首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Angiosperms have evolved the phloem for the long-distance transport of metabolites. The complex process of phloem development involves genes that only occur in vascular plant lineages. For example, in Arabidopsis thaliana, the BREVIS RADIX (BRX) gene is required for continuous root protophloem differentiation, together with PROTEIN KINASE ASSOCIATED WITH BRX (PAX). BRX and its BRX-LIKE (BRXL) homologs are composed of four highly conserved domains including the signature tandem BRX domains that are separated by variable spacers. Nevertheless, BRX family proteins have functionally diverged. For instance, BRXL2 can only partially replace BRX in the root protophloem. This divergence is reflected in physiologically relevant differences in protein behavior, such as auxin-induced plasma membrane dissociation of BRX, which is not observed for BRXL2. Here we dissected the differential functions of BRX family proteins using a set of amino acid substitutions and domain swaps. Our data suggest that the plasma membrane-associated tandem BRX domains are both necessary and sufficient to convey the biological outputs of BRX function and therefore constitute an important regulatory entity. Moreover, PAX target phosphosites in the linker between the two BRX domains mediate the auxin-induced plasma membrane dissociation. Engineering these sites into BRXL2 renders this modified protein auxin-responsive and thereby increases its biological activity in the root protophloem context.

Phosphosites are responsible for the auxin-induced plasma membrane dissociation observed in the subset of BRX family proteins that function in the differentiation of the root protophloem.  相似文献   

2.
3.
We have searched the Arabidopsis and rice (Oryza sativa) genomes for homologs of LRX1, an Arabidopsis gene encoding a novel type of cell wall protein containing a leucine-rich repeat (LRR) and an extensin domain. Eleven and eight LRX (LRR/EXTENSIN) genes have been identified in these two plant species, respectively. The LRX gene family encodes proteins characterized by a short N-terminal domain, a domain with 10 LRRs, a cysteine-rich motif, and a variable C-terminal extensin-like domain. Phylogenetic analysis performed on the conserved domains indicates the existence of two major clades of LRX proteins that arose before the eudicot/monocot divergence and then diversified independently in each lineage. In Arabidopsis, gene expression studies by northern hybridization and promoter::uidA fusions showed that the two phylogenetic clades represent a specialization into "reproductive" and "vegetative" LRXs. The four Arabidopsis genes of the "reproductive" clade are specifically expressed in pollen, whereas the seven "vegetative" genes are predominantly expressed in various sporophytic tissues. This separation into two expression classes is also supported by previous studies on maize (Zea mays) and tomato (Lycopersicon esculentum) LRX homologs and by information on available rice ESTs. The strong conservation of the amino acids responsible for the putative recognition specificity of the LRR domain throughout the family suggests that the LRX proteins interact with similar ligands.  相似文献   

4.
Intraspecific genetic variation for morphological traits is observed in many organisms. In Arabidopsis thaliana, alleles responsible for intraspecific morphological variation are increasingly being identified. However, the fitness consequences remain unclear in most cases. Here, the fitness effects of alleles of the BRX gene are investigated. A brx loss-of-function allele, which was found in a natural accession, results in a highly branched but poorly elongated root system. Comparison between the control accession Sav-0 and an introgression of brx into this background (brxS) indicated that, surprisingly, brx loss of function did not negatively affect fitness in pure stands. However, in mixed, well-watered stands brxS performance and reproductive output decreased significantly, as the proportion of Sav-0 neighbors increased. Additional comparisons between brxS and a brxS line that was complemented by a BRX transgene confirmed a direct effect of the loss-of-function allele on plant performance, as indicated by restored competitive ability of the transgenic genotype. Further, because plant height was very similar across genotypes and because the experimental setup largely excluded shading effects, the impaired competitiveness of the brx loss-of-function genotype likely reflects below-ground competition. In summary, these data reveal conditional fitness effects of a single gene polymorphism in response to intraspecific competition in Arabidopsis.  相似文献   

