首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 3',5'-exonuclease center of the Klenow fragment of E. coli DNA polymerase I (FK) was selectively blocked by NaF. The latter was shown to forbid the binding of nucleotides and their analogs to the enzyme exonuclease center. In the presence of poly(dT).r(pA)10 template.primer complex and NaF, we observed AMP, ADP, ATP, PPi and dATP to be competitive inhibitors of the FK-catalyzed DNA polymerization. The interactions of the nucleotides with FK and human DNA polymerase alpha were compared to reveal similarity of binding to the DNA polymerizing centers. Structural components of dNTP and PPi playing key roles in forming complexes with pro- and eukaryotic DNA polymerases were identified.  相似文献   

2.
A complete kinetic scheme describing the polymerization of correct and incorrect dNTPs by the Klenow fragment (KF) of DNA polymerase I has been developed by using short DNA oligomers of defined sequence. The high fidelity arises from a three-stage mechanism. The first stage of discrimination [(1.1 X 10(4-) greater than 1.2 X 10(6]-fold] comes primarily from a dramatically reduced rate of phosphodiester bond formation for incorrect nucleotides, but it also gains a smaller contribution from selective dNTP binding. After phosphodiester bond formation, a conformational change slows dissociation of the incorrect DNA products from KF and, in conjunction with editing by the 3'----5'-exonuclease, increases fidelity 4- greater than 61-fold. Finally, KF polymerizes the next correct dNTP onto a mismatch very slowly, providing a further 6- greater than 340-fold increase in fidelity. Surprisingly, the 3'----5'-exonuclease did not in its hydrolysis reaction differentiate between correctly and incorrectly base-paired nucleotides; rather, an increased lifetime of the enzyme-DNA complex containing the misincorporated base is responsible for discrimination.  相似文献   

3.
It has been shown that, in the absence of dATP in the poly(dT).oligo(dA) template-primer complex, the rate of primer cleavage by the E. coli DNA polymerase I Klenow fragment equals 4% of polymerization rate, while in the presence of dATP it equals as much as 50-60%. NaF and NMP taken separately inhibit exonuclease cleavage of oligo(dA) both with and without dATP. The addition of NaF (5-10 mM) or NMP (5-20 mM) increases the absolute increment of polymerization rate 5-9-fold relative to the absolute decrement of the rate of nuclease hydrolysis of primer. This proves the assumption that not more than 10-20% of primer molecules, interacting with the exonuclease center of polymerase, are cleaved by the enzyme. Presumably, NaF and nucleotides disturb the coupling of the 3'-end of oligonucleotide primer to the exonuclease center of the enzyme. As the primers mostly form complexes with the polymerizing center, the reaction of polymerization is activated.  相似文献   

4.
Analysis of metal activation on the synthetic and degradative activities of phi 29 DNA polymerase was carried out in comparison with T4 DNA polymerase and Escherichia coli DNA polymerase I (Klenow fragment). In the three DNA polymerases studied, both the polymerization and the 3'----5' exonuclease activity had clear differences in their metal ion requirements. The results obtained support the existence of independent metal binding sites for the synthetic and degradative activities of phi 29 DNA polymerase, according with the distant location of catalytic domains (N-terminal for the 3'----5' exonuclease and C-terminal for DNA polymerization) proposed for both Klenow fragment and phi 29 DNA polymerase. Furthermore, DNA competition experiments using phi 29 DNA polymerase suggested that the main differences observed in the metal usage to activate polymerization may be the consequence of metal-induced changes in the enzyme-DNA interactions, whose strength distinguishes processive and nonprocessive DNA polymerases. Interestingly, the initiation of DNA polymerization using a protein as a primer, a special synthetic activity carried out by phi 29 DNA polymerase, exhibited a strong preference for Mn2+ as metal activator. The molecular basis for this preference is mainly the result of a large increase in the affinity for dATP.  相似文献   

