首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of Apterostigma collare workers to differentiate their nest from other nests and their nestmates from non-nestmates was examined. In field tests, workers that were removed from their nest were accepted back into their own nests, but were rejected when they were placed onto a nearby (≤ 1 m) nest or a distant (≥ 100 m) nest. In the laboratory, when given a choice between a fragment of their own nest and a fragment of a second nest (near or distant), workers selected their own nest material rather than the material of the second nest. For the nestmate recognition bioassay, two workers from one nest were placed together in an arena with a worker from a second nest. In most bioassays, the nestmates were tolerant of each other, but they were intolerant of the non-nestmate. The results demonstrate that A. collare workers have the ability to recognize nestmates and their nests. The results also suggest that each nest of A. collare is an independent colony.  相似文献   

2.
Many animals, including humans, organize their foraging activity along well-defined trails. Because trails are cleared of obstacles, they minimize energy expenditure and allow fast travel. In social insects such as ants, trails might also promote social contacts and allow the exchange of information between workers about the characteristics of the food. When the trail traffic is heavy, however, traffic congestion occurs and the benefits of increased social contacts for the colony can be offset by a decrease of the locomotory rate of individuals. Using a small laboratory colony of the leaf-cutting ant Atta colombica cutting a mix of leaves and Parafilm, we compared how foraging changed when the width of the bridge between the nest and their foraging area changed. We found that the rate of ants crossing a 5 cm wide bridge was more than twice as great as the rate crossing a 0.5 cm bridge, but the rate of foragers returning with loads was less than half as great. Thus, with the wide bridge, the ants had about six times lower efficiency (loads returned per forager crossing the bridge). We conclude that crowding actually increased foraging efficiency, possibly because of increased communication between laden foragers returning to the nest and out-going ants. Received 15 December 2006; revised 16 February 2007; accepted 19 February 2007.  相似文献   

3.
A colony of red wood ants can inhabit more than one spatially separated nest, in a strategy called polydomy. Some nests within these polydomous colonies have no foraging trails to aphid colonies in the canopy. In this study we identify and investigate the possible roles of non-foraging nests in polydomous colonies of the wood ant Formica lugubris. To investigate the role of non-foraging nests we: (i) monitored colonies for three years; (ii) observed the resources being transported between non-foraging nests and the rest of the colony; (iii) measured the amount of extra-nest activity around non-foraging and foraging nests. We used these datasets to investigate the extent to which non-foraging nests within polydomous colonies are acting as: part of the colony expansion process; hunting and scavenging specialists; brood-development specialists; seasonal foragers; or a selfish strategy exploiting the foraging effort of the rest of the colony. We found that, rather than having a specialised role, non-foraging nests are part of the process of colony expansion. Polydomous colonies expand by founding new nests in the area surrounding the existing nests. Nests founded near food begin foraging and become part of the colony; other nests are not founded near food sources and do not initially forage. Some of these non-foraging nests eventually begin foraging; others do not and are abandoned. This is a method of colony growth not available to colonies inhabiting a single nest, and may be an important advantage of the polydomous nesting strategy, allowing the colony to expand into profitable areas.  相似文献   

4.
Ant queens exhibit two primary strategies to initiate nests, independent colony founding (ICF) by solitary queens and dependent colony founding (DCF) when the queen starts a nest with a group of workers that disperse on foot from the parent nest. Numerous ant species have wingless (ergatoid) queens, and it is generally assumed that these species exhibit obligate DCF because their lack of wing musculature provides them with few resources to divert towards producing their first brood of workers. Thus, ICF by ergatoid queens is viewed as maladaptive because these queens need to take additional dangerous foraging trips to garner sufficient food to rear their first brood of workers. Contrary to this prediction, I document ICF by ergatoid queens for three species of harvester ants in the genus Pogonomyrmex (subfamily Myrmicinae), P. cunicularius cunicularius, P. cunicularius pencosensis, and P. huachucanus. Queens of P. huachucanus were obligate foragers, i.e., no minim workers could be produced without external food, and one queen of P. cunicularius pencosensis was observed foraging in the field. Abundant and/or predictable food resources likely select for the evolution of semi-claustral nest founding and ICF by these ergatoid queens. Under these conditions, foraging time would be minimized and the number and size of minim workers would be maximized. These benefits should increase founding success, which could compensate for loss of long-range dispersal. Overall, this study demonstrates that care should be taken before concluding that ant colonies employ DCF based solely on queen morphology.  相似文献   

