首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the discontinuation (DET) of an endurance training/heat acclimation (T/A) program on vascular volumes were studied in 16 adult males. Resting and exercise blood volume dynamics were examined prior to and during an exercise task performed after completion of T/A (CT1) and again at the end of DET (CT2). T/A consisted of cycling at 60% of peak VO2 for 90 min per day, 6 days per week, for 4 weeks. Ambient temperature was 20 degrees C for the first 3 weeks and 40 degrees C for the last week (rh = 30-35%). Subjects were randomly assigned to one of the following DET conditions: 1) cycling one day per week at 40 degrees C, 2) cycling one day per week at 20 degrees C, 3) resting one day per week at 40 degrees C, 4) control. The exercise tasks consisted of 60 min of continuous cycle ergometer exercise at 50% of peak VO2 (Ta = 30 degrees C, rh = 35%). Although significant differences were found between CT1 and CT2, there were no interactions between the various DET conditions. Resting red cell volume decreased 98 ml and plasma volume decreased 248 ml following DET. A reduction in plasma protein content accounted for 97% of the decrease in plasma volume. Hemoconcentration occurred during exercise in both CT1 and CT2, while there were slight increases in plasma [Na+] and [Cl-] and a rapid rise in [K+]. It appears that a single exercise and/or heat exposure per week was not different from complete cessation of endurance exercise in the heat with regard to maintenance of the various vascular volumes.  相似文献   

2.
Twelve young women, athletes (n = 6) and nonathletes (n = 6), walked on a treadmill at loads equivalent to approximately 30% Vo2 max for two 50-min periods in three environments: 1) 28 degrees C, 45% rh, 2) 35 degrees C, 65% rh, and 3) 48 degrees C, 10% rh. There were no differences between groups in rectal temperature, heart rate, evaporative heat loss, or mean skin temperature at 28 or 35 degrees C or during the first work period in the 48 degrees C environment. However, a significantly lower cardiac output (Q) and stroke volume (SV) observed for nonathletes by the 46th min of work at 48 degrees C may explain why no nonathletes were able to complete a 2nd h of work while four of six athletes successfully finished the period. It appears that in conditions of severe heat stress (48 degrees C) athletes were able to maintain a cardiac output sufficient to meet the metabolic requirements and the large increase in peripheral blood flow for a longer period of time than nonathletes.  相似文献   

3.
We studied the effects of autologous erythrocyte infusion on blood volume and thermoregulation during exercise in the heat. By use of a double-blind design, nine unacclimated male subjects were infused with either 600 ml of a NaCl-glucose-phosphate solution containing a approximately 50% hematocrit (n = 6, reinfusion) or 600 ml of this solution only (n = 3, saline). A heat stress test (HST) was attempted approximately 2-wk pre- and 48-h postinfusion during the late spring months. After 30 min of rest in a 20 degrees C antechamber, the HST consisted of a 120-min exposure (2 repeats of 15 min rest and 45 min treadmill walking) in a hot (35 degrees C, 45% rh) environment while euhydrated. Erythrocyte volume (RCV, 51Cr) and plasma volume (PV, 125I) were measured 24 h before each HST, and maximal O2 uptake (VO2max) was measured 24 h after each HST. Generally, no significant effects were found for the saline group. For the reinfusion group, RCV (11%, P less than 0.01) and VO2max (11%, P less than 0.05) increased after infusion, and the following observations were made: 1) the increased RCV was associated with a reduction in PV to maintain the same blood volume as during the preinfusion measurements; 2) polycythemia reduced total circulating protein but did not alter F-cell ratio, plasma osmolality, plasma protein content, or plasma lactate at rest or during exercise-heat stress; 3) polycythemia did not change the volume of fluid entering the intravascular space from rest to exercise-heat stress; and 4) polycythemia tended to reduce the rate of heat storage during exercise-heat stress.  相似文献   