5.
Fo CS  Coleman CS  Wallick CJ  Vine AL  Bachmann AS 《Gene》2006,371(1):154-165
PRA1 domain family, member 2 (PRAF2) is a new 19 kDa protein with four putative transmembrane (TM) domains. PRAF2 (formerly designated JM4) belongs to a new protein family, which plays a role in the regulation of intracellular protein transport. Recently, PRAF2 was found to interact with the chemokine receptor CCR5. In order to further study the function and regulation of PRAF2, we determined its genomic structure and its protein expression pattern in normal and cancerous human tissues. PRAF2 encodes a 178-residue protein, whose sequence is related to PRAF1 (PRA1/prenylin) and PRAF3 (JWA/GTRAP3-18). The human PRAF2 gene contains three exons separated by two introns and is located on human chromosome Xp11.23. The recombinant PRAF2 protein was readily expressed in Schneider 2 (S2) insect cells, and the native protein was detected in human tissues with strong expression in the brain, small intestine, lung, spleen, and pancreas. The protein was undetectable in tissue of the testes. Strong PRAF2 protein expression was also found in human tumor tissues of the breast, colon, lung, and ovary, with a weaker staining pattern in normal tissues of the same patient. Our studies show for the first time that the CCR5-interacting PRAF2 protein is expressed in several human tissues with a possible function in ER/Golgi transport and vesicular traffic.  相似文献   

6.
Little is known about the protein composition of plant telomeres. We queried the Arabidopsis thaliana genome data base in search of genes with similarity to the human telomere proteins hTRF1 and hTRF2. hTRF1/hTRF2 are distinguished by the presence of a single Myb-like domain in their C terminus that is required for telomeric DNA binding in vitro. Twelve Arabidopsis genes fitting this criterion, dubbed TRF-like (TRFL), fell into two distinct gene families. Notably, TRFL family 1 possessed a highly conserved region C-terminal to the Myb domain called Myb-extension (Myb-ext) that is absent in TRFL family 2 and hTRF1/hTRF2. Immunoprecipitation experiments revealed that recombinant proteins from TRFL family 1, but not those from family 2, formed homodimers and heterodimers in vitro. DNA binding studies with isolated C-terminal fragments from TRFL family 1 proteins, but not family 2, showed specific binding to double-stranded plant telomeric DNA in vitro. Removal of the Myb-ext domain from TRFL1, a family 1 member, abolished DNA binding. However, when the Myb-ext domain was introduced into the corresponding region in TRFL3, a family 2 member, telomeric DNA binding was observed. Thus, Myb-ext is required for binding plant telomeric DNA and defines a novel class of proteins in Arabidopsis.  相似文献   

7.
In higher plants, many extracellular proteins are involved in developmental processes, including cell-cell signaling and cell wall construction. Xylogen is an extracellular arabinogalactan protein (AGP) isolated from Zinnia elegans xylogenic culture medium, which promotes xylem cell differentiation. Xylogen has a unique structure, containing a non-specific lipid transfer protein (nsLTP) domain and AGP domains. We searched for xylogen-type genes in the genomes of land plants, including Arabidopsis thaliana, to further our knowledge of xylogen-type genes as functional extracellular proteins in plants. We found that many xylogen-type genes, including 13 Arabidopsis genes, comprise a gene family in land plants, including Populus trichocarpa, Vitis vinifera, Lotus japonicus, Oryza sativa, Selaginella moellendorffii and Physcomitrella patens. The genes shared an N-terminal signal peptide sequence, a distinct nsLTP domain, one or more AGP domains and a glycosylphosphatidylinositol (GPI)-anchored sequence. We analyzed transgenic plants harboring promoter::GUS (β-glucuronidase) constructs to test expression of the 13 Arabidopsis xylogen-type genes, and detected a diversity of gene family members with related expression patterns. AtXYP2 was the best candidate as the Arabidopsis counterpart of the Zinnia xylogen gene. We observed two distinct expression patterns for several genes, with some anther specific and others preferentially expressed in the endodermis/pericycle. We conclude that xylogen-type genes, which may have diverse functions, form a novel chimeric AGP gene family with a distinct nsLTP domain.  相似文献   

8.
9.
Prenylated Rab acceptor domain family member 1 (PRAF1), a transmembrane protein whose precise function is unknown, localizes to the Golgi complex, post-Golgi vesicles, lipid rafts, endosomes, and the plasma membrane. VAMP2 and Rab3A are SNARE proteins that interact with PRAF1, and, as part of a SNARE complex, PRAF1 may function in the regulation of docking and fusion of transport vesicles both in the Golgi complex and at the plasma membrane. Alternately, PRAF1 may function as a sorting protein in the Golgi complex. In addition to interacting with SNARE proteins, PRAF1 interacts with rotaviral, retroviral, and herpes viral proteins. The function of viral protein interaction is unknown, but PRAF1 may enhance rotaviral and retroviral assembly. In contrast, PRAF1 may inhibit the herpes virus life cycle.  相似文献   

