首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-cadherin comprises five homologous extracellular domains, a transmembrane, and a cytoplasmic domain. The extracellular domains of N-cadherin play important roles in homophilic cell adhesion, but the contribution of each domain to this phenomenon has not been fully evaluated. In particular, the following questions remain unanswered: what is the minimal domain combination that can generate cell adhesion, how is domain organization related to adhesive strength, and does the cytoplasmic domain serve to facilitate extracellular domain interaction? To address these issues, we made serial constructs of the extracellular domains of N-cadherin and produced various cell lines to examine adhesion properties. We show that the first domain of N-cadherin alone on the cell surface fails to generate adhesive activity and that the first two domains of N-cadherin form the "minimal essential unit" to mediate cell adhesion. Cell lines expressing longer extracellular domains or N-cadherin wild type cells formed larger cellular aggregates than those expressing shorter aggregates. However, adhesion strength, as measured by a shearing test, did not reveal any differences among these aggregative cell lines, suggesting that the first two domains of N-cadherin cells generate the same strength of adhesive activity as longer extracellular domain cells. Furthermore, truncations of the first two domains of N-cadherin are also sufficient to form cisdimerization at an adhesive junction. Our findings suggest that the extracellular domains of N-cadherin have distinct roles in cell adhesion, i.e. the first two domains are responsible for homophilic adhesion activity, and the other domains promote adhesion efficiency most likely by positioning essential domains relatively far out from the cell surface.  相似文献   

2.
Common structural motifs in proteins of the extracellular matrix   总被引:6,自引:0,他引:6  
Proteins of the extracellular matrix are composed of many structurally and often functionally different autonomous domains which frequently occur as modular units in several different extracellular matrix proteins, but also in proteins of different origin. Some domains serve related assembly functions in different proteins but for domains involved in cell attachment and other cellular activities only a few generalizations are possible.  相似文献   

3.
Syndecan-1 is a cell surface proteoglycan that can organize co-receptors into a multimeric complex to transduce intracellular signals. The syndecan-1 core protein has multiple domains that confer distinct cell- and tissue-specific functions. Indeed, the extracellular, transmembrane, and cytoplasmic domains have all been found to regulate specific cellular processes. Our previous work demonstrated that syndecan-1 controls lung epithelial migration and adhesion. Here, we identified the necessary domains of the syndecan-1 core protein that modulate its function in lung epithelial repair. We found that the syndecan-1 transmembrane domain has a regulatory function in controlling focal adhesion disassembly, which in turn controls cell migration speed. In contrast, the extracellular domain facilitates cell adhesion through affinity modulation of α2β1 integrin. These findings highlight the fact that syndecan-1 is a multidimensional cell surface receptor that has several regulatory domains to control various biological processes. In particular, the lung epithelium requires the syndecan-1 transmembrane domain to govern cell migration and is independent from its ability to control cell adhesion via the extracellular domain.  相似文献   

4.
5.
Raji cells expressing syndecan-1 (Raji-S1) adhere and spread when plated on heparan sulfate-binding extracellular matrix ligands or monoclonal antibody 281.2, an antibody directed against the syndecan-1 extracellular domain. Cells plated on monoclonal antibody 281.2 initially extend a broad lamellipodium, a response accompanied by membrane ruffling at the cell margin. Membrane ruffling then becomes polarized, leading to an elongated cell morphology. Previous work demonstrated that the syndecan-1 cytoplasmic domain is not required for these activities, suggesting important roles for the syndecan-1 transmembrane and/or extracellular domains in the assembly of a signaling complex necessary for spreading. Work described here demonstrates that truncation of the syndecan-1 extracellular domain does not affect the initial lamellipodial extension in the Raji-S1 cells but does inhibit the active membrane ruffling that is necessary for cell polarization. Replacement of the entire syndecan-1 transmembrane domain with leucine residues completely blocks the cell spreading. These data demonstrate that the syndecan-1 transmembrane and extracellular domains have important but distinct roles in Raji-S1 cell spreading; the extracellular domain mediates an interaction that is necessary for dynamic cytoskeletal rearrangements whereas an interaction of the transmembrane domain is required for the initial spreading response.  相似文献   