5.
DNA polymerase I (Klenow fragment) of Escherichia coli catalyzes the addition of deoxynucleotides to 3' hydroxyl termini of blunt-ended DNA fragments. The product of the reaction, which we call +1 addition, is found only in very low yield under conditions that permit editing by the 3'----5' exonuclease activity of the wild-type polymerase. A mutant form of the Klenow fragment that lacks detectable 3'----5' exonuclease activity shows an elevated accumulation of the +1 addition product. The mutant enzyme can use any one of the four dNTPs to carry out the reaction when each precursor is provided individually. However, in the presence of all four dNTPs the addition of dATP is strongly preferred. Suppression of the editing function of the wild-type polymerase through the use of high concentrations of exogenous deoxynucleoside monophosphates also results in a significant increase in the amount of +1 addition product formed. The presence of a high dNMP concentration also alters the specificity of the nucleotide addition reaction carried out by the wild-type enzyme. Thus, in addition to dATP, the dNTP which is complementary to the exogenous deoxynucleoside monophosphate, is also used in the +1 addition reaction. A similar effect of dNMPs on the specificity of nucleotide addition was obtained with the mutant Klenow fragment. These results define two pathways for the +1 addition reaction: one that does not require coding information from the DNA template and a second in which coding information is provided by the exogenous dNMP.  相似文献   

6.
A P Gupta  S J Benkovic 《Biochemistry》1984,23(24):5874-5881
(Sp)-2'-Deoxyadenosine 5'-O-[1-17O,1-18O,1,2-18O]triphosphate has been synthesized by desulfurization of (Sp)-2'-deoxyadenosine 5'-O-(1-thio[1,1-18O2]diphosphate) with N-bromosuccinimide in [17O]water, followed by phosphorylation with phosphoenolpyruvate-pyruvate kinase. A careful characterization of the product using high-resolution 31P NMR revealed that the desulfurization reaction proceeded with approximately 88% direct in-line attack at the alpha-phosphorus and 12% participation by the beta-phosphate to form a cyclic alpha,beta-diphosphate. The latter intermediate underwent hydrolysis by a predominant nucleophilic attack on the beta-phosphate. This complexity of the desulfurization reaction, however, does not affect the stereochemical integrity of the product but rather causes a minor dilution with nonchiral species. The usefulness of the (Sp)-2'-deoxyadenosine 5'-O-[1-17O,1-18O,1,2-18O]triphosphate in determining the stereochemical course of deoxyribonucleotidyl-transfer enzymes is demonstrated by using it to delineate the stereochemical course of the 3'----5'-exonuclease activity of DNA polymerase I. Upon incubation of this oxygen-chiral substrate with Klenow fragment of DNA polymerase I in the presence of poly[d(A-T)] and Mg2+, a quantitative conversion into 2'-deoxyadenosine 5'-O-[16O,17O,18O]monophosphate was observed. The stereochemistry of this product was determined to be Rp. Since the overall template-primer-dependent conversion of a deoxynucleoside triphosphate into the deoxynucleoside monophosphate involves incorporation into the polymer followed by excision by the 3'----5'-exonuclease activity and since the stereochemical course of the incorporation reaction is known to be inversion, it can be concluded that the stereochemical course of the 3'----5'-exonuclease is also inversion.  相似文献   

7.
The effect of NaF on the enzymatic activities of the large fragment of E. coli DNA polymerase I (Klenow enzyme-KE) with different DNA-substrates was studied. It was shown that fluoride ion at concentrations of 5-10 mM efficiently inhibits the 3'----5' exonuclease activity of KE but does not affect the polymerase activity of the enzyme. Selective inhibition of the 3'----5' exonuclease activity of KE is Mg-dependent and is observed with double- or single-stranded DNAs. In reaction with the 14-mer oligonucleotide annealed with single-stranded phage M13 DNA the enzyme was found not only to perform the exonucleolytic hydrolysis of the primers but to catalyse also a limited elongation of some primers, adding a few nucleotide residues in the absence of exogenous dNTP. The primer elongation is inhibited by inorganic pyrophosphatase and is stimulated by micromolar concentrations of exogenous pyrophosphate thus suggesting a possible role of PPi contamination in dNTP generation via pyrophosphorolysis. Traces of precursors in DNA preparations obtained by generally employed methods may serve as another source of nucleotides for the primer elongation.  相似文献   

