首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We studied the role of 5-HT(1A) receptors in controlling the release of glutamate (GLU) in the medial prefrontal cortex (mPFC) of conscious rats with the in vivo microdialysis technique. The effect of the 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin infused in the prefrontal cortex was examined under basal conditions and on the rise of extracellular GLU (+106%) induced by co-infusion of the competitive N-methyl-d-aspartate receptor antagonist 3-[(R)-2-carboxypiperazin-4yl]-propyl-1-phosphonic acid (CPP). 8-OH-DPAT (0.3 and 3 microm) had no effect on basal extracellular GLU, but the higher concentration completely abolished the rise of extracellular GLU induced by CPP. CPP also increased extracellular serotonin (5-HT) in the mPFC (+50%) and this effect was antagonized by 3 microm 8-OH-DPAT which, by itself, had no effect on basal 5-HT release. The effects of 8-OH-DPAT on extracellular GLU and 5-HT were reversed by the 5-HT(1A) receptor antagonist WAY100 635 (100 microm), indicating a selective involvement of 5-HT(1A) receptors. WAY100 635 had no effect by itself. These results show that the stimulation of cortical 5-HT(1A) receptors prevents the CPP-evoked rise of extracellular GLU and 5-HT and suggest that these effects may contribute to the ability of intracortical 8-OH-DPAT to counteract cognitive deficits caused by the blockade of NMDA receptors.  相似文献   

2.
Blockade of NMDA receptors by intracortical infusion of 3-( R )-2-carboxypiperazin-4-propyl-1-phosphonic acid (CPP) increases glutamate (GLU) and serotonin (5-HT) release in the medial prefrontal cortex and impairs attentional performance in the 5-choice serial reaction time task. These effects are prevented by the 5-HT2A receptor antagonist, ( R )-(+)-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidine methanol (M100907). We explored the roles of endogenous 5-HT and 5-HT1A and 5-HT2C receptors in the mechanisms by which M100907 suppresses CPP-induced release of cortical GLU and 5-HT using in vivo microdialysis. CPP raised extracellular GLU and 5-HT by about 250% and 170% respectively. The 5-HT synthesis inhibitor, p -chlorophenylalanine (300 mg/kg), prevented M100907 suppressing CPP-induced GLU release. The effect of M100907 on these rises of GLU and 5-HT and attentional performance deficit was mimicked by the 5-HT2C receptor agonist, ( S )-2-(6-chloro-5-fluoroindol-1-yl)-1-methylethylamine fumarate, (Ro60-0175, 30 μg/kg) while intra-mPFC (SB242084, 6-chloro-5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-indoline, 0.1 μM), a 5-HT2C receptor antagonist, prevented the effect of M100907 on extracellular GLU. The 5-HT1A receptor antagonist, N -[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]- N -(2-pyridinyl)cyclohexane carboxenide trihydrochloride (100 μM) abolished the effect of M100907 on the CPP-induced 5-HT release. The data show that blockade of 5-HT2A receptors is not sufficient to suppress the CPP-induced rise of extracellular GLU and 5-HT and suggest that M100907 suppresses GLU release induced by CPP by enhancing the action of endogenous 5-HT on 5-HT2C receptors.  相似文献   

3.
The present study investigated whether 5-HT(2C) receptors in the ventrotegmental area and prefrontal cortex regulate basal and stimulus-evoked dopamine release in the prefrontal cortex. Using the in vivo microdialysis technique in conscious rats, we studied the effect of a selective 5-HT(2C) receptor agonist, Ro60-0175, on basal and immobilization stress-induced dopamine release in the prefrontal cortex. Ro60-0175 intraperitoneally (2.5 mg/kg) and into the ventrotegmental area (10 microg/0.5 microL) completely antagonized the effect of stress on extracellular dopamine without altering basal levels. Infusion of 10 microm Ro60-0175 through the cortical probe had no significant effect on basal and stress-induced dopamine release. SB242084 (10 mg/kg), a selective antagonist of 5-HT(2C) receptors, significantly increased basal extracellular dopamine and completely prevented the effect of intraperitoneal and intraventrotegmental Ro60-0175 on the stress-induced rise of extracellular dopamine, but had no effect itself in stressed rats. The results show that Ro60-0175 suppresses cortical dopamine release induced by immobilization stress through the stimulation of 5-HT(2C) receptors in the ventrotegmental area. While confirming that endogenous 5-HT acting on 5-HT(2C) receptors tonically inhibit basal dopamine release in the prefrontal cortex, the present findings suggest that the stimulation of 5-HT(2C) receptors with an exogenous agonist preferentially inhibit stimulated release.  相似文献   

