction in peripheral mononuclear cells in mice. The bone marrow-derived cells were recruited into the injured lungs, where they differentiated to capillary endothelial cells. HGF induced proliferation of both bone marrow-derived and resident endothelial cells in the alveolar wall. In conclusion, the present study suggests that HGF induces EPC mobilization from the bone marrow and enhances the proliferation of endothelial cells in vivo. These complex effects induced by HGF orchestrate pulmonary regeneration in emphysematous lung parenchyma.  相似文献   

12.

Background

Endothelial progenitor cells (EPCs) were shown to have angiogenic potential contributing to neovascularization. However, a clear definition of mouse EPCs by cell surface markers still remains elusive. We hypothesized that CD34 could be used for identification and isolation of functional EPCs from mouse bone marrow.

Methodology/Principal Findings

CD34+ cells, c-Kit+/Sca-1+/Lin (KSL) cells, c-Kit+/Lin (KL) cells and Sca-1+/Lin (SL) cells were isolated from mouse bone marrow mononuclear cells (BMMNCs) using fluorescent activated cell sorting. EPC colony forming capacity and differentiation capacity into endothelial lineage were examined in the cells. Although CD34+ cells showed the lowest EPC colony forming activity, CD34+ cells exhibited under endothelial culture conditions a more adherent phenotype compared with the others, demonstrating the highest mRNA expression levels of endothelial markers vWF, VE-cadherin, and Flk-1. Furthermore, a dramatic increase in immediate recruitment of cells to the myocardium following myocardial infarction and systemic cell injection was observed for CD34+ cells comparing with others, which could be explained by the highest mRNA expression levels of key homing-related molecules Integrin β2 and CXCR4 in CD34+ cells. Cell retention and incorporation into the vasculature of the ischemic myocardium was also markedly increased in the CD34+ cell-injected group, giving a possible explanation for significant reduction in fibrosis area, significant increase in neovascularization and the best cardiac functional recovery in this group in comparison with the others.

Conclusion

These findings suggest that mouse CD34+ cells may represent a functional EPC population in bone marrow, which could benefit the investigation of therapeutic EPC biology.  相似文献   

13.
Macrophage migration inhibitory factor (MIF) is a pleiotropic inflammatory cytokine that was recently identified as a non‐cognate ligand of the CXC‐family chemokine receptors 2 and 4 (CXCR2 and CXCR4). MIF is expressed and secreted from endothelial cells (ECs) following atherogenic stimulation, exhibits chemokine‐like properties and promotes the recruitment of leucocytes to atherogenic endothelium. CXCR4 expressed on endothelial progenitor cells (EPCs) and EC‐derived CXCL12, the cognate ligand of CXCR4, have been demonstrated to be critical when EPCs are recruited to ischemic tissues. Here we studied whether hypoxic stimulation triggers MIF secretion from ECs and whether the MIF/CXCR4 axis contributes to EPC recruitment. Exposure of human umbilical vein endothelial cells (HUVECs) and human aortic endothelial cells (HAoECs) to 1% hypoxia led to the specific release of substantial amounts of MIF. Hypoxia‐induced MIF release followed a biphasic behaviour. MIF secretion in the first phase peaked at 60 min. and was inhibited by glyburide, indicating that this MIF pool was secreted by a non‐classical mechanism and originated from pre‐formed MIF stores. Early hypoxia‐triggered MIF secretion was not inhibited by cycloheximide and echinomycin, inhibitors of general and hypoxia‐inducible factor (HIF)‐1α‐induced protein synthesis, respectively. A second phase of MIF secretion peaked around 8 hrs and was likely due to HIF‐1α‐induced de novo synthesis of MIF. To functionally investigate the role of hypoxia‐inducible secreted MIF on the recruitment of EPCs, we subjected human AcLDL+ KDR+ CD31+ EPCs to a chemotactic MIF gradient. MIF potently promoted EPC chemotaxis in a dose‐dependent bell‐shaped manner (peak: 10 ng/ml MIF). Importantly, EPC migration was induced by supernatants of hypoxia‐conditioned HUVECs, an effect that was completely abrogated by anti‐MIF‐ or anti‐CXCR4‐antibodies. Thus, hypoxia‐induced MIF secretion from ECs might play an important role in the recruitment and migration of EPCs to hypoxic tissues such as after ischemia‐induced myocardial damage.  相似文献   