6.
The selectin family of adhesion molecules mediates the initial interactions of leukocytes with endothelium. The extracellular region of each selectin contains an amino-terminal C-type lectin domain, followed by an EGF-like domain and multiple short consensus repeat units (SCR). Previous studies have indirectly suggested a role for each of the extracellular domains of the selectins in cell adhesion. In this study, a panel of chimeric selectins created by exchange of domains between L- and P-selectin was used to directly examine the role of the extracellular domains in cell adhesion. Exchange of only the lectin domains between L- and P-selectin conferred the adhesive and ligand recognition functions of the lectin domain of the parent molecule. However, chimeric selectins which contained both the lectin domain of L- selectin and the EGF-like domain of P-selectin exhibited dual ligand- binding specificity. These chimeric proteins supported adhesion both to myeloid cells and to high endothelial venules (HEV) of lymph nodes and mesenteric venules in vivo. Exchange of the SCR domains had no detectable effect on receptor function or specificity. Thus, the EGF- like domain of P-selectin may play a direct role in ligand recognition and leukocyte adhesion mediated by P-selectin, with the lectin plus EGF- like domains collectively forming a functional ligand recognition unit.  相似文献   

7.
We examined the roles of the extracellular domains of a gap junction protein and a cell adhesion molecule in gap junction and adherens junction formation by altering cell interactions with antibody Fab fragments. Using immunoblotting and immunocytochemistry we demonstrated that Novikoff cells contained the gap junction protein, connexin43 (Cx43), and the cell adhesion molecule, A-CAM (N-cadherin). Cells were dissociated in EDTA, allowed to recover, and reaggregated for 60 min in media containing Fab fragments prepared from a number of antibodies. We observed no cell-cell dye transfer 4 min after microinjection in 90% of the cell pairs treated with Fab fragments of antibodies for the first or second extracellular domain of Cx43, the second extracellular domain of connexin32 (Cx32) or A-CAM. Cell-cell dye transfer was detected within 30 s in cell pairs treated with control Fab fragments (pre-immune serum, antibodies to the rat major histocompatibility complex or the amino or carboxyl termii of Cx43). We observed no gap junctions by freeze-fracture EM and no adherens junctions by thin section EM between cells treated with the Fab fragments that blocked cell-cell dye transfer. Gap junctions were found on approximately 50% of the cells in control samples using freeze-fracture EM. We demonstrated with reaggregated Novikoff cells that: (a) functional interactions of the extracellular domains of the connexins were necessary for the formation of gap junction channels; (b) cell interactions mediated by A-CAM were required for gap junction assembly; and (c) Fab fragments of antibodies for A-CAM or connexin extracellular domains blocked adherens junction formation.  相似文献   

8.
Anchorage of cells to "heparin" – binding domains that are prevalent in extracellular matrix (ECM) components is thought to occur primarily through the syndecans, a four-member family of transmembrane heparan sulfate proteoglycans that communicate environmental cues from the ECM to the cytoskeleton and the signaling apparatus of the cell. Known activities of the syndecans trace to their highly conserved cytoplasmic domains and to their heparan sulfate chains, which can serve to regulate the signaling of growth factors and morphogens. However, several emerging studies point to critical roles for the syndecans' extracellular protein domains in tumor cell behavior to include cell adhesion and invasion. Although the mechanisms of these activities remain largely unknown, one possibility involves "co-receptor" interactions with integrins that may regulate integrin function and the cell adhesion-signaling phenotype. Thus, alterations in syndecan expression, leading to either overexpression or loss of expression, both of which take place in tumor cells, may have dramatic effects on tumor cell invasion.  相似文献   

9.
Polycystin-1 (PC-1) is a member of a novel family of proteins that have a multidomain structure. Although the C-terminal intracellular segments have been extensively studied, mainly with respect to their putative involvement in cell signalling, the potential function of the extracellular domains has received less attention. Mutations in PC-1 result in autosomal dominant polycystic kidney disease (ADPKD) which is characterised by perturbation of transport resulting in fluid accumulation, cell proliferation and modification of the extracellular matrix. The possibility that the interaction of a component of the extracellular matrix or some external factor with PC-1 may be important in the initiation or progression of ADPKD cannot currently be ruled out. The purpose of this review is to assess current evidence for the function of the PC-1 extracellular domains, and their potential implications for ADPKD.  相似文献   