5.
Detailed measurements on nest architecture and colony size of the fungus-growing ant Mycetophylax simplex Emery, 1888 (Formicidae, Attini) are reported for the first time, based on excavations of 55 nests from two sites in southern Brazil. All nests were subterranean, with a single entrance hole. Most nests consisted of two chambers, an upper and a lower chamber, but one and three-chamber nests were also found. The chambers were more cone-shaped than rounded, and located at a depth ranging from 4.0 cm to 32.5 cm below the nest entrance. The chamber dimensions generally increased as the depth of the chambers increased, and the lower chamber was mostly wider than the upper one. The fungus garden was always found resting on the chamber floor. The average colony size was 264.1 workers, ranging from 67 to 610 workers. Colonies produced most sexuals during the summer (from December to March) and a few during the winter (July). Direct observations showed that colonies were mostly monogynous, but more than one queen was recorded in two nests, suggesting that polygyny may also occur in this species. Received 30 November 2006; revised 20 April 2007; accepted 23 April 2007.  相似文献   

6.
Group hunting in a ponerine ant,Leptogenys nitida Smith   总被引:1,自引:0,他引:1  
Field observations on the emigration and foraging behaviours of the southern African ponerine ant, Leptogenys nitida, were undertaken at Mtunzini, Natal, South Africa. These colonies have a single ergatoid queen and 200–1000 workers. The nest sites are found in the leaf litter and these nests are moved frequently over distances ranging from 0.5 to 5 m. Leptogenys nitida is a diurnal predator of arthropods dwelling in the leaf litter. Up to 500 workers participate in each foraging trail, and are not led by definite scouts. Ants form clear trunk trails and fan out at various intervals to search for prey. The prey is searched for and retrieved cooperatively. From laboratory tests it was determined that ants will follow pygidial gland extracts, with the poison gland extract eliciting a limited response. The type of army ant behaviour observed in L. nitida seems to be different to that observed in other ponerine ants.  相似文献   

7.
The allocation of foragers in red wood ants   总被引:1,自引:0,他引:1  
Abstract. 1. We studied how colonies of the red wood ant, Formica polyctena , adjust the numbers of foragers allocated to different foraging trails. In a series of field experiments, foragers were marked and transferred from one nest to another, related nest, where they joined the foraging force. Transferred workers acted as a reserve of uncommitted, available foragers.
2. Previous work shows that each individual forager habitually uses one trail. We found that for an uncommitted forager, the influence of recruitment initially is stronger than that of directional fidelity. Transferred workers were likely to use trails leading to new food sources. When transferred to a new nest, foragers were not likely to use a trail in the same direction as their original trail in the donor nest.
3. After a week, transferred foragers tended to develop route fidelity. Even after bait was no longer present, they continued to use the trail that had formerly led to a bait source.
4. We examined how colonies adjust numbers on a trail by experimentally depleting some trails. Colonies usually did not compensate for depletion: foragers were not recruited to depleted trails.
5. In general, the dynamics of foraging in this species facilitate a consistent foraging effort rather than rapid adjustments of forager allocation.  相似文献   

8.
The foraging behavior of the arboreal turtle ant, Cephalotes goniodontus, was studied in the tropical dry forest of western Mexico. The ants collected mostly plant-derived food, including nectar and fluids collected from the edges of wounds on leaves, as well as caterpillar frass and lichen. Foraging trails are on small pieces of ephemeral vegetation, and persist in exactly the same place for 4–8 days, indicating that food sources may be used until they are depleted. The species is polydomous, occupying many nests which are abandoned cavities or ends of broken branches in dead wood. Foraging trails extend from trees with nests to trees with food sources. Observations of marked individuals show that each trail is travelled by a distinct group of foragers. This makes the entire foraging circuit more resilient if a path becomes impassable, since foraging in one trail can continue while a different group of ants forms a new trail. The colony’s trails move around the forest from month to month; from one year to the next, only one colony out of five was found in the same location. There is continual searching in the vicinity of trails: ants recruited to bait within 3 bifurcations of a main foraging trail within 4 hours. When bait was offered on one trail, to which ants recruited, foraging activity increased on a different trail, with no bait, connected to the same nest. This suggests that the allocation of foragers to different trails is regulated by interactions at the nest.  相似文献   