10.
Appropriate methylation of genomes is essential for gene regulation. Here, we describe the six-member ORTHRUS (ORTH) gene family of Arabidopsis thaliana that plays a role in DNA methylation in vivo. ORTH1- ORTH5 are predicted to encode proteins that contain one plant homeodomain (PHD), two really interesting new gene (RING) domains, and one set ring associated (SRA) domain, whereas ORTHlike-1 encodes a protein with only one RING and SRA domain. cDNAs for ORTH1, ORTH2, ORTH5 and ORTHlike-1 were isolated, and when expressed as glutathione-S-transferase (GST) fusion proteins, were capable of promoting ubiquitylation in vitro with the E2 AtUBC11. ORTH1 promotes ubiquitylation when paired with additional AtUBC8 family members. ORTH1 proteins with substitutions in metal-ligand binding residues in each ORTH1 RING domain individually, and ORTH1 truncation derivatives lacking one or both RING domains, were tested for their ability to catalyze ubiquitylation in vitro. In these assays, either ORTH1 RING domain is capable of promoting ubiquitylation. The PHD alone is not active as an E3 ligase, nor is it required for ligase activity. GFP-ORTH1 and GFP-ORTH2 are nuclear-localized in transgenic Arabidopsis plants. Overexpression of ORTH1 or ORTH2 in Arabidopsis leads to an altered flowering time. Inspection of DNA methylation at FWA and Cen180 repeats revealed hypomethylation when ORTH proteins were overexpressed. Once initiated, a late-flowering phenotype persisted in the absence of the ORTH transgene, consistent with epigenetic effects at FWA. We conclude that ORTH proteins are E3 ligases mediating DNA methylation status in vivo.  相似文献   

11.
12.
13.
We characterized the Arabidopsis orthologue of the human nuclear import receptor transportin1 (TRN1). Like the human receptor, Arabidopsis TRN1 recognizes nuclear import signals on proteins that are different from the classical basic nuclear localization signals. The M9 domain of human heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is the prototype of such signals. We show that AtTRN1 binds to similar domains in hnRNP-like proteins from plants. AtTRN1 also interacts with human hnRNP A1 and with yeast Nab2p, two classical import cargo proteins of transportin in these organisms. Like all nuclear transport receptors of the importin-beta family, AtTRN1 binds to the regulatory GTPase Ran from Arabidopsis. We demonstrated that the amino terminus of AtTRN1 is necessary for this interaction. Recombinant AtTRN1 conferred nuclear import of fluorescently labelled BSA-M9 peptide conjugates in permeabilized HeLa cells, functionally replacing human TRN1 in these in vitro nuclear import assays. We identified three plant substrate proteins that interact with AtTRN1 and contain M9-like domains: a novel Arabidopsis hnRNP that shows high similarity to human hnRNP A1 and two small RNA-binding proteins from Arabidopsis, AtGRP7 and AtGRP8. Nuclear import activity of the M9-like domains of these plant proteins was demonstrated in vivo by their ability to confer partial nuclear re-localisation of a GFP fusion protein containing a nuclear export signal. In addition, fluorescently labelled AtGRP7 was specifically imported into nuclei of permeabilized HeLa cells by Arabidopsis AtTRN1 and human TRN1. These results suggest that the transportin-mediated nuclear import pathway is highly conserved between man, yeast and plants.  相似文献   

14.
P Hilson  K L Carroll    P H Masson 《Plant physiology》1993,103(2):525-533
The poly(A) tail of eukaryotic mRNAs associates with poly(A)-binding (PAB) proteins whose role in mRNA translation and stability is being intensively investigated. Very little is known about the structure and function of the PAB genes in plants. We have cloned multiple PAB-related sequences from Arabidopsis thaliana. Results suggest that PAB proteins are encoded by a multigene family. One member of this family (PAB2) is expressed in root and shoot tissues. The complete nucleotide sequence of PAB2 was determined. Study of the predicted PAB2 protein reveals a similarity in structure among vertebrate, insect, yeast, and plant PAB proteins. All contain two highly conserved domains: an amino-terminal sequence formed by four RNA recognition motifs and an uncharacterized carboxyl-terminal region of 69 to 71 amino acids. Possible roles for the carboxyl-terminal conserved domain are discussed in view of recently published data concerning the structure and function of PAB proteins.  相似文献   