8.
Kinetic mechanism of DNA polymerase I (Klenow)   总被引:12,自引:0,他引:12  
The minimal kinetic scheme for DNA polymerization catalyzed by the Klenow fragment of DNA polymerase I (KF) from Escherichia coli has been determined with short DNA oligomers of defined sequence. A key feature of this scheme is a minimal two-step sequence that interconverts the ternary KF.DNAn.dNTP and KF.DNAn+1.PPi complexes. The rate is not limited by the actual polymerization but by a separate step, possibly important in ensuring fidelity [Mizrahi, V., Henrie, R. N., Marlier, J. F., Johnson, K. A., & Benkovic, S. J. (1985) Biochemistry 24, 4010-4018]. Evidence for this sequence is supplied by the observation of biphasic kinetics in single-turnover pyrophosphorolysis experiments (the microscopic reverse of polymerization). Data analysis then provides an estimate of the internal equilibrium constant. The dissociations of DNA, dNTP, and PPi from the various binary and ternary complexes were measured by partitioning (isotope-trapping) experiments. The rate constant for DNA dissociation from KF is sequence dependent and is rate limiting during nonprocessive DNA synthesis. The combination of single-turnover (both directions) and isotope-trapping experiments provides sufficient information to permit a quantitative evaluation of the kinetic scheme for specific DNA sequences.  相似文献   

9.
10.
Steady-state kinetics of mouse DNA polymerase beta.   总被引:1,自引:0,他引:1  
K Tanabe  E W Bohn  S H Wilson 《Biochemistry》1979,18(15):3401-3406
DNA polymerase beta from mouse myeloma has been purified to near homogeneity, and its properties have been examined. The enzyme did not catalyze a detectable level of dNTP turnover, pyrophosphate exchange, pyrophosphorolysis, 3'-exonuclease degradation, or 5'-exonuclease degradation. Steady-state kinetic studies point to an ordered bibi mechanism for the polymerization reaction. Metal activation, which is required for polymerization, did not alter the Km for either the dNTP or the template--primer.  相似文献   

11.
The DNA polymerase encoded by herpes simplex virus 1 consists of a single polypeptide of Mr 136,000 that has both DNA polymerase and 3'----5' exonuclease activities; it lacks a 5'----3' exonuclease. The herpes polymerase is exceptionally slow in extending a synthetic DNA primer annealed to circular single-stranded DNA (turnover number approximately 0.25 nucleotide). Nevertheless, it is highly processive because of its extremely tight binding to a primer terminus (Kd less than 1 nM). The single-stranded DNA-binding protein from Escherichia coli greatly stimulates the rate (turnover number approximately 4.5 nucleotides) by facilitating the efficient binding to and extension of the DNA primers. Synchronous replication by the polymerase of primed single-stranded DNA circles coated with the single-stranded DNA-binding protein proceeds to the last nucleotide of available 5.4-kilobase template without dissociation, despite the 20-30 min required to replicate the circle. Upon completion of synthesis, the polymerase is slow in cycling to other primed single-stranded DNA circles. ATP (or dATP) is not required to initiate or sustain highly processive synthesis. The 3'----5' exonuclease associated with the herpes DNA polymerase binds a 3' terminus tightly (Km less than 50 nM) and is as sensitive as the polymerase activity to inhibition by phosphonoacetic acid (Ki approximately 4 microM), suggesting close communication between the polymerase and exonuclease sites.  相似文献   

12.
13.
Rate-limiting steps in the DNA polymerase I reaction pathway   总被引:10,自引:0,他引:10  
The initial rates of incorporation of dTTP and thymidine 5'-O-(3-thiotriphosphate) (dTTP alpha S) into poly(dA) X oligo(dT) during template-directed synthesis by the large fragment of DNA polymerase I have been measured by using a rapid-quench technique. The rates were initially equal, indicating a nonrate-limiting chemical step. However, the rate of thionucleotide incorporation steadily diminished to 10% of its initial value as the number of consecutive dTMP alpha S residues in the primer strand increased. This anomalous behavior can be attributed to the helix instability inherent in phosphorothioate-containing duplexes. Positional isotope exchange experiments employing the labeled substrate [alpha-18O2]dATP have revealed negligible alpha, beta-bridging----beta-nonbridging isotope exchange in template-directed reactions of Escherichia coli DNA polymerase I (Pol I) both in the presence and in the absence of added inorganic pyrophosphate (PPi), suggesting rapid PPi release following the chemical step. These observations are consistent with a rate-limiting step that is tentatively assigned to a conformational change of the E X DNA X dNTP complex immediately preceding the chemical step. In addition, the substrate analogue (Sp)-dATP alpha S has been employed to examine the mechanism of the PPi exchange reaction catalyzed by Pol I. The net retention of configuration at the alpha-P is interpreted in terms of two consecutive inversion reactions, namely, 3'-hydroxyl attack, followed by PPi attack on the newly formed primer terminus. Kinetic analysis has revealed that while alpha-phosphorothioate substitution has no effect upon the initial rate of polymerization, it does attenuate the PPi exchange reaction by a factor of 15-18 fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The modification of tyrosine residues of DNA polymerase I Klenow fragment from E. coli by acetylimidazole has been investigated. This reagent was shown to inactivate both polymerization and 3',5'-exonuclease activities but with different velocity. The poly(dT)-template and r(pA)10-primer each added separately to the enzyme have no notable influence on the rate of enzyme inactivation. Simultaneous presence of both template and primer increases the rate of inactivation. In the presence of poly(dT).r(pA) 10 there is not effect of dCTP and dTTP (noncomplementary to the template) on the rate of inactivation of polymerization activity. However, dATP complementary to the template, provides a complete protection. A weak protective action is detected in the presence of dADP. Orthophosphate, pyrophosphate and dAMP each taken separately increase the rate and the level of the enzyme inactivation. dAMP together with either ortho- or pyrophosphate have the same protective action as ATP. All data obtained allow to suggest the functional significance for polymerization activity of tyrosine located in the dNTP binding site of DNA polymerase I.  相似文献   