9.
Summary We studied the effects of intrinsic colony characteristics and an imposed contingency on the life span and behavior of foragers in the swarm-founding social waspPolybia occidentalis. Data were collected on marked, known-age workers introduced into four observation colonies.To test the hypothesis that colony demographic features affect worker life span, we examined the relationships of colony age and size with worker life span using survivorship analysis. Colony age and size had positive relationships with life span; marked workers from two larger, older colonies had longer life spans (¯X = 24.7 days) than those from two smaller, younger colonies (¯X = 20.1 days).We quantified the effects of experimentally imposed nest damage on forager behavior, to determine which of three predicted behavioral responses by foragers to this contingency (increased probability of foraging for building material, increased rate of foraging, or decrease in age of onset of foraging) would be employed. Increasing the colony level of need for materials used in nest construction (wood pulp and water) by damaging the nests of two colonies did not cause an increase in either the proportion of marked workers that gathered nest materials or in foraging rates of marked individuals, when compared with introduced workers in two simultaneously observed control colonies. Instead, nest damage caused a decrease in the age at which marked workers first foraged for pulp and water. The response to an increase in the need for building materials was an acceleration of behavioral development in some workers.  相似文献   

10.
Many dynamical networks, such as the ones that produce the collective behavior of social insects, operate without any central control, instead arising from local interactions among individuals. A well-studied example is the formation of recruitment trails in ant colonies, but many ant species do not use pheromone trails. We present a model of the regulation of foraging by harvester ant (Pogonomyrmex barbatus) colonies. This species forages for scattered seeds that one ant can retrieve on its own, so there is no need for spatial information such as pheromone trails that lead ants to specific locations. Previous work shows that colony foraging activity, the rate at which ants go out to search individually for seeds, is regulated in response to current food availability throughout the colony's foraging area. Ants use the rate of brief antennal contacts inside the nest between foragers returning with food and outgoing foragers available to leave the nest on the next foraging trip. Here we present a feedback-based algorithm that captures the main features of data from field experiments in which the rate of returning foragers was manipulated. The algorithm draws on our finding that the distribution of intervals between successive ants returning to the nest is a Poisson process. We fitted the parameter that estimates the effect of each returning forager on the rate at which outgoing foragers leave the nest. We found that correlations between observed rates of returning foragers and simulated rates of outgoing foragers, using our model, were similar to those in the data. Our simple stochastic model shows how the regulation of ant colony foraging can operate without spatial information, describing a process at the level of individual ants that predicts the overall foraging activity of the colony.  相似文献   

11.
Ant colonies can reproduce by two strategies: independent foundation, wherein the queen starts a new colony alone, and dependent foundation, in which workers assist the queen. In the queenless species Dinoponera quadriceps (Santschi), the colony reproduces obligatorily by fission, a type of dependent foundation, but this process is not well understood. This study describes a colony fission event of D. quadriceps in the field and analyzes the influence of the fission process on workers’ extra-nest behavior. Based on observations of workers outside the nest, five distinct stages were identified: monodomic stage, polydomic stage, split stage, conflict stage, and post-conflict stage. The colony was initially monodomic and then occupied a second nest before it split into two independent colonies, indicating a gradual and opportunistic dependent foundation. After the fission event, the daughter colony had aggressive conflicts with the parental colony, resulting in the latter’s disappearance. Colony fission affected workers’ extra-nest behavior by increasing the frequency of rubbing the gaster against the substrate (which probably has a chemical marking function) and by decreasing the frequency of foraging during the split stage. After the fission event, the number of foragers was halved and foragers remained nearer to the nest during extra-nest activity. The spatial closeness of the parental and daughter colonies led to competition that caused the extinction or migration of the parental colony. Intraspecific competition was indicated by foraging directionality at the colony level, whereby areas of neighbor colonies were avoided; this directionality was stronger while both colonies coexisted.  相似文献   

12.
Gnamptogenys menadensis (subfamily Ponerinae) foragers use chemical trails to home to their nests. Although prey capture and retrieval are generally performed solitarily, trails seem to enhance foraging to areas rich in prey or to sugar sources. Trail laying and following are most conspicuous during nest migration. These trails are laid down by tapping the sting onto the substrate. In laboratory tests, only extracts from the Dufour's gland were readily followed. Workers of Polyrhachis rufipes (Formicinae) use the trails of G. menadensis to gain access to otherwise nonavailable sugar sources. When they encounter Gnamptogenys foragers, P. rufipes workers show a typical aggressive antennal boxing, to which Gnamptogenys reacts with a submissive behavior. This is the first report of commensalism between a ponerine and a formicine ant.  相似文献   