15.
16.
Lai CP  Lee CL  Chen PH  Wu SH  Yang CC  Shaw JF 《Plant physiology》2004,134(4):1586-1597
  相似文献   

17.
The PRA1-superfamily member PRAF3 plays pivotal roles in membrane traffic as a GDI displacement factor via physical interaction with a variety of Rab proteins, as well as in the modulation of antioxidant glutathione through its interaction with EAAC1 (SLC1A1). Overproduction of PRAF3 is known to be toxic to the host cells, although the factors capable of cancelling the toxicity remained unknown. We here show that Rab1a can rescue the cytotoxicity caused by PRAF3 possibly by “positively” regulating ER-Golgi trafficking, cancelling the “negative” modulation by PRAF3. Our results illuminate the close physiological relationship between PRAF3 and Rab proteins.  相似文献   

18.
He Z  Li L  Luan S 《Plant physiology》2004,134(4):1248-1267
Immunophilins are defined as receptors for immunosuppressive drugs including cyclosporin A, FK506, and rapamycin. The cyclosporin A receptors are referred to as cyclophilins (CYPs) and FK506- and rapamycin-binding proteins are abbreviated as FKBPs. These two groups of proteins (collectively called immunophilins) share little sequence homology, but both have peptidyl prolyl cis/trans isomerase (PPIase) activity that is involved in protein folding processes. Studies have identified immunophilins in all organisms examined including bacteria, fungi, animals, and plants. Nevertheless, the physiological function of immunophilins is poorly understood in any organism. In this study, we have surveyed the genes encoding immunophilins in Arabidopsis genome. A total of 52 genes have been found to encode putative immunophilins, among which 23 are putative FKBPs and 29 are putative CYPs. This is by far the largest immunophilin family identified in any organism. Both FKBPs and CYPs can be classified into single domain and multiple domain members. The single domain members contain a basic catalytic domain and some of them have signal sequences for targeting to a specific organelle. The multiple domain members contain not only the catalytic domain but also defined modules that are involved in protein-protein interaction or other functions. A striking feature of immunophilins in Arabidopsis is that a large fraction of FKBPs and CYPs are localized in the chloroplast, a possible explanation for why plants have a larger immunophilin family than animals. Parvulins represent another family of PPIases that are unrelated to immunophilins in protein sequences and drug binding properties. Three parvulin genes were found in Arabidopsis genome. The expression of many immunophilin and parvulin genes is ubiquitous except for those encoding chloroplast members that are often detected only in the green tissues. The large number of genes and diversity of structure domains and cellular localization make PPIases a versatile superfamily of proteins that clearly function in many cellular processes in plants.  相似文献   

19.
20.
Metallochaperone-like genes in Arabidopsis thaliana   总被引:1,自引:0,他引:1  
A complete inventory of metallochaperone-like proteins containing a predicted HMA domain in Arabidopsis revealed a large family of 67 proteins. 45 proteins, the HIPPs, have a predicted isoprenylation site while 22 proteins, the HPPs, do not. Sequence comparisons divided the proteins into seven major clusters (I-VII). Cluster IV is notable for the presence of a conserved Asp residue before the CysXXCys, metal binding motif, analogous to the Zn binding motif in E. coli ZntA. HIPP20, HIPP21, HIPP22, HIPP26 and HIPP27 in Cluster IV were studied in more detail. All but HIPP21 could rescue the Cd-sensitive, ycf1 yeast mutant but failed to rescue the growth of zrt1zrt2, zrc1cot1 and atx1 mutants. In Arabidopsis, single and double mutants did not show a phenotype but the hipp20/21/22 triple mutant was more sensitive to Cd and accumulated less Cd than the wild-type suggesting the HIPPs can have a role in Cd-detoxification, possibly by binding Cd. Promoter-GUS reporter expression studies indicated variable expression of these HIPPs. For example, in roots, HIPP22 and HIPP26 are only expressed in lateral root tips while HIPP20 and HIPP25 show strong expression in the root vasculature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号