4.
Exercise increases mean body temperature (T(body)) and cytokine concentrations in plasma. Cytokines facilitate PG production via cyclooxygenase (COX) enzymes, and PGE(2) can mediate fever. Therefore, we used a COX-2 inhibitor to test the hypothesis that PG-mediated pyrogenicity may contribute to the raised T(body) in exercising humans. In a double-blind, cross-over design, 10 males [age: 23 yr (SD 5), Vo(2 max): 53 ml x kg(-1) x min(-1) (SD 5)] consumed rofecoxib (50 mg/day; NSAID) or placebo (PLAC) for 6 days, 2 wk apart. Exercising thermoregulation was measured on day 6 during 45-min running ( approximately 75% Vo(2 max)) followed by 45-min cycling and 60-min seated recovery (28 degrees C, 50% relative humidity). Plasma cytokine (TNF-alpha, IL-10) concentrations were measured at rest and 30-min recovery. T(body) was similar at rest in PLAC (35.59 degrees C) and NSAID (35.53 degrees C) and increased similarly during running, but became 0.33 degrees C (SD 0.26) lower in NSAID during cycling (37.39 degrees C vs. 37.07 degrees C; P = 0.03), and remained lower throughout recovery. Sweating was initiated at T(body) of approximately 35.6 degrees C in both conditions but ceased at higher T(body) in PLAC than NSAID during recovery [36.66 degrees C (SD 0.36) vs. 36.39 degrees C (SD 0.27); P = 0.03]. Cardiac frequency averaged 6 x min(-1) higher in PLAC (P < 0.01), whereas exercising metabolic rate was similar (505 vs. 507 W x m(-2); P = 0.56). A modest increase in both cytokines across exercise was similar between conditions. COX-2 specific NSAID lowered exercising heat and cardiovascular strain and the sweating (offset) threshold, independently of heat production, indicating that PGE-mediated inflammatory processes may contribute to exercising heat strain during endurance exercise in humans.  相似文献   

5.
We tested the hypothesis that elevation in heart rate (HR) during submaximal exercise in the heat is related, in part, to increased percentage of maximal O(2) uptake (%Vo(2 max)) utilized due to reduced maximal O(2) uptake (Vo(2 max)) measured after exercise under the same thermal conditions. Peak O(2) uptake (Vo(2 peak)), O(2) uptake, and HR during submaximal exercise were measured in 22 male and female runners under four environmental conditions designed to manipulate HR during submaximal exercise and Vo(2 peak). The conditions involved walking for 20 min at approximately 33% of control Vo(2 max) in 25, 35, 40, and 45 degrees C followed immediately by measurement of Vo(2 peak) in the same thermal environment. Vo(2 peak) decreased progressively (3.77 +/- 0.19, 3.61 +/- 0.18, 3.44 +/- 0.17, and 3.13 +/- 0.16 l/min) and HR at the end of the submaximal exercise increased progressively (107 +/- 2, 112 +/- 2, 120 +/- 2, and 137 +/- 2 beats/min) with increasing ambient temperature (T(a)). HR and %Vo(2 peak) increased in an identical fashion with increasing T(a). We conclude that elevation in HR during submaximal exercise in the heat is related, in part, to the increase in %Vo(2 peak) utilized, which is caused by reduced Vo(2 peak) measured during exercise in the heat. At high T(a), the dissociation of HR from %Vo(2 peak) measured after sustained submaximal exercise is less than if Vo(2 max) is assumed to be unchanged during exercise in the heat.  相似文献   