13.
Abstract.  1.  Pachycondyla goeldii constitutes the only recorded case of a monogynous (i.e. one queen per colony) polydomous (i.e. several nests per colony) species in the Ponerinae subfamily. This study examines the impact of polydomy on reproductive allocation between nests (also called 'calies' in polydomous society) in Pachycondyla goeldii Forel, by: (i) recording the number of workers and sexuals in 67 nests belonging to 21 colonies; (ii) dissection of workers in nine nests containing a queen (QR nests), nine nests without a queen but associated to a QR nest (QL nests) and five nests belonging to colonies that permanently lost the queen (OR nests); and (iii) measuring the length of all eggs present in the nests (our laboratory study shows that queen-laid eggs were significantly longer than worker-laid eggs).
2. The number of workers was significantly higher in QR nests than in QL nests, while the number of virgin queens was significantly higher in QL nests compared with QR nests.
3. Worker ovarian activity is inversely related to queen proximity: highest in OR nests, intermediate in QL nests, and lowest in QR nests.
4. Egg length was highest in QR nests, where the queen was most likely the primary egg-layer, intermediate in QL nests, where eggs could have originated from both the queen and workers, and lowest in OR nests, where workers were the sole egg-layers.
5. We postulate that the proximal mechanism explaining differences between QR and QL nests is the pheromonal absence of the queen from QL nests and that the evolutionary reasons of these divergences between nest types are likely to originate from the different conflicts occurring in ant colonies.  相似文献   

14.
Summary Australian meat ants often inhabit colonies with widely dispersed nest holes, and this study examines how resource is harvested and distributed in a colony ofIridomyrmex sanguineus Smith (Formicidae: Dolichoderinae). The three principal types of foragers (tenders, honeydew transporters, scavengers) exhibited nest hole fidelity, where harvested resource was consistently delivered to the same nest hole by each foraging individual. Australian meat ants thus use a harvesting system based on dispersed central place foraging. Evidence of frequent larval transport among nest holes, age polyethism developing in the direction of foraging, and the tendency for nest-associated workers to accept new nest holes more readily than foragers, suggests that workers develop fidelity to the particular nest hole in which they eclose. Coupled with larval transport, nest hole fidelity may allow a colony with widely dispersed nest holes to adjust its structure to more efficiently harvest a resource distributed unevenly in space or time.  相似文献   

15.
Recruitment to food or nest sites is well known in ants; the recruiting ants lay a chemical trail that other ants follow to the target site, or they walk with other ants to the target site. Here we report that a different process determines foraging direction in the harvester ant Pogonomyrmex barbatus. Each day, the colony chooses from among up to eight distinct foraging trails; colonies use different trails on different days. Here we show that the patrollers regulate the direction taken by foragers each day by depositing Dufour's secretions onto a sector of the nest mound about 20 cm long and leading to the beginning of a foraging trail. The patrollers do not recruit foragers all the way to food sources, which may be up to 20 m away. Fewer foragers traveled along a trail if patrollers had no access to the sector of the nest mound leading to that trail. Adding Dufour's gland extract to patroller-free sectors of the nest mound rescued foraging in that direction, while poison gland extract did not. We also found that in the absence of patrollers, most foragers used the direction they had used on the previous day. Thus, the colony's 30-50 patrollers act as gatekeepers for thousands of foragers and choose a foraging direction, but they do not recruit and lead foragers all the way to a food source.  相似文献   

16.
Summary Intraspecific interference competition in the harvester ant,Messor aciculatus, was studied. Colonies of this species were found not to have territories. Some nests were located very close to each other, and the foraging areas of the neighbors usually overlapped. Even though the frequency with which alien and resident ants met was very high in the vicinity of the nest entrances, aggressive interactions between them rarely occurred. However, when hostile workers encountered each other, they exhibited a kind of ritualized combat and the winner ejected, but did not injure the loser. If any aliens entered the nest, some of them were pulled out, mainly by the residents.Aliens roaming near a neighbor's nest entrance ferociously attacked the residents carrying seeds in their mandibles and robbed them. On other occasions, aliens entered the nest and stole the collected seed. Although seed robbing and stealing occurred among neighboring colonies, there were remarkable differences in the frequency of their occurrence. The results of field observations and experiments suggest the existence of a dominance order among the neighbors. In one instance, extermination of an inferior colony by its neighbor was observed. The raider colony transferred the stored seeds from the nest of the inferior colony to its own and deposited the larvae and workers some distance away from the nest.The influence of ritualized combat and food robbing on colony activities, and the ecological significance of this interference behavior in terms of spatial distribution and temporal persistence of the nest sites, is discussed.  相似文献   