4.
The metabotropic glutamate (mGlu2/3) receptor agonist, LY354740, exhibits anxiolytic-like properties in a number of rodent models. The present study utilized in vivo microdialysis to examine the effects of LY354740 on extracellular monoamine levels in the medial prefrontal cortex (mPFC) of animals subjected to 30 min immobilization stress. Immobilization stress significantly elevated extracellular levels of noradrenaline (NA) and dopamine (DA) in the mPFC, while systemic administration of LY354740 (30 mg/kg, s.c.) significantly attenuated immobilization-induced increases in both NA and DA. Reverse-dialysis of LY354740 (30 microm) into the mPFC significantly attenuated immobilization-induced increases in NA, but not DA without affecting basal levels of either amine. In separate studies in the presence of citalopram (1 microm; reverse dialysis into the mPFC), systemic administration of LY354740 attenuated immobilization-induced increases in NA and DA, but had no effect on serotonin (5-HT) levels. Co-administration of the selective mGlu2/3 receptor antagonist, LY341495, partially or fully reversed the attenuation in NA and DA levels produced by LY354740, respectively. Taken together, these data suggest that LY354740 may produce anti-stress actions, in part, by blocking stress-related increases in catecholamines in the mPFC via mGlu2/3 receptor stimulation.  相似文献   

5.
Atypical antipsychotic drugs (APDs), all of which are relatively more potent as serotonin (5-HT)(2A) than dopamine D(2) antagonists, may improve negative symptoms and cognitive dysfunction in schizophrenia, in part, via increasing cortical dopamine release. 5-HT(1A) agonism has been also suggested to contribute to the ability to increase cortical dopamine release. The present study tested the hypothesis that clozapine, olanzapine, risperidone, and perhaps other atypical APDs, increase dopamine release in rat medial prefrontal cortex (mPFC) via 5-HT(1A) receptor activation, as a result of the blockade of 5-HT(2A) and D(2) receptors. M100907 (0.1 mg/kg), a 5-HT(2A) antagonist, significantly increased the ability of both S:(-)-sulpiride (10 mg/kg), a D(2) antagonist devoid of 5-HT(1A) affinity, and R:(+)-8-OH-DPAT (0.05 mg/kg), a 5-HT(1A) agonist, to increase mPFC dopamine release. These effects of M100907 were abolished by WAY100635 (0.05 mg/kg), a 5-HT(1A) antagonist, which by itself has no effect on mPFC dopamine release. WAY100635 (0.2 mg/kg) also reversed the ability of clozapine (20 mg/kg), olanzapine (1 mg/kg), risperidone (1 mg/kg), and the R:(+)-8-OH-DPAT (0.2 mg/kg) to increase mPFC dopamine release. Clozapine is a direct acting 5-HT(1A) partial agonist, whereas olanzapine and risperidone are not. These results suggest that the atypical APDs via 5-HT(2A) and D(2) receptor blockade, regardless of intrinsic 5-HT(1A) affinity, may promote the ability of 5-HT(1A) receptor stimulation to increase mPFC DA release, and provide additional evidence that coadministration of 5-HT(2A) antagonists and typical APDs, which are D(2) antagonists, may facilitate 5-HT(1A) agonist activity.  相似文献   

