首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutagenesis by transposon-mediated imprecise excision is the most extensively used technique for mutagenesis in Drosophila. Although P-element is the most widely used transposon in Drosophila to generate deletion mutants, it is limited by the insertion coldspots in the genome where P-elements are rarely found. The piggyBac transposon was developed as an alternative mutagenic vector for mutagenesis of non-P-element targeted genes in Drosophila because the piggyBac transposon can more randomly integrate into the genome. Previous studies suggested that the piggyBac transposon always excises precisely from the insertion site without initiating a deletion or leaving behind an additional footprint. This unique characteristic of the piggyBac transposon facilitates reversible gene-transfer in several studies, such as the generation of induced pluripotent stem (iPS) cells from fibroblasts. However, it also raised a potential limitation of its utility in generating deletion mutants in Drosophila. In this study, we report multiple imprecise excisions of the piggyBac transposon at the sepiapterin reductase (SR) locus in Drosophila. Through imprecise excision of the piggyBac transposon inserted in the 5'-UTR of the SR gene, we generated a hypomorphic mutant allele of the SR gene which showed markedly decreased levels of SR expression. Our finding suggests that it is possible to generate deletion mutants by piggyBac transposon-mediated imprecise excision in Drosophila. However, it also suggests a limitation of piggyBac transposon-mediated reversible gene transfer for the generation of induced pluripotent stem (iPS) cells.  相似文献   

2.
Understanding the molecular mechanisms that influence transposable element target site preferences is a fundamental challenge in functional and evolutionary genomics. Large-scale transposon insertion projects provide excellent material to study target site preferences in the absence of confounding effects of post-insertion evolutionary change. Growing evidence from a wide variety of prokaryotes and eukaryotes indicates that DNA transposons recognize staggered-cut palindromic target site motifs (TSMs). Here, we use over 10 000 accurately mapped P-element insertions in the Drosophila melanogaster genome to test predictions of the staggered-cut palindromic target site model for DNA transposon insertion. We provide evidence that the P-element targets a 14-bp palindromic motif that can be identified at the primary sequence level, which predicts the local spacing, hotspots and strand orientation of P-element insertions. Intriguingly, we find that the although P-element destroys the complete 14-bp target site upon insertion, the terminal three nucleotides of the P-element inverted repeats complement and restore the original TSM, suggesting a mechanistic link between transposon target sites and their terminal inverted repeats. Finally, we discuss how the staggered-cut palindromic target site model can be used to assess the accuracy of genome mappings for annotated P-element insertions.  相似文献   

3.
4.
5.
DP Long  AC Zhao  XJ Chen  Y Zhang  WJ Lu  Q Guo  AM Handler  ZH Xiang 《PloS one》2012,7(6):e40150
A comprehensive understanding of gene function and the production of site-specific genetically modified mutants are two major goals of genetic engineering in the post-genomic era. Although site-specific recombination systems have been powerful tools for genome manipulation of many organisms, they have not yet been established for use in the manipulation of the silkworm Bombyx mori genome. In this study, we achieved site-specific excision of a target gene at predefined chromosomal sites in the silkworm using a FLP/FRT site-specific recombination system. We first constructed two stable transgenic target silkworm strains that both contain a single copy of the transgene construct comprising a target gene expression cassette flanked by FRT sites. Using pre-blastoderm microinjection of a FLP recombinase helper expression vector, 32 G3 site-specific recombinant transgenic individuals were isolated from five of 143 broods. The average frequency of FLP recombinase-mediated site-specific excision in the two target strains genome was approximately 3.5%. This study shows that it is feasible to achieve site-specific recombination in silkworms using the FLP/FRT system. We conclude that the FLP/FRT system is a useful tool for genome manipulation in the silkworm. Furthermore, this is the first reported use of the FLP/FRT system for the genetic manipulation of a lepidopteran genome and thus provides a useful reference for the establishment of genome manipulation technologies in other lepidopteran species.  相似文献   