10.
Recent evidence suggests that polycystin-1 (PC1) acts as a mechanosensor, receiving signals from the primary cilia, neighboring cells, and extracellular matrix and transduces them into cellular responses that regulate proliferation, adhesion, and differentiation that are essential for the control of renal tubules and kidney morphogenesis. PC1 has an unusually long extracellular region ( approximately 3000 amino acids) with a multimodular structure. Proteins with a similar architecture have structural and mechanical roles. Based on the structural similarities between PC1 and other modular proteins that have elastic properties we hypothesized that PC1 functions mechanically by providing a flexible and elastic linkage between cells. Here we directly tested this hypothesis by analyzing the mechanical properties of the entire PC1 extracellular region by using single molecule force spectroscopy. We show that the PC1 extracellular region is highly extensible and that this extensibility is mainly caused by the unfolding of its Ig-like domains. Stretching the native PC1 extracellular region results in a sawtooth pattern with equally spaced force peaks that have a wide range of unfolding forces (50-200 pN). By combining single-molecule force spectroscopy and protein engineering techniques, we demonstrate that the sawtooth pattern in native PC1 extracellular region corresponds to the sequential unfolding of individual Ig-like domains. We found that Ig-like domains refold after mechanical unfolding. Hence, the PC1 extracellular region displays a dynamic extensibility whereby the resting length might be regulated through unfolding/refolding of its Ig-like domains. These force-driven reactions may be important for cell elasticity and the regulation of cell signaling events mediated by PC1.  相似文献   

11.
The extracellular domains of death ligands and those of death receptors are closely related to many serious human diseases through the initiation of apoptosis. Recombinant production of the extracellular domains has been investigated due to demand for a large amount of purified samples, which are a prerequisite for their biochemical characterization and constitute the fundamentals of medical applications. This review focuses on the recombinant production of extracellular domains of the major members of death ligand and death receptor families using non-mammalian expression systems with an emphasis on Fas ligand and Fas receptor. In contrast to the efficient production of the functional extracellular domains of TRAIL, TNFα and LTα by intracellular expression systems using Escherichia coli or Pichia pastoris, that of Fas ligand requires the secretory expression systems using P. pastoris or Dictyostelium discoideum, and the productivity in P. pastoris was largely dependent on tag sequence, potential N-glycosylation site and expressed protein region. On the other hand, the exploitation of insect cell systems is generally useful for the preparation of functional extracellular domains of death receptors containing many disulfide bridges in the absence of extended secondary structure, and a Bombyx mori larvae secretion system presented a superior productivity for human Fas receptor extracellular domain. Based on the results obtained so far, further efforts should be devoted to the artificial control of death ligand - death receptor interactions in order to make a contribution to medicine, represented by the development of novel biopharmaceuticals.  相似文献   

12.
Role of laminin terminal globular domains in basement membrane assembly   总被引:2,自引:0,他引:2  
Laminins contribute to basement membrane assembly through interactions of their N- and C-terminal globular domains. To further analyze this process, recombinant laminin-111 heterotrimers with deletions and point mutations were generated by recombinant expression and evaluated for their ability to self-assemble, interact with nidogen-1 and type IV collagen, and form extracellular matrices on cultured Schwann cells by immunofluorescence and electron microscopy. Wild-type laminin and laminin without LG domains polymerized in contrast to laminins with deleted alpha1-, beta1-, or gamma1-LN domains or with duplicated beta1- or alpha1-LN domains. Laminins with a full complement of LN and LG domains accumulated on cell surfaces substantially above those lacking either LN or LG domains and formed a lamina densa. Accumulation of type IV collagen onto the cell surface was found to require laminin with separate contributions arising from the presence of laminin LN domains, nidogen-1, and the nidogen-binding site in laminin. Collectively, the data support the hypothesis that basement membrane assembly depends on laminin self-assembly through formation of alpha-, beta-, and gamma-LN domain complexes and LG-mediated cell surface anchorage. Furthermore, type IV collagen recruitment into the laminin extracellular matrices appears to be mediated through a nidogen bridge with a lesser contribution arising from a direct interaction with laminin.  相似文献   

13.
Methanothermobacter thermautotrophicus is a methanogenic Gram-positive microorganism with a cell wall consisting of pseudomurein. Currently, no information is available on extracellular pseudomurein biology and so far only two prophage pseudomurein autolysins, PeiW and PeiP, have been reported. In this paper we show that PeiW and PeiP contain two different N-terminal pseudomurein cell wall binding domains. This finding was used to identify a novel domain, PB007923, on the M. thermautotrophicus genome present in 10 predicted open reading frames. Three homologues were identified in the Methanosphaera stadtmanae genome. Binding studies of fusion constructs of three separate PB007923 domains to green fluorescent protein revealed that it also constituted a cell wall binding domain. Both prophage domains and the PB007923 domain bound to the cell walls of Methanothermobacter species and fluorescence microscopy showed a preference for the septal region. Domain specificities were revealed by binding studies with other pseudomurein-containing archaea. Localized binding was observed for M. stadtmanae and Methanobrevibacter species, while others stained evenly. The identification of the first pseudomurein cell wall binding domains reveals the dynamics of the pseudomurein cell wall and provides marker proteins to study the extracellular pseudomurein biology of M. thermautotrophicus and of other pseudomurein-containing archaea.  相似文献   