6.
To better understand the central mechanisms that mediate increases in heart rate (HR) during psychological stress, we examined the effects of systemic and intramedullary (raphe region) administration of the serotonin-1A (5-HT(1A)) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetraline (8-OH-DPAT) on cardiac changes elicited by restraint in hooded Wistar rats with preimplanted ECG telemetric transmitters. 8-OH-DPAT reduced basal HR from 356 +/- 12 to 284 +/- 12 beats/min, predominantly via a nonadrenergic, noncholinergic mechanism. Restraint stress caused tachycardia (an initial transient increase from 318 +/- 3 to 492 +/- 21 beats/min with a sustained component of 379 +/- 12 beats/min). beta-Adrenoreceptor blockade with atenolol suppressed the sustained component, whereas muscarinic blockade with methylscopolamine (50 microg/kg) abolished the initial transient increase, indicating that sympathetic activation and vagal withdrawal were responsible for the tachycardia. Systemic administration of 8-OH-DPAT (10, 30, and 100 microg/kg) attenuated stress-induced tachycardia in a dose-dependent manner, and this effect was suppressed by the 5-HT(1A) antagonist WAY-100635 (100 microg/kg). Given alone, the antagonist had no effect. Systemically injected 8-OH-DPAT (100 microg/kg) attenuated the sympathetically mediated sustained component (from +85 +/- 19 to +32 +/- 9 beats/min) and the vagally mediated transient (from +62 +/- 5 to +25 +/- 3 beats/min). Activation of 5-HT(1A) receptors in the medullary raphe by microinjection of 8-OH-DPAT mimicked the antitachycardic effect of the systemically administered drug but did not affect basal HR. We conclude that tachycardia induced by restraint stress is due to a sustained increase in cardiac sympathetic activity associated with a transient vagal withdrawal. Activation of central 5-HT(1A) receptors attenuates this tachycardia by suppressing autonomic effects. At least some of the relevant receptors are located in the medullary raphe-parapyramidal area.  相似文献   

7.
Stimulation of hippocampal 5-HT(1A) receptors impairs memory retention. The highly selective 5-HT(1A) antagonist, WAY-100635, prevents the cognitive deficits induced not only by 5-HT(1A) stimulation but also by cholinergic or NMDA receptor blockade. On this basis, the effects of WAY-100635 on molecular events associated with memory storage were explored. In rat hippocampus, WAY-100635 produced a rapid increase in phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and in Ca(2+)-independent CaMKII and protein kinase A (PKA) enzyme activity. This increase was followed a few hours later by an enhanced membrane expression of AMPA receptor subunits, especially of the GluR1 subunit phosphorylated at the CaMKII site, pGluR1(Ser831). The same qualitative effects were found with the weaker 5-HT(1A) antagonist NAN-190. The effects of both antagonists were no longer apparent in rats with a previous 5-HT depletion induced by the tryptophan hydroxylase inhibitor p-chlorophenylalanine (PCPA), suggesting that 5-HT(1A) receptor blockade removes the tonic inhibition of 5-HT through 5-HT(1A) receptor stimulation on excitatory hippocampal neurons, with the consequent increase in PKA activity. In addition, administration of WAY-100635 potentiated the learning-specific increase in the hippocampus of phospho-CaMKII, Ca(2+)-independent CaMKII activity, as well as the phosphorylation of either the CaMKII or the PKA site on the AMPA receptor GluR1 subunit. This study suggests that blockade of hippocampal 5-HT(1A) receptors favours molecular events critically involved in memory formation, and provides an in vivo molecular basis for the proposed utility of 5-HT(1A) receptor antagonists in the treatment of cognitive disorders.  相似文献   