15.
16.
The polymerase and 3'-5'-exonuclease activities of the Klenow fragment of DNA polymerase I are located on separate structural domains of the protein, separated by about 30 A. To determine whether a DNA primer terminus can move from one active site to the other without dissociation of the enzyme-DNA complex, we carried out reactions on a labeled DNA substrate in the presence of a large excess of unlabeled DNA, to limit observations to a single enzyme-DNA encounter. The results indicated that while Klenow fragment is capable of intramolecular shuttling of a DNA substrate between the two catalytic sites, the intermolecular pathway involving enzyme-DNA dissociation can also be used. Thus, there is nothing in the protein structure or the reaction mechanism that dictates a particular means of moving the DNA substrate. Instead, the use of the intermolecular or the intramolecular pathway is determined by the competition between the polymerase or exonuclease reaction and DNA dissociation. When the substrate has a mispaired primer terminus, DNA dissociation seems generally more rapid than exonucleolytic digestion. Thus, Klenow fragment edits its own polymerase errors by a predominantly intermolecular process, involving dissociation of the enzyme-DNA complex and reassociation of the DNA with the exonuclease site of a second molecule of Klenow fragment.  相似文献   

17.
The modification of tyrosine residues of the human placenta DNA-polymerase alpha by N-acetylimidazole was investigated. The poly(dT)-template and the r(pA)10-primer a each added separately or simultaneously do not influence the rate of enzyme inactivation. In the presence of poly(dT)-r(pA)10 no effect of dCTP and dTTP (noncomplementary to template) and of dAMP and dADP (complementary to template) on the rate and the level of the enzyme inactivation was found. However dATP revealed practically complete protection. Orthophosphate, pyrophosphate each taken separately do not influence the rate of enzyme inactivation with this reagent. The presence of dADP with either ortho- or pyrophosphate, or dAMP with the one of these ligands leads to half protective action in comparison with dATP. Imidazolides of phosphonoacetic acid and 5'-adenylyl++ 1(phosphonoacetic acid) do not inactivate DNA-polymerase alpha from human placenta and the Klenov fragment of DNA-polymerase I from E. coli. All data obtained allow to suggest that the tyrosine residue in the dNTP binding site of DNA-polymerase reveals stacking with the nucleotide only if dNTP is complementary to the template.  相似文献   