14.
The extracellular domain of the mature form of ADAM12 consists of the metalloprotease, disintegrin, cysteine-rich, and epidermal growth factor (EGF)-like domains. The disintegrin, cysteine-rich, and EGF-like fragments have been shown previously to support cell adhesion via activated integrins or proteoglycans. In this study, we report that the entire extracellular domain of mouse ADAM12 produced in Drosophila S2 cells supported efficient adhesion and spreading of C2C12 myoblasts even in the absence of exogenous integrin activators. This adhesion was not mediated by beta1 integrins or proteoglycans, was myoblast-specific, and required the presence of both the metalloprotease and disintegrin/cysteine-rich domains of ADAM12. Analysis of the recombinant proteins by far-UV circular dichroism suggested that the secondary structures of the autonomously expressed metalloprotease domain and the disintegrin/cysteine-rich/EGF-like domains differ from the structures present in the intact extracellular domain. Furthermore, the intact extracellular domain (but not the metalloprotease domain or the disintegrin/cysteine-rich/EGF-like fragment alone) decreased the expression of the cell cycle inhibitor p21 and myogenin, two markers of differentiation, and inhibited C2C12 myoblast fusion. Thus, the novel protein-protein interaction reported here involving the extracellular domain of ADAM12 may have important biological consequences during myoblast differentiation.  相似文献   

15.
The scavenger receptor expressed by endothelial cells (SREC) with an extremely large cytoplasmic domain, was originally identified in a human endothelial cell line. In this study, we have cloned a second isoform named SREC-II and shown that there is a heterophilic interaction between SREC-I and -II at their extracellular domains. The cDNA for murine SREC-II encodes an 834-amino acid protein with 35% homology to SREC-I. Similar to SREC-I, SREC-II contains multiple epidermal growth factor-like repeats in its extracellular domain. However, in contrast to SREC-I, SREC-II had little activity to internalize modified low density lipoproteins (LDL). A Northern blot analysis revealed a tissue expression pattern of SREC-II similar to that of SREC-I with predominant expression in human heart, lung, ovary, and placenta. Mouse fibroblast L cells with no tendency to associate showed noticeable aggregation when SREC-I was overexpressed in these cells, whereas overexpression of SREC-II caused only slight aggregation. Remarkably, intense aggregation was observed when SREC-I-expressing cells were mixed with those expressing SREC-II. Deletion of almost all of the cytoplasmic receptor domain had no effect on the receptor expression and cell aggregation, indicating that solely the extracellular domain is involved in cell aggregation. The association of SREC-I and -II was effectively suppressed by the presence of scavenger receptor ligands such as acetylated LDL and oxidized LDL. These findings suggest that SREC-I and -II show weak cell-cell interaction by their extracellular domains (termed homophilic trans-interaction) but display strong heterophilic trans-interaction through the extracellular epidermal growth factor-like repeat domains.  相似文献   

16.
HB-GAM (heparin-binding growth-associated molecule, also designated as pleiotrophin) and midkine form a two-member family of extracellular matrix proteins that bind tightly to sulfated carbohydrate structures such as heparan sulfate. These proteins are used by developing neurons as extracellular cues in axonal growth and guidance. HB-GAM was recently reported to enhance differentiation of neural stem cells. Based on the solution structure of HB-GAM, we have recently shown that HB-GAM consists of two beta-sheet domains flanked by flexible lysine-rich N- and C-terminal tails with no apparent structure. These domains are homologous to thrombospondin type I repeats present in numerous extracellular proteins that interact with the cell surface. Our findings showed that the two beta-sheet domains fold independently. We showed that the domains (but not the lysine-rich tails) in HB-GAM are required and sufficient for interaction with hippocampal neurons. The individual domains bind heparan sulfate weakly and fail to produce significant biological effects in neurite outgrowth and long term potentiation assays. The amino acids in the linker region joining the two domains may be replaced with glycines with no effect on protein function. These results suggest a co-operative action of the two beta-sheet domains in the biologically relevant interaction with neuron surface heparan sulfate.  相似文献   

17.

Background

Syndecans are proteoglycans whose core proteins have a short cytoplasmic domain, a transmembrane domain and a large N-terminal extracellular domain possessing glycosaminoglycan chains. Syndecans are involved in many important cellular processes. Our recent publications have demonstrated that syndecan-1 translocates into the nucleus and hampers tumor cell proliferation. In the present study, we aimed to investigate the role of syndecan-1 in tumor cell adhesion and migration, with special focus on the importance of its distinct protein domains, to better understand the structure-function relationship of syndecan-1 in tumor progression.