8.
N-Methyl D-aspartate (NMDA) receptor activation of extracellular-signal regulated kinase (ERK) was examined in primary cortical cultures. Tetrodotoxin, NMDA receptor antagonists, or reduced extracellular calcium (0.1 mm) greatly decreased basal levels of phospho-ERK2, indicating that activity-dependent activation of NMDA receptors maintained a high level of basal ERK2 activation. This activity-dependent activation of phospho-ERK2 was blocked by pertussis toxin and inhibition of calcium/calmodulin-dependent kinase II and phosphatidylinositol 3-kinase but not by inhibition of protein kinase C or cAMP-dependent protein kinase. Addition of a calcium ionophore or 100 microm NMDA decreased phospho-ERK2 in the presence of 1 mm extracellular calcium but enhanced phospho-ERK2 in 0.1 mm extracellular calcium. The reduction in basal phospho-ERK2 by 100 microm NMDA was also reflected as a decrease in phospho-cAMP response element-binding protein. Inhibition of tyrosine phosphatases and serine/threonine phosphatases protein phosphatase 1 (PP1), PP2A, and PP2B did not prevent the inhibitory effect of NMDA. In the presence of tetrodotoxin, NMDA produced a bell-shaped dose-response curve with stimulation of phospho-ERK2 at 10, 25, and 50 microm NMDA and reduced stimulation at 100 microm NMDA. NMDA (50 microm) stimulation of phospho-ERK2 was completely blocked by pertussis toxin and inhibitors of phosphatidylinositol 3-kinase and was partially blocked by a calcium/calmodulin-dependent kinase II inhibitor. These results suggests that NMDA receptors can bidirectionally control ERK signaling.  相似文献   

9.
In the dorsal raphe nucleus (DR), extracellular serotonin (5-HT) regulates serotonergic transmission through 5-HT1A autoreceptors. In this work we used in vivo microdialysis to examine the effects of stressful and pharmacological challenges on DR 5-HT efflux in 5-HT1A receptor knockout (5-HT1A-/-) mice and their wild-type counterparts (5-HT1A+/+). Baseline 5-HT concentrations did not differ between both lines of mice, which is consistent with a lack of tonic control of 5-HT1A autoreceptors on DR 5-HT release. (R)-(+)-8-Hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT, 0.5 mg/kg) reduced 5-HT levels to 30% of basal values in 5-HT1A+/+ mice, but not in 5-HT1A-/- mice. The selective 5-HT1B receptor agonist 1,4-dihydro-3-(1,2,3,6-tetrahydro-4-pyridinyl)-5H-pyrrolo[3,2-b]pyridin-5-one dihydrochloride (CP 93129, 300 micro m) reduced dialysate 5-HT to the same extent (30-40% of baseline) in the two genotypes, which suggests a lack of compensatory changes in 5-HT1B receptors in the DR of such mutant mice. Both a saline injection and handling for 3 min increased DR dialysate 5-HT in mutants, but not in 5-HT1A+/+ mice. Fluoxetine (5 and 20 mg/kg) elevated 5-HT in a dose-dependent manner in both genotypes. However, this effect was markedly more pronounced in the 5-HT1A-/- mice. The increased responsiveness of the extracellular 5-HT in the DR of 5-HT1A receptor knockout mice reflects a lack of the autoinhibitory control exerted by 5-HT1A autoreceptors.  相似文献   

10.
The in vivo microdialysis methodology was used to assess the effect of N-methyl-D-aspartate (NMDA) receptor ligands on glutamate (GLU), aspartate (ASP) and gamma-aminobutyrate (GABA) extracellular levels in the striatum of anaesthetized rats, after damage to the dopamine (DA) nigrostriatal pathway by injections of different doses of 6-hydroxydopamine (6-OH-DA) seven days earlier. The 6-OH-DA treated rats were divided into two groups, corresponding to animals with 20-80% (partial) and 85-99% (extensive) striatal DA tissue depletion, respectively. In rats with partial DA depletion, the striatal extracellular ASP levels significantly increased after intrastriatal dialysis perfusion with MK-801 (100 microM), an antagonist of NMDA receptors. In addition, a change in the pattern of local NMDA (500 microM)- induced efflux of ASP was observed in the striatum of these rats. However, in these partially DA-depleted striata no changes were found in basal extracellular levels of GLU, ASP and GABA or in NMDA- and MK-801-mediated effluxes of GLU and GABA relative to striata from sham rats. In contrast, rats with extensive striatal DA depletion exhibited a significant increase in ASP and GABA extracellular striatal levels, after intrastriatal dialysis perfusion with NMDA. In addition, the MK-801-mediated stimulation of extracellular ASP levels was accentuated along with the appearance of a MK-801 mediated increase in extracellular striatal GLU. Finally, basal extracellular levels of ASP, but not of GLU and GABA, were found to increase in extensive DA-depleted striata when compared to sham and partially DA-depleted striata. Thus, a differential regulation of basal and NMDA receptor-mediated release of transmitter amino acids occur seven days after partial and extensive DA-depleted striatum by 6-OH-DA-induced lesions of the nigrostriatal DA pathway. These findings may have implications as regards the participation of NMDA receptors in the compensatory mechanisms associated with the progress of Parkinson's disease, as well as in the treatment of this neurological disorder.  相似文献   