6.
The purpose of this study was to investigate the effect of single bouts of exercise at three different intensities on the redox state of human serum albumin (HSA) and on carbonyl groups on protein (CP) concentrations in plasma. Trained men [n = 44, maximal oxygen consumption (Vo(2max)): 55 +/- 5 ml.kg(-1).min(-1), nonsmokers, 34 +/- 5 years of age] from a homogenous population, volunteers from a police special forces unit, were randomly assigned to perform on a cycle ergometer either at 70% (n = 14), 75% (n = 14), or 80% (n = 16) of Vo(2max) for 40 min. Blood was collected before exercise, immediately after the exercise test (IE), and 30 min after each test (30M) and 30 h after each test (30H). The reduced fraction of HSA, human mercaptalbumin (HMA), decreased at all three exercise intensities IE and 30M, returning to preexercise values by 30H (P < 0.05). HMA was primarily oxidized to its reversible fraction human nonmercaptalbumin 1 (HNA1). CP concentrations increased at 75% of Vo(2max) IE and 30M with a tendency (P < 0.1) and at 80% Vo(2max) IE and 30M significantly, returning to preexercise concentrations by 30H (P < 0.01). These results indicate that the HSA redox system in plasma is activated after a single bout of cycle ergometer exercise at 70% Vo(2max) and 40 min duration. The extent of the HSA modification increased with exercise intensity. Oxidative protein damage, as indicated by CP, was only significantly increased at 80% Vo(2max) intensity in this homogenous cohort of trained men.  相似文献   

7.
A temperate environment heat tolerance test (HTT) was formerly reported (Shvartz et al. 1977b) to distinguish heat acclimatized humans from former heat stroke patients. The purpose of this investigation was to evaluate the ability of HTT to measure acute individual changes in the HR and Tre responses of normal subjects, induced by classical heat acclimation procedures, thereby assessing the utility and sensitivity of HTT as a heat tolerance screening procedure. On day 1, 14 healthy males performed HTT (23.2 +/- 0.5 degrees C db, 14.9 +/- 0.5 degrees C wb) by bench stepping (30 cm high, 27 steps x min-1) for 15 min at 67 +/- 3% VO2max. On days 2-9, all subjects underwent heat acclimation (41.2 +/- 0.3 degrees C db, 28.4 +/- 0.3 degrees C wb) via treadmill exercise. Heat acclimation trials (identical on days 2 and 9) resulted in significant decreases in HR (170 +/- 3 vs 144 +/- 5 beats x min-1), Tre (39.21 +/- 0.09 vs 38.56 +/- 0.17 degrees C), and ratings of perceived exertion; plasma volume expanded 5.2 +/- 1.7%. On day 10, subjects repeated HTT; day 1 vs day 10 HR were statistically similar (143 +/- 6 vs 137 +/- 6 beats x min-1, p greater than 0.05) but Tre decreased significantly (37.7 +/- 0.1 vs 37.5 +/- 0.1 degrees C, p less than 0.05). Group mean HTT composite score (day 1 vs day 10) was unchanged (63 +/- 5 vs 72 +/- 6, p greater than 0.05), and individual composite scores indicated that HTT did not accurately measure HR and Tre trends at 41.2 +/- degrees C in 6 out of 14 subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
This study examined the effects of hypohydration on plasma volume and red cell volume during rest in a comfortable (20 degrees C, 40% relative humidity) and exercise in a hot-dry (49 degrees C, 20% relative humidity) environment. A group of six male and six female volunteers [matched for maximal O2 uptake (VO2 max)] completed two test sessions following a 10-day heat acclimation program. One test session was completed when subjects were euhydrated and the other when subjects were hypohydrated (-5% from base-line body wt). The test sessions consisted of rest for 30 min in a 20 degrees C antechamber, followed by two 25-min bouts of treadmill walking (approximately 30% of VO2 max) in the heat, interspersed by 10 min of rest. No significant differences were found between the genders for the examined variables. At rest, hypohydration elicited a 5% decrease in plasma volume with less than 1% change in red cell volume. During exercise, plasma volume increased by 4% when subjects were euhydrated and decreased by 4% when subjects were hypohydrated. These percent changes in plasma volume values were significantly (P less than 0.01) different between the euhydration and hypohydration tests. Although red cell volume remained fairly constant during the euhydration test, these values were significantly (P less than 0.01) lower when hypohydrated during exercise. We conclude that hydration level alters vascular fluid shifts during exercise in a hot environment; hemodilution occurs when euhydrated and hemoconcentration when hypohydrated during light intensity exercise for this group of fit men and women.  相似文献   