14.
Vascular endothelial cell injury has been implicated in the onset of atherosclerosis. A number of previous studies have demonstrated that endothelial progenitor cells (EPCs), in particular late EPCs, play important roles in endothelial maintenance and repair. Recent evidence has revealed shear stress as a key regulator for EPC differentiation. However, the detailed events that contribute to the shear stress-induced EPC differentiation, in particular the mechanisms of mechanotransduction, remain to be identified. The present study was undertaken to further confirm the effects of shear stress on the late EPC differentiation, and to investigate the role of integrins in this procedure. Shear stress was observed to increase the expression of endothelial cell differentiation markers, such as vWF and CD31, in late EPCs isolated from rat bone marrow. Shear stress moreover enhanced the mRNA expression of integrin subunits β(1) and β(3) in a time-dependent manner, and also upregulated specific integrins in late EPCs plated on substrates containing various extracellular matrix (ECM) proteins. In addition, the shear stress-induced vWF and CD31 expression were found to be related to the levels of integrin β(1) and β(3), and were inhibited in late EPCs treated with RGD peptide (Gly-Arg-Gly-Asp-Asn-Pro, GRGDNP) that blocks the binding of integrins to the extracellular matrix. Additionally, this increase was also attenuated by both anti-β(1) integrin and anti-β(3) integrin antibodies. The integrin subunits β(1) and β(3) thus play important roles in regulating the shear stress-induced endothelial cell differentiation marker expression in late EPCs. This may provide novel insights into the mechanisms of mechanotransduction in shear stress-mediated late EPC differentiation.  相似文献   

15.
16.
Circulating endothelial progenitor cells (EPCs) derived from the bone marrow (BM) participate in maintaining endothelial integrity and vascular homeostasis. Reduced EPC number and function result in vascular complications in diabetes. EPCs are a population of cells existing in various differentiation stages, and their cell surface marker profiles change during the process of mobilization and maturation. Hence, a generally accepted marker combination and a standardized protocol for the quantification of EPCs remain to be established. To determine the EPC subsets that are affected by diabetes, we comprehensively analyzed 32 surface marker combinations of mouse peripheral blood (PB), BM, and spleen cells by multicolor flow cytometry. Ten subsets equivalent to previously reported mouse EPCs significantly declined in number in the PB of streptozotocin-induced diabetic mice, and this reduction was reversed by insulin treatment. The PI(-)Lin(-)c-Kit(-)Sca-1(+)Flk-1(-)CD34(-)CD31(+) EPC cluster, which can differentiate into mature endothelial cells in vitro, was the highest population in the PB, BM, and spleen and occurred 61 times more in the spleen than in the PB. The cell number significantly decreased in the BM as well as in the PB but paradoxically increased in the spleen under diabetic conditions. Insulin treatment reversed the decrease of EPC subsets in the BM and PB and reversed their increase in spleen. A similar tendency was observed in some of the major cell populations in db/db mice. To the best of our knowledge, we are the first to report spatial population changes in mouse EPCs by diabetes in the blood and in the BM across the spleen. Diminished circulating EPC supply by diabetes may be ascribed to impaired EPC production in the BM and to decreased EPC mobilization from the spleen, which may contribute to vascular dysfunction in diabetic conditions.  相似文献   