11.
Abstract: To understand the mechanism of interaction of the dopamine D2L receptors with NMDA receptors, we have developed a model by transfecting human neuroblastoma SH-SY5Y cells with the human dopamine D2L receptor gene. In vitro blockade of NMDA receptors by the specific antagonists MK-801 and (±)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) on human neuroblastoma SH-SY5Y cells expressing human dopamine D2L receptors resulted in a significant increase in the density of D2L receptors without a significant change in receptor affinity. Moreover, the dopamine receptor mRNA level increased by ∼50% by the blockade of NMDA with MK-801. These results suggest a possible interaction of NMDA and dopamine D2L receptors in neuroblastoma SH-SY5Y cells. This system would serve as an excellent model to study the molecular mechanisms involved in the interaction of these two receptors.  相似文献   

12.
We investigated the effect of citalopram [a selective serotonin (5-HT) reuptake inhibitor; SSRI] and MKC-242 (a selective 5-HT1A agonist), following treatment with subchronic lithium (p.o., 1 week) on extracellular 5-HT concentrations in the medial prefrontal cortex (mPFC). Acute treatment with citalopram (3 and 30 mg/kg) led to significant increases in extracellular 5-HT concentrations. The subchronic lithium group showed significantly higher basal levels of extracellular 5-HT than normal diet controls. Acute citalopram (3 and 30 mg/kg) treatment together with subchronic lithium treatment showed significant increases in the extracellular 5-HT concentrations, compared with citalopram treatment alone. Acute MKC-242 (1 mg/kg) treatment showed significant decreases in extracellular 5-HT concentrations, in both the normal diet and lithium diet groups to the same extent. The addition of lithium did not change the effect of the 5-HT1A agonist on extracellular 5-HT concentrations. This study suggests that lithium augmentation of the antidepressant effect of SSRI is mediated by the additional increases in extracellular 5-HT concentrations following the co-administrations of lithium and SSRI.  相似文献   

13.
Direct intrastriatal injection of N-methyl-D-aspartate (NMDA; 100 micrograms/rat) increased striatal dopamine (DA) release in vivo. However, parenteral administration of (+/-)-3-(2-carboxypiperizin-4-yl)propyl-1-phosphonic acid (CPP) and cis-4-phosphonomethyl-2-piperidine carboxylic acid (CGS-19755) did not alter DA metabolism and release in several brain regions in the rat and mouse. Intracerebroventricular administration of the competitive NMDA antagonists CPP, CGS-19755, 2-amino-5-phosphonopentanoate, and 2-amino-7-phosphonoheptanoate did not alter rat striatal DA metabolism and release but profoundly reduced cerebellar cyclic GMP (cGMP) levels in the same animals. CPP and CGS-19755 decreased basal cerebellar cGMP levels in the mouse with ED50 values of 6 and 1 mg/kg, i.p., respectively. CPP antagonized the harmaline-induced increases in cGMP levels with an ED50 value of 5.0 mg/kg, i.p. CPP (25 mg/kg, i.p.) also decreased basal cGMP levels in mouse cerebellum for up to 3 h, a result suggesting brain bioavailability and a long duration of NMDA receptor antagonism in vivo. These contrasting patterns suggest that NMDA receptors exert a tonic excitatory tone on the guanine nucleotide signal transduction pathway in the cerebellum while exerting a phasic control over nigrostriatal dopaminergic neurotransmission. These results also indicate that competitive NMDA antagonists, unlike phencyclidine receptor agonists, may not mediate biochemical and behavioral effects via dopaminergic mechanisms.  相似文献   