9.
Six male subjects exercised for 50 min at 25% (light exercise) and 55% (moderate exercise) of their estimated aerobic capacities in environments of 42 degrees C db, 35 degrees C wb and 30 degrees C db, 24 degrees C wb, respectively. Alterations in the hematocrit, hemoglobin, and plasma protein concentrations, and in the activity of an injected aliquot of isotopically labeled albumin were each used to calculate the percentage change in plasma volume occurring during exercise and recovery. Changes in each measure were consistent with a reduction in plasma volume during exercise and a return to preexercise levels during recovery. There was no significant difference between the measures when exercising in the heat, but during the more severe exercise in the cooler environment disproportional changes in protein, hematocrit, and hemoglobin were observed. Disproportional changes were also seen during the recovery phase, when the hematocrit and hemoglobin concentration indicated a more rapid return of the plasma volume to preexercise levels than did either the plasma protein concentration or albumin activity. During moderate exercise and recovery there was a 1% decrease in red cell volume. It is concluded that exercise accelerates the rate of protein movement from extravascular compartments to the intravascular compartment, leading to elevated plasma protein levels during recovery which favor the return of water to the intravascular space. Hemoglobin concentration is considered to be the most reliable measure of plasma volume change during exercise.  相似文献   

10.
Despite many reports of long-lasting elevation of metabolism after exercise, little is known regarding the effects of exercise intensity and duration on this phenomenon. This study examined the effect of a constant duration (30 min) of cycle ergometer exercise at varied intensity levels [50 and 70% of maximal O2 consumption (VO2max)] on 3-h recovery of oxygen uptake (VO2). VO2 and respiratory exchange ratios were measured by open-circuit spirometry in five trained female cyclists (age 25 +/- 1.7 yr) and five untrained females (age 27 +/- 0.8 yr). Postexercise VO2 measured at intervals for 3 h after exercise was greater (P less than 0.01) after exercise at 50% VO2max in trained (0.40 +/- 0.01 l/min) and untrained subjects (0.39 +/- 0.01 l/min) than after 70% VO2max in (0.31 +/- 0.02 l/min) and untrained subjects (0.29 +/- 0.02 l/min). The lower respiratory exchange ratio values (P less than 0.01) after 50% VO2max in trained (0.78 +/- 0.01) and untrained subjects (0.80 +/- 0.01) compared with 70% VO2max in trained (0.81 +/- 0.01) and untrained subjects (0.83 +/- 0.01) suggest that an increase in fat metabolism may be implicated in the long-term elevation of metabolism after exercise. This was supported by the greater estimated fatty acid oxidation (P less than 0.05) after 50% VO2max in trained (147 +/- 4 mg/min) and untrained subjects (133 +/- 9 mg/min) compared with 70% VO2max in trained (101 +/- 6 mg/min) and untrained subjects (85 +/- 7 mg/min).  相似文献   