6.
Activity of yeast FLP recombinase in maize and rice protoplasts.   总被引:19,自引:2,他引:19       下载免费PDF全文
We have demonstrated that a yeast FLP/FRT site-specific recombination system functions in maize and rice protoplasts. FLP recombinase activity was monitored by reactivation of beta-glucuronidase (GUS) expression from vectors containing the gusA gene inactivated by insertion of two FRTs (FLP recombination targets) and a 1.31 kb DNA fragment. The stimulation of GUS activity in protoplasts cotransformed with vectors containing FRT inactivated gusA gene and a chimeric FLP gene depended on both the expression of the FLP recombinase and the presence and structure of the FRT sites. The FLP enzyme could mediate inter- and intramolecular recombination in plant protoplasts. These results provide evidence that a yeast recombination system can function efficiently in plant cells, and that its performance can be manipulated by structural modification of the FRT sites.  相似文献   

7.
FLP-mediated recombination of FRT sites in the maize genome.   总被引:9,自引:0,他引:9       下载免费PDF全文
Molecular evidence is provided for genomic recombinations in maize cells induced by the yeast FLP/FRT site-specific recombination system. The FLP protein recombined FRT sites previously integrated into the maize genome leading to excision of a selectable marker, the neo gene. NPTII activity was not observed after the successful recombination process; instead, the gusA gene was activated by the removal of the blocking DNA fragment. Genomic sequencing in the region of the FRT site (following the recombination reaction) indicated that a precise rearrangement of genomic DNA sequences had taken place. The functional FLP gene could be either expressed transiently or after stable integration into the maize genome. The efficiency of genomic recombinations was high enough that a selection for recombination products, or for FLP expression, was not required. The results presented here establish the FLP/FRT site-specific recombination system as an important tool for controlled modifications of maize genomic DNA.  相似文献   

8.
We have created a system that utilizes the FLP recombinase of Saccharomyces cerevisiae to reversibly introduce exogenous cloned DNA at defined locations into the Candida albicans genome. Recombination target (FRT) sites and the FLP gene can be introduced permanently at defined locations using homologous recombination. FLP recombinase is provided as needed through the regulated expression of its gene using the MAL2 promoter. Exogenous DNA is introduced on a cloning vector that is unable to replicate in C. albicans, and contains an FRT site and a selectable marker (URA3). Transformation by the lithium acetate or electroporation procedure is sufficient to obtain site-specific integration. This system permits rapid and precise excision of the introduced DNA when needed. It should facilitate studies on C. albicans genome structure and function, simplifying a wide range of chromosomal cloning applications, and generally enhancing the utility of C. albicans as a model organism for the study of fungal pathogenicity.  相似文献   

9.
The Cre/loxP site-specific recombination system has been used successfully for genome manipulation in a wide range of species. However, in Drosophila melanogaster, a major model organism for genetic analyses, the alternative FLP/FRT system, which is less efficient at least in mammalian cells, has been established, primarily for the generation of genetic mosaics for clonal analyses. To extend genetic methodology in D. melanogaster, we have created transgenic lines allowing tissue-specific expression of Cre recombinase with the UAS/GAL4 system. Surprisingly, chronic expression of Cre recombinase from these transgenes (UAST-cre) was found to be toxic for proliferating cells. Therefore, we also generated transgenic lines allowing the expression of Cre recombinase fused to the ligand-binding domain of the human estrogen receptor (UASP-cre-EBD). We demonstrate that recombination can be efficiently dissociated from toxicity by estrogen-dependent regulation of recombinase activity of the UASP-cre-EBD transgene products.  相似文献   

10.
The ability to place a series of gene constructs at a specific site in the genome opens new possibilities for the experimental examination of gene expression and chromosomal position effects. We report that the FLP- FRT site-specific recombination system of the yeast 2mu plasmid can be used to integrate DNA at a chromosomal FRT target site in Drosophila. The technique we used was to first integrate an FRT- flanked gene by standard P element-mediated transformation. FLP was then used to excise the FRT- flanked donor DNA and screen for FLP-mediated re-integration at an FRT target at a different chromosome location. Such events were recovered from up to 5% of the crosses used to screen for mobilization and are easily detectable by altered linkage of a white reporter gene or by the generation of a white + gene upon integration.  相似文献   

11.
B Chen  T Chu  E Harms  J P Gergen  S Strickland 《Genetics》1998,149(1):157-163
Although recombination does not usually occur in the male Drosophila germline, site-specific recombination can be induced at the ends of P elements. This finding suggested that male recombination could be used to map Drosophila mutations. In this article, we describe the general method and its application to the mapping of two EMS-induced female-sterile mutations, grauzone and cortex. Within two months, the grauzone gene was mapped