14.
Dysregulation of prefrontal cortical glutamatergic signalling via NMDA receptor hypofunction has been implicated in cognitive dysfunction and impaired inhibitory control in such neuropsychiatric disorders as schizophrenia, attention‐deficit hyperactivity disorder and drug addiction. Although NMDA receptors functionally interact with metabotropic glutamate receptor 5 (mGluR5), the consequence of this interaction for glutamate release in the prefrontal cortex (PFC) remains unknown. We therefore investigated the effects of positive and negative allosteric mGluR5 modulation on changes in extracellular glutamate efflux in the medial PFC (mPFC) induced by systemic administration of the non‐competitive NMDA receptor antagonist dizocilpine (or MK801) in rats. Extracellular glutamate efflux was measured following systemic administration of the positive allosteric mGluR5 modulator [S‐(4‐Fluoro‐phenyl)‐{3‐[3‐(4‐fluoro‐phenyl)‐[1,2,4]‐oxadiazol‐5‐yl]‐piperidin‐1‐yl}‐methanone] (ADX47273; 100 mg/kg, p.o.) and negative allosteric mGluR5 modulator [2‐chloro‐4‐{[1‐(4‐fluorophenyl)‐2,5‐dimethyl‐1H‐imidazol‐4‐yl]ethynyl}pyridine] (RO4917523; 0.3 mg/kg, p.o.), using a wireless glutamate biosensor in awake, freely moving rats. The effect of MK801 (0.03–0.06 mg/kg, s.c.) on mPFC glutamate efflux was also investigated in addition to the effects of MK801 (0.03 mg/kg, s.c.) following ADX47273 (100 mg/kg, p.o.) pre‐treatment. ADX47273 produced a sustained increase in glutamate efflux and increased the effect of NMDA receptor antagonism on glutamate efflux in the mPFC. In contrast, negative allosteric mGluR5 modulation with RO4917523 decreased glutamate efflux in the mPFC. These findings indicate that positive and negative allosteric mGluR5 modulators produce long lasting and opposing actions on extracellular glutamate efflux in the mPFC. Positive and negative allosteric modulators of mGluR5 may therefore be viable therapeutic agents to correct abnormalities in glutamatergic signalling present in a range of neuropsychiatric disorders.

  相似文献   


15.
5-HT(3) (serotonin type 3) receptors are targets of antiemetics, antipsychotics, and antidepressants and are believed to play a role in cognition. Nevertheless, contrasting results have been obtained with respect to their functions in the CNS and in the control of transmitter release. We used rat hippocampal neurons in single-neuron microcultures to identify the roles of presynaptic 5-HT(3) receptors at central synapses. 5-HT (10 microm) caused a transient > 10-fold increase in the frequency of miniature inhibitory postsynaptic currents without affecting amplitudes or kinetics. This effect was abolished by tropisetron (30 nm) and when Ca(2+) channels were blocked by 100 microm Cd(2+) it was mimicked and occluded when neurons were depolarized by 20 mm, but not 10 mm, K(+). Thus, activation of presynaptic 5-HT(3) receptors increased spontaneous GABA release by causing depolarization and opening of voltage-gated Ca(2+) channels. In microculture neurons, 5-HT transiently reduced action potential-evoked inhibitory autaptic currents by > 50%; this effect was blocked by tropisetron and mimicked by 20 mm, but not 10 mm, K(+). Miniature excitatory postsynaptic currents were not altered by 5-HT. Excitatory autaptic currents were tonically reduced, an effect attenuated by 5-HT(1A) antagonists. Thus, presynaptic 5-HT(3) receptors control GABA, but not glutamate, release and mediate opposite effects on spontaneous and action potential-dependent release.  相似文献   