11.
The purpose of this study was to define carefully the dynamic relationship between oxygen uptake (as % Vo2max) and the respiratory Vco2/Vo2 exchange ratio (R) during maximum progressive treadmill exercise in trained and untrained men, and to determine if this relationship could be used to predict Vo2max. Respiratory gases were continuously monitored and the %Vo2max/R time profile calculated at 15 sec intervals over the final 5 min of each test. Young sedentary men (controls, n = 122) and over-60y sedentary men (n = 30) shared the same %Vo2max/R relationship but the latter group had lower R values at Vo2max (1.06 +/- 0.03 vs 1.08 +/- 0.03, p less than 0.01) than controls. Endurance trained men (n = 45) had a lower %Vo2max/R relationship and higher R at Vo2max (1.11 +/- 0.02, p less than 0.001), team athletes (n = 98) had a lower %Vo2max/R relationship but lower R at Vo2max (1.06 +/- 0.03, p less than 0.001) and the weight trained (n = 19) had a higher %Vo2max/R relationship and lower R at Vo2max (1.01 +/- 0.02, p less than 0.001) all compared to controls. From the %Vo2max/R time profile, the following formulae were devised for the estimation of Vo2max (Vo2maxR): Young Sedentary, Vo2maxR = Vo2R (3.000-1.874 R); Over-60y Sedentary, Vo2maxR = Vo2R (3.457-2.345 R); Endurance Trained, Vo2max = Vo2R (1.980-0.912 R); Team Athletes, Vo2maxR = Vo2R (2.805-1.726 R); Weight Trained, Vo2maxR = Vo2R (4.236-3.191 R).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
This study examined plasma volume changes (deltaPV) in humans during periods with or without changes in body hydration: exercise-induced dehydration, heat-induced dehydration and glycerol hyperhydration. Repeated measurements of plasma volume were made after two injections of Evans blue. Results were compared to deltaPV calculated from haematocrit (Hct) and blood haemoglobin concentration ([Hb]). Eight well-trained men completed four trials in randomized order: euhydration (control test C), 2.8% dehydration of body mass by passive controlled hyperthermia (D) and by treadmill exercise (60% of their maximal oxygen uptake, VO2max) (E), and hyperhydration (H) by glycerol ingestion. The Hct, [Hb], plasma protein concentrations and plasma osmolality were measured before, during and after the changes in body hydration. Different Hct and [Hb] reference values were obtained to allow for posture-induced variations between and during trials. The deltaPV values calculated after two Evans blue injections were in good agreement with deltaPV calculated from Hct and [Hb]. Compared to the control test, mean plasma volume declined markedly during heat-induced dehydration [-11.4 (SEM 1.7)%] and slightly during exercise-induced dehydration [-4.2 (SEM 0.9)%] (P < 0.001 compared to D), although hyperosmolality was similar in these two trials. Conversely, glycerol hyperhydration induced an increase in plasma volume [+7.5 (SEM 1.0)%]. These results would indicate that, for a given level of dehydration, plasma volume is dramatically decreased during and after heat exposure, while it is better maintained during and after exercise.  相似文献   

13.
Five men underwent a 2-wk exercise regimen and were then exposed to 45 degrees C db, 28 degrees C wb, wind speed 1 m/s for 12 h while at rest. Body weight was maintained with 0.1% saline. One week later the exposure was repeated without rehydration. After heat acclimatization, the 12-h experiments were repeated. Frequent body weights, rectal temperatures, and venous blood samples were obtained. Results indicated that hemodilution upon acute heat exposure is partially due to protein influx into the vascular volume and the hemodilution allowed considerable loss of body water before plasma volume returned to preexposure values. Water within the vascular volume appeared to be in equilibrium with that in other body compartments before but not after acclimatization. Acclimatization altered the rate of protein transfer (and water movement) such that hemodilution was accomplished more rapidly than before acclimatization. Early hemodilution was quite labile and depended upon subject hydration during the first hour of heat exposure.  相似文献   

14.
No data exists regarding responses of human atrial natriuretic factor (ANF) to exercise in the heat. The purpose of this study was to examine the responses of plasma ANF to high intensity submaximal (71% +/- 0.9 VO2max) exercise in the heat over an eight day acclimation period. Fourteen healthy males volunteered to participate in the study. Subjects performed intermittent exercises on a treadmill (0% grade) during 50 min of each 100 min trial in an environmental chamber maintained at 41.2 +/- 0.5 degrees C, 39.0 +/- 1.7% relative humidity. Blood was obtained from an antecubital vein after standing 20 min in the heat prior to exercise, and immediately after exercise. Measures were compared on days 1, 4 and 8. ANF did not change pre- to post-exercise nor did it change over the eight day heat acclimation period despite other heat acclimation adaptations. Conversely, plasma aldosterone (ALDO), renin activity (PRA) and cortisol (COR) all increased (p less than 0.05) pre- to post-exercise on each day but again no changes were observed over the eight day period. These data support that ANF may not increase when ALDO and PRA increases are observed.  相似文献   