17.
In all bee colonies of the Meliponinae subfamily, activity inside the nest is temporally organized around the oviposition by the queen, assisted by nurse bees. This class is constituted by young bees that remain inside the nest. In a colony of Scaptotrigona aff depilis, the oviposition cycle occurs in a 3-hour period. The foragers are older bees that collect food for the colony in the field. Other tasks in the nest are performed by workers of ages intermediate between nurses and foragers. With the aim of studying activity rhythms, foragers were kept under constant light, with food constantly available and no flight restriction. The results showed that, although inside the nest the prevailing period is 3 hours, the activity of the foragers is a circadian rhythm, synchronized by the light/dark cycle and probably influenced by other environmental cycles as temperature and the availability of food sources.  相似文献   

18.
The ant speciesLeptothorax tuberum was shown to be predominantly monogynous. Queens usually mate once only but some nests may have a multiply-mated queen or are partially or serially polygynous. As expected from these results, within nest relatedness between workers and between workers and alate queens was found to be high. Almost fifty percent of nests had no nest queen which may indicate high queen mortality, queens leaving to found new nests or nest fragmentation. Observed female investment frequencies (IF o ) were not significantly different from those expected on the basis of worker control of sexual production and the relatedness estimates of workers to alate queens and workers to males calculated from isozyme data (IF E ). These values were not consistent with queen control. There was no evidence for lower IF o s in queenless nests nor for higher IF o s in larger nests classified by worker number. When nests were classified by sexual productivity, however, there was a strong rank correlation between productivity and female bias. This is the first study of an ant species to test observed IF against expected IF calculated without inferring between caste relatedness from worker data or pooling of data from different castes.  相似文献   

19.
In leaf-cutting ants, the handling of waste materials from the fungus culture increases the risk of infection. Consequently, ants should manage their waste in a way that minimizes the spread of diseases. We investigated whether in Acromyrmex lobicornis, waste-worker ants (a) also perform roles in foraging or mound maintenance, (b) are morphologically different than other ant workers, and (c) are aggressively discriminated by other worker ants from the same colony. In addition, we investigated whether the location of external waste piles minimizes the probability that wastes spread to the ant nest. In the field, we (a) marked with different colours waste-workers, foragers and mound-workers and monitored whether these ants interchanged their tasks; (b) measured head width, head length, hind femur length and total length of waste-workers; foragers and mound-workers; (c) forced field encounters between waste-workers and foragers, and (d) measured the cardinal orientation of the waste piles in relation to the colony mound. Waste-worker ants did not perform other function outside the nest; neither foragers nor mound-workers managed the waste. Moreover, waste-workers were smaller than foragers and mound-workers, and were attacked if they tried to enter their nest using foraging entrances. The location of external refuse dumps also appears to reduce contamination risks. Waste piles always were down-slope, and often followed the prevailing wind direction. The importance of behaviours such as the division of labour, aggressions against waste-workers and nest compartmentalization (i.e., the orientation of external waste piles) to minimize the spread of pathogens is discussed.  相似文献   

20.
Ropalidia marginala, a tropical, primitively eusocial, polistinewasp, is unusual in that the queen (the sole egg-layer) is neitherthe most behaviorally dominant nor the most active individualin the colony. The queen by herself rarely ever initiates interactionstoward her nest mates or unloads returning foragers. There arealways a few workers in the colony who are more dominant andactive than the queen. Absence of the queen from her colonydoes not affect colony maintenance activities such as foragingor brood care, but it always results in one individual becomingvery aggressive and dominant. The dominant worker becomes thenext queen if the original queen does not return. The queendoes not appear to play any significant role in colony activityregulation. Instead, colony activities appear to be regulatedby several mechanisms including dominance behavior toward foragers,feeding of larvae, and the unloading of returning foragers,all mediated by workers themselves. Regulation of colony maintenanceappears to be based on direct evaluation of the needs of thecolony by the workers themselves. The queen however has perfectreproductive control over all workers; workers never lay eggsin the presence of the queen. It appears therefore that themechanisms involved in regulation of worker activity and workerreproduction are separate in R marginata. These findings contrastwith other primitively eusocial species where the queen actsas a "central pacemaker" and controls both worker activity andworker reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号