16.
5-Hydroxytryptamine (serotonin, 5-HT) is a hormone and neurotransmitter regulating gastrointestinal functions. 5-HT receptors are widely distributed in gastrointestinal mucosa and the enteric nervous system. Duodenal acidification stimulates not only the release of both 5-HT and secretin but also pancreatic exocrine secretion. We investigated the effect of 5-HT receptor antagonists on the release of secretin and pancreatic secretion of water and bicarbonate induced by duodenal acidification in anesthetized rats. Both the 5-HT(2) receptor antagonist ketanserin and the 5-HT(3) receptor antagonist ondansetron at 1-100 microg/kg dose-dependently inhibited acid-induced increases in plasma secretin concentration and pancreatic exocrine secretion. Neither the 5-HT(1) receptor antagonists pindolol and 5-HTP-DP nor the 5-HT(4) receptor antagonist SDZ-205,557 affected acid-evoked release of secretin or pancreatic secretion. None of the 5-HT receptor antagonists affected basal pancreatic secretion or plasma secretin concentration. Ketanserin or ondansetron at 10 microg/kg or a combination of both suppressed the pancreatic secretion in response to intravenous secretin at 2.5 and 5 pmol x kg(-1) x h(-1) by 55-75%, but not at 10 pmol x kg(-1) x h(-1). Atropine (50 microg/kg) significantly attenuated the inhibitory effect of ketanserin on pancreatic secretion but not on the release of secretin. These observations suggest that 5-HT(2) and 5-HT(3) receptors mediate duodenal acidification-induced release of secretin and pancreatic secretion of fluid and bicarbonate. Also, regulation of pancreatic exocrine secretion through 5-HT(2) receptors may involve a cholinergic pathway in the rat.  相似文献   

17.
Abstract: The contribution of NMDA receptors to regulation of serotonin (5-HT) release was assessed by in vivo microdialysis in freely behaving rats. During infusion of NMDA (30, 100, and 300 µ M ) into the dorsal raphe nucleus (DRN), 5-HT was increased by ∼25, 100, and 280%, respectively. Competitive and noncompetitive NMDA-receptor antagonists blocked this effect on DRN 5-HT. Infusion of NMDA (300 µ M ) into the DRN also produced an 80% increase in extracellular 5-HT in the nucleus accumbens. During infusion of NMDA (100 and 300 µ M ) into the median raphe nucleus (MRN), 5-HT was increased by ∼15 and 80%, respectively. NMDA-receptor antagonists blocked this effect on MRN 5-HT. Infusion of NMDA into the MRN also produced a significant increase in hippocampal 5-HT. In contrast, infusion of NMDA into the nucleus accumbens, frontal cortex, or hippocampus produced small decreases in 5-HT in these forebrain sites. Taken together, these results suggest that NMDA receptors in the midbrain raphe, but not the forebrain, can have an excitatory influence on 5-HT neurons and, thus, produce increased 5-HT release in the forebrain. Furthermore, in comparison with the MRN, DRN 5-HT neurons were more sensitive to the excitatory effect of NMDA.  相似文献   

18.
Summary. We have previously reported that neonatal rats display enhanced sensitivity to domoic acid relative to adults, and that perinatal injections of low doses of domoic acid alter early associational learning in the newborn rat. The current study was designed to further investigate the effects of low dose domoic acid on neonatal odour conditioning and to determine if the observed effects are due in part to an action on NMDA receptors. Groups of rat pups were conditioned to a novel odour on postnatal day (PND) 8, injected with 20g/kg domoic acid either alone, or in combination with the NMDA antagonist CPP (or appropriate controls), daily from day 8–14, reexposed to the conditioning odour or a novel odour on day 9, and tested for odour preference on day 13 using a standard 3-choice paradigm. Results indicated that rats treated with domoic acid spent significantly more time over the conditioning odour than did saline-treated rats when tested on PND 13. This effect was antagonized by concomitant injection of CPP, indicating an involvement of NMDA receptors in the actions of DOM in this paradigm. Rats injected with either saline or CPP alone showed the opposite effect, i.e. a preference for the alternate odour. The results indicate that a very low dose of DOM produces a conditioned odour preference in neonatal rats and that this effect is due in part to NMDA receptor involvement, thereby emphasizing a role for both kainate and NMDA glutamate receptors in implicit memory.  相似文献   