15.
Chronic, as well as acute, exercise increases circulating PRL in females. The response of males to repeated exercise, however, is unknown. The purpose of the present study was to examine the effects of acute and chronic exercise on plasma PRL levels in untrained males. Eight male subjects performed cycle ergometer exercise at 50% of their maximal oxygen uptake on 10 consecutive days. The subjects exercised in an environmental chamber maintained at 39 degrees C and 30% relative humidity. PRL levels were measured on days 1, 5, and 10 before exercise, and after 20 and 45 minutes of exercise. Acute exercise increased PRL levels. However, plasma levels did not significantly increase during exercise on days 5 and 10. This suggests a similarity in the PRL response to acute exercise in males and females, but a sex difference in the response to chronic exercise.  相似文献   

16.
This study was designed to examine time-of-day effects on markers of cardiac functional capacity during a standard progressive cycle exercise test. Fourteen healthy, untrained young males (mean?±?SD: 17.9?±?0.7 yrs of age) performed identical maximal cycle tests in the morning (08:00-11:00?h) and late afternoon (16:00-19:00?h) in random order. Cardiac variables were measured at rest, submaximal exercise, and maximal exercise by standard echocardiographic techniques. No differences in morning and afternoon testing values at rest or during exercise were observed for oxygen uptake, heart rate, cardiac output, or markers of systolic and diastolic myocardial function. Values at peak exercise for Vo(2) at morning and afternoon testing were 3.20?±?0.49 and 3.24?±?0.55?L min(-1), respectively, for heart rate 190?±?11 and 188?±?15?bpm, and for cardiac output 19.5?±?2.8 and 19.8?±?3.5?L min(-1). Coefficients of variation for morning and afternoon values for these variables were similar to those previously published for test-retest reproducibility. This study failed to demonstrate evidence for significant time-of-day variation in Vo(2)max or cardiac function during standard progressive exercise testing in adolescent males.  相似文献   

17.
We compared the effects of exercise intensity (EI) on bone metabolism during and for 4 days after acute, weight-bearing endurance exercise. Ten males [mean ± SD maximum oxygen uptake (Vo(2max)): 56.2 ± 8.1 ml·min(-1)·kg(-1)] completed three counterbalanced 8-day trials. Following three control days, on day 4, subjects completed 60 min of running at 55%, 65%, and 75% Vo(2max). Markers of bone resorption [COOH-terminal telopeptide region of collagen type 1 (β-CTX)] and formation [NH(2)-terminal propeptides of procollagen type 1 (P1NP), osteocalcin (OC), bone-alkaline phosphatase (ALP)], osteoprotegerin (OPG), parathyroid hormone (PTH), albumin-adjusted calcium (ACa), phosphate (PO(4)), and cortisol were measured during and for 3 h after exercise and on four follow-up days (FU1-FU4). At 75% Vo(2max), β-CTX was not significantly increased from baseline by exercise but was higher compared with 55% (17-19%, P < 0.01) and 65% (11-13%, P < 0.05) Vo(2max) in the first hour postexercise. Concentrations were decreased from baseline in all three groups by 39-42% (P < 0.001) at 3 h postexercise but not thereafter. P1NP increased (P < 0.001) during exercise only, while bone-ALP was increased (P < 0.01) at FU3 and FU4, but neither were affected by EI. PTH and cortisol increased (P < 0.001) with exercise at 75% Vo(2max) only and were higher (P < 0.05) than at 55% and 65% Vo(2max) during and immediately after exercise. The increases (P < 0.001) in OPG, ACa, and PO(4) with exercise were not affected by EI. Increasing EI from 55% to 75% Vo(2max) during 60 min of running resulted in higher β-CTX concentrations in the first hour postexercise but had no effect on bone formation markers. Increased bone-ALP concentrations at 3 and 4 days postexercise suggest a beneficial effect of this type of exercise on bone mineralization. The increase in OPG was not influenced by exercise intensity, whereas PTH was increased at 75% Vo(2max) only, which cannot be fully explained by changes in serum calcium or PO(4) concentrations.  相似文献   