Methodology/Principal Findings

We utilized two mesenchymal tumor cell lines which were transfected to stably overexpress full-length syndecan-1 or truncated variants: the 78 which lacks the extracellular domain except the DRKE sequence proposed to be essential for oligomerization, the 77 which lacks the whole extracellular domain, and the RMKKK which serves as a nuclear localization signal. The deletion of the RMKKK motif from full-length syndecan-1 abolished the nuclear translocation of this proteoglycan. Various bioassays for cell adhesion, chemotaxis, random movement and wound healing were studied. Furthermore, we performed gene microarray to analyze the global gene expression pattern influenced by syndecan-1. Both full-length and truncated syndecan-1 constructs decrease tumor cell migration and motility, and affect cell adhesion. Distinct protein domains have differential effects, the extracellular domain is more important for promoting cell adhesion, while the transmembrane and cytoplasmic domains are sufficient for inhibition of cell migration. Cell behavior seems to depend also on the nuclear translocation of syndecan-1. Many genes are differentially regulated by syndecan-1 and a number of genes are actually involved in cell adhesion and migration.

Conclusions/Significance

Our results demonstrate that syndecan-1 regulates mesenchymal tumor cell adhesion and migration, and different domains have differential effects. Our study provides new insights into better understanding of the role of syndecans in tumor progression.  相似文献   

18.
Two cDNA clones encoding different but related receptors for immunoglobulin G constant domains were isolated from cDNA expression libraries by a ligand-mediated selection procedure ('affinity cloning'). Because both of the receptors encoded by the cDNAs react with CDw32 monoclonal antibodies, and both show the appropriate IgG binding affinity, both appear to be forms of the receptor formerly thought to be a single species called FcRII. The extracellular domains encoded by the isolated clones are closely related to the murine IgG2b/1 beta receptor extracellular domains, but the intracellular domains are unrelated. The receptors expressed in COS cells show a preference for IgG1 among IgG subtypes and no affinity for IgM, IgA or IgE. Abundant expression of the RNAs was detected in myeloid cell lines and placenta.  相似文献   

19.
Integrins are alpha beta heterodimers that play a major role in cell-cell contacts and in interactions between cells and extracellular matrices. Identification of structural domains that are critical for the expression of such receptors at the cell surface in a functional conformation is one of the major issues that has not yet been resolved. In the present study, the role of the cytoplasmic and transmembrane domains of each of the subunits has been examined using platelet GPIIb/IIIa as a prototypic integrin. GPIIb/IIIa (alpha IIb/beta 3) is a member of the integrin family and functions as a receptor for fibrinogen, fibronectin, von Willebrand factor, and vitronectin at the surface of activated platelets. Human megakaryocyte GPIIb and GPIIIa cDNAs were used to create a GPIIb mutant coding for the extracellular GPIIb heavy chain alone (GPIIb delta 1) and a GPIIIa mutant lacking the transmembrane and cytoplasmic domains (GPIIIa delta m). Full length and mutant cDNAs were subcloned into the expression vector pECE and used to transfect COS cells. The formation of heterodimers and their cellular localization was analyzed by immunoprecipitation and immunofluorescence labeling using anti-platelet GPIIb/IIIa antibodies. We show here that the extracellular domains of alpha and beta subunits are able to form a heterodimer, although with a lower efficiency, in the absence of the transmembrane and cytoplasmic domains. The presence of the cytoplasmic and transmembrane domains in the alpha subunit is, however, necessary for expression at the surface of the cell whereas the corresponding domains of the beta subunit are not required.  相似文献   

20.
Dscam is an immunoglobulin (Ig) superfamily member that regulates axon guidance and targeting in Drosophila. Alternative splicing potentially generates 38,016 isoforms differing in their extracellular Ig and transmembrane domains. We demonstrate that Dscam mediates the sorting of axons in the developing mushroom body (MB). This correlates with the precise spatiotemporal pattern of Dscam protein expression. We demonstrate that MB neurons express different arrays of Dscam isoforms and that single MB neurons express multiple isoforms. Two different Dscam isoforms differing in their extracellular domains introduced as transgenes into single mutant cells partially rescued the mutant phenotype. Expression of one isoform of Dscam in a cohort of MB neurons induced dominant phenotypes, while expression of a single isoform in a single cell did not. We propose that different extracellular domains of Dscam share a common function and that differences in isoforms expressed on the surface of neighboring axons influence interactions between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号