19.
Systemic injection of MK-801, a noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptor ion channels, increases meal size and delays satiation. We examined whether MK-801 increases food intake by directly interfering with actions of cholecystokinin (CCK). Prior administration of MK-801 (100 microg/kg ip) reversed the inhibitory effects of CCK-8 (2 and 4 microg/kg ip) on real feeding of both liquid and solid foods. MK-801 alone did not alter 30-min sham intake of 15% sucrose compared with intake after saline. Furthermore, while CCK-8 (2 or 4 microg/kg ip) reduced sham intake, this reduction was not attenuated by MK-801 pretreatment. To ascertain whether MK-801 attenuation of CCK-induced reduction of real feeding was associated with attenuated inhibition of gastric emptying, we tested the effect of MK-801 pretreatment on CCK-induced inhibition of gastric emptying of 5-ml saline loads. Ten-minute gastric emptying was accelerated after MK-801 (3.9 +/- 0.2 ml) compared with saline vehicle (2.72 +/- 0.2 ml). CCK-8 (0.5 microg/kg ip) reduced 10-min emptying to 1.36 +/- 0.3 ml. Pretreatment with MK-801 did not significantly attenuate CCK-8-induced reduction of gastric emptying (0.9 +/- 0.4 ml). This series of experiments demonstrates that blockade of NMDA ion channels reverses inhibition of real feeding by CCK. However, neither inhibition of sham feeding nor inhibition of gastric emptying by CCK is attenuated by MK-801. Therefore, increased food intake after NMDA receptor blockade is not caused by a direct interference with CCK-induced satiation. Rather, increased real feeding, either in the presence or absence of CCK, depends on blockade of NMDA receptor participation in other post-oral feedback signals such as gastric sensation or gastric tone.  相似文献   

20.
Abstract: Evidence exists that a reinforcement in monoaminergic transmission in the frontal cortex (FCX) is associated with antidepressant (AD) properties. Herein, we examined whether blockade of α2-adrenergic receptors modified the influence of monoamine reuptake inhibitors on FCX levels of serotonin (5-HT), noradrenaline (NAD), and dopamine (DA). The selective α2-adrenergic receptor agonist S 18616 (0.16 mg/kg, s.c.) suppressed extracellular levels of NAD, DA, and 5-HT (by 100, 51, and 63%, respectively) in single dialysates of FCX of freely moving rats. In contrast, the selective α2-adrenergic receptor antagonists atipamezole (0.16 mg/kg, s.c.) and 1-(2-pyrimidinyl)piperazine (1-PP; 2.5 mg/kg, s.c.) increased levels of NAD (by 180 and 185%, respectively) and DA (by 130 and 90%, respectively), without affecting 5-HT levels. Duloxetine (5.0 mg/kg, s.c.), a mixed inhibitor of 5-HT and NAD reuptake, and fluoxetine (10.0 mg/kg, s.c.), a selective 5-HT reuptake inhibitor, both increased levels of 5-HT (by 150 and 120%, respectively), NAD (by 400 and 100%, respectively), and DA (by 115 and 55%, respectively). Atipamezole (0.16 mg/kg, s.c.) markedly potentiated the influence of duloxetine and fluoxetine on levels of 5-HT (by 250 and 330%, respectively), NAD (by 1,030 and 215%, respectively), and DA (by 370 and 170%, respectively). 1-PP similarly potentiated the influence of duloxetine on 5-HT, NAD, and DA levels (by 290, 1,320, and 600%, respectively). These data demonstrate that α2-adrenergic receptors tonically inhibit NAD and DA and phasically inhibit 5-HT release in the FCX and that blockade of α2-adrenergic receptors strikingly potentiates the increase in FCX levels of 5-HT, NAD, and DA elicited by reuptake inhibitors. Concomitant α2-adrenergic receptor antagonism and inhibition of monoamine uptake may thus provide a mechanism allowing for a marked increase in the efficacy of AD agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号