18.
During the last decade, there has been active interest in indoor cycling (e.g., spinning) as a method of choreographed group exercise. Recent studies have suggested that exercise intensity during indoor cycling may be quite high and may transiently exceed Vo2max. This study sought to confirm these findings, as the apparent high intensity of indoor cycling has implications for both the efficacy and the risk of indoor cycling as an exercise method. Twenty healthy female students performed an incremental exercise test to define Vo2max and performed 2 videotaped indoor exercise classes lasting 45 minutes and 35 minutes. Vo2, heart rate (HR), and rating of perceived exertion (RPE) were measured during the indoor cycling classes, with Vo2 data integrated in 30-second intervals. The mean %Vo2max during the indoor cycling classes was modest (74 +/- 14% Vo2max and 66 +/- 14%Vo2max, respectively). However, 52% and 35% of the time during the 45- and 35-minute classes was spent at intensities greater than the ventilatory threshold (VT). The HR response indicated that 35% and 38% of the session time was above the HR associated with VT. In 10 of the 40 exercise sessions, there were segments in which the momentary Vo2 exceeded Vo2max observed during incremental testing, and the cumulative time with exercise intensity greater than Vo2max ranged from 0.5 to 14.0 minutes. It can be concluded that although the intensity of indoor cycling in healthy, physically active women is moderate, there are frequent observations of transient values of Vo2 exceeding Vo2max, and a substantial portion of the exercise bouts at intensities greater than VT. As such, the data suggest that indoor cycling must be considered a high-intensity exercise mode of exercise training, which has implications for both efficacy and risk.  相似文献   

19.
Four women were studied at 0400 h and 1600 h to determine if their hormonal and hemodynamic responses to exercise varied with the circadian cycle. Esophageal temperature was measured during rest and exercise (60% peak VO2; 30 min) in a warm room (Ta = 35 degrees C; PH2O = 1.7 kPa). Venous blood samples were drawn during rest and exercise and hemoglobin concentration (Hb), hematocrit (Hct), plasma osmolality (Posm), plasma protein concentration (Pp), colloid osmotic pressure (COP), plasma renin activity (PRA), cortisol, aldosterone, norepinephrine (NE) and epinephrine (E) were determined. Changes in plasma volume (PV) were estimated from changes in Hb and Hct. The relative hemoconcentration (-11.2%) was similar at 0400 h and 1600 h, but the absolute PV was smaller at 1600 h than at 0400 h (p = 0.03). The responses of Posm, Pp and COP to exercise were unaffected by time of day. Although PRA was not different at the two times of day, PRA was 244% greater during exercise at 1600 h, but only 103% greater during exercise at 0400 h. The normal circadian rhythms in plasma aldosterone (p = 0.043) and plasma cortisol (p = 0.004) were observed. Plasma aldosterone was 57% greater during exercise, while plasma cortisol did not change. The change in E and NE was greater at 0400 h, but this was due to the lower resting values of the catecholamines at 0400 h. These data indicate that time of day generally did not affect the hormonal or hemodynamic responses to exercise, with the exception that PRA was markedly higher during exercise at 1600 h compared to 0400 h.  相似文献   

20.
To evaluate the effect of different levels of arterial oxygen content on hemodynamic parameters during exercise nine subjects performed submaximal bicycle or treadmill exercise and maximal treadmill exercise under three different experimental conditions: 1) breathing room air (control); 2) breathing 50% oxygen (hyperoxia); 3) after rebreathing a carbon monoxide gas mixture (hypoxia). Maximal oxygen consumption (Vo2 max) was significantly higher in hyperoxia (4.99 1/min) and significantly lower in hypoxia (3.80 1/min) than in the control experiment (4.43 1/min). Physical performance changes in parallel with Vo2 max. Maximal cardiac output (Qmax) was similar in hyperoxia as in control but was significantly lower in hypoxia mainly due to a decreased stroke volume. A correlation was found between Vo2 max and transported oxygen, i.e., Cao2 times Amax, thus suggesting that central circulation is an important limiting factor for human maximal aerobic power. During submaximal work HR was decreased in hyperoxia and increased in hypoxia. Corresponding Q values were unchanged except for a reduction during high submaximal exercise in hyperoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号