18.
The synthesis of an azidoDNA duplex and its use to photolabel DNA polymerases have been previously described (Gibson & Benkovic, 1987). We now present detailed experiments utilizing this azidoDNA photoprobe as a substrate for Escherichia coli DNA polymerase I (Klenow fragment) and the photoaffinity labeling of the protein. The azidoDNA duplex is an efficient substrate for both the polymerase and 3'----5' exonuclease activities of the enzyme. However, the hydrolytic degradation of the azido-bearing base is dramatically impaired. On the basis of the ability of these duplexes to photolabel the enzyme, we have determined that the protein contacts between five and seven bases of duplex DNA. Incubation of azidoDNA with the Klenow fragment in the presence of magnesium results in the in situ formation of a template-primer with the azido-bearing base bound at the polymerase catalytic site of the enzyme. Photolysis of this complex followed by proteolytic digestion and isolation of DNA-labeled peptides results in the identification of a single residue modified by the photoreactive DNA substrate. We identify Tyr766 as the modified amino acid and thus localize the catalytic site for polymerization in the protein. A mansyl-labeled DNA duplex has been prepared as a fluorescent probe of protein structure. This has been utilized to determine the location of the primer terminus when bound to the Klenow fragment. When the duplex contains five unpaired bases in the primer strand of the duplex, the primer terminus resides predominantly at the exonuclease catalytic site of the enzyme. Removal of the mismatched bases by the exonuclease activity of the enzyme yields a binary complex with the primer terminus now bound predominantly at the polymerase active site. Data are presented which suggest that the rate-limiting step in the exonuclease activity of the enzyme is translocation of the primer terminus from polymerase to exonuclease catalytic sites.  相似文献   

19.
In order to further understand how DNA polymerases discriminate against incorrect dNTPs, we synthesized two sets of dNTP analogues and tested them as substrates for DNA polymerase α (pol α) and Klenow fragment (exo) of DNA polymerase I (Escherichia coli). One set of analogues was designed to test the importance of the electronic nature of the base. The bases consisted of a benzimidazole ring with one or two exocyclic substituent(s) that are either electron-donating (methyl and methoxy) or electron-withdrawing (trifluoromethyl and dinitro). Both pol α and Klenow fragment exhibit a remarkable inability to discriminate against these analogues as compared to their ability to discriminate against incorrect natural dNTPs. Neither polymerase shows any distinct electronic or steric preferences for analogue incorporation. The other set of analogues, designed to examine the importance of hydrophobicity in dNTP incorporation, consists of a set of four regioisomers of trifluoromethyl benzimidazole. Whereas pol α and Klenow fragment exhibited minimal discrimination against the 5- and 6-regioisomers, they discriminated much more effectively against the 4- and 7-regioisomers. Since all four of these analogues will have similar hydrophobicity and stacking ability, these data indicate that hydrophobicity and stacking ability alone cannot account for the inability of pol α and Klenow fragment to discriminate against unnatural bases. After incorporation, however, both sets of analogues were not efficiently elongated. These results suggest that factors other than hydrophobicity, sterics and electronics govern the incorporation of dNTPs into DNA by pol α and Klenow fragment.  相似文献   

20.
The fidelity of DNA synthesis by an exonuclease-proficient DNA polymerase results from the selectivity of the polymerization reaction and from exonucleolytic proofreading. We have examined the contribution of these two steps to the fidelity of DNA synthesis catalyzed by the large Klenow fragment of Escherichia coli DNA polymerase I, using enzymes engineered by site-directed mutagenesis to inactivate the proofreading exonuclease. Measurements with two mutant Klenow polymerases lacking exonuclease activity but retaining normal polymerase activity and protein structure demonstrate that the base substitution fidelity of polymerization averages one error for each 10,000 to 40,000 bases polymerized, and can vary more than 30-fold depending on the mispair and its position. Steady-state enzyme kinetic measurements of selectivity at the initial insertion step by the exonuclease-deficient polymerase demonstrate differences in both the Km and the Vmax for incorrect versus correct nucleotides. Exonucleolytic proofreading by the wild-type enzyme improves the average base substitution fidelity by 4- to 7-fold, reflecting efficient proofreading of some mispairs and less efficient proofreading of others. The wild-type polymerase is highly accurate for -1 base frameshift errors, with an error rate of less than or equal to 10(-6). The exonuclease-deficient polymerase is less accurate, suggesting that proofreading also enhances frameshift fidelity. Even without a proofreading exonuclease, Klenow polymerase has high frameshift fidelity relative to several other DNA polymerases, including eucaryotic DNA polymerase-alpha, an exonuclease-deficient, 4-subunit complex whose catalytic subunit is almost three times larger. The Klenow polymerase has a large (46 kDa) domain containing the polymerase active site and a smaller (22 kDa) domain containing the active site for the 3'----5' exonuclease. Upon removal of the small domain, the large polymerase domain has altered base substitution error specificity when compared to the two-domain but exonuclease-deficient enzyme. It is also less accurate for -1 base errors at reiterated template nucleotides and for a 276-nucleotide deletion error. Thus, removal of a protein domain of a DNA polymerase can affect its fidelity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号