17.
18.
Diabetes mellitus is associated with an increased risk of cardiovascular disease due to its negative impact on the vascular endothelium. The damaged endothelium is repaired by resident cells also through the contribution of a population of circulating cells derived from bone marrow. These cells, termed endothelial progenitor cells (EPCs) are involved in maintaining endothelial homeostasis and contributes to the formation of new blood vessels with a process called postnatal vasculogenesis. The mechanisms whereby these cells allow for protection of the cardiovascular system are still unclear; nevertheless, consistent evidences have shown that impairment and reduction of EPCs are hallmark features of type 1 and type 2 diabetes. Therefore, EPC alterations might have a pathogenic role in diabetic complications, thus becoming a potential therapeutic target. In this review, EPC alterations will be examined in the context of macrovascular and microvascular complications of diabetes, highlighting their roles and functions in the progression of the disease.  相似文献   

19.
Yin T  Ma X  Zhao L  Cheng K  Wang H 《Cell research》2008,18(7):792-799
Endothelial progenitor cells (EPCs) participate in the processes of postnatal neovascularization and re-endothelialization in response to tissue ischemia and endothelial injury. The level of EPCs present has been found to be directly associated with the outcome of cardiovascular diseases, and could be regulated by stimulatory or inhibitory factors. Given the close relationship between angiotensin II (AngII) and the cardiovascular system, we investigated the effect of AngII on the activities of bone marrow (BM)-derived EPCs. Cells were isolated from BM of rats by density gradient centrifugation. Administration of AngII significantly promoted nitric oxide (NO) release, inhibited EPC apoptosis and enhanced EPC adhesion potential. All of these AngII-mediated effects on EPCs were attenuated by pretreatment with valsartan or L-NAME. Moreover, both LY294002 and wortmannin abolished the anti-apoptotic effect of AngII. Western blot analyses indicated that endothelial NO synthase (eNOS) protein and phosphorylated Akt increased with the treatment of AngII in EPCs. Thus, AngII improved several activities of EPCs through AngII type 1 receptor (AT1R), which may represent a possible mechanism linking AngII and AT1R with angiogenesis. Additionally, AngII-induced NO synthesis through eNOS in EPCs regulates apoptosis and adhesion, and the PI3-kinase/Akt pathway has an essential role in AngII-induced antiapoptosis signaling.  相似文献   

20.
Hyperoxia disrupts vascular and alveolar growth of the developing lung and contributes to the development of bronchopulmonary dysplasia (BPD). Endothelial progenitor cells (EPC) have been implicated in repair of the vasculature, but their role in lung vascular development is unknown. Since disruption of vascular growth impairs lung structure, we hypothesized that neonatal hyperoxia impairs EPC mobilization and homing to the lung, contributing to abnormalities in lung structure. Neonatal mice (1-day-old) were exposed to 80% O(2) at Denver's altitude (= 65% at sea level) or room air for 10 days. Adult mice were also exposed for comparison. Blood, lung, and bone marrow were harvested after hyperoxia. Hyperoxia decreased pulmonary vascular density by 72% in neonatal but not adult mice. In contrast to the adult, hyperoxia simplified distal lung structure neonatal mice. Moderate hyperoxia reduced EPCs (CD45-/Sca-1+/CD133+/VEGFR-2+) in the blood (55%; P < 0.03), bone marrow (48%; P < 0.01), and lungs (66%; P < 0.01) of neonatal mice. EPCs increased in bone marrow (2.5-fold; P < 0.01) and lungs (2-fold; P < 0.03) of hyperoxia-exposed adult mice. VEGF, nitric oxide (NO), and erythropoietin (Epo) contribute to mobilization and homing of EPCs. Lung VEGF, VEGF receptor-2, endothelial NO synthase, and Epo receptor expression were reduced by hyperoxia in neonatal but not adult mice. We conclude that moderate hyperoxia decreases vessel density, impairs lung structure, and reduces EPCs in the circulation, bone marrow, and lung of neonatal mice but increases EPCs in adults. This developmental difference may contribute to the increased susceptibility of the developing lung to hyperoxia and may contribute to impaired lung vascular and alveolar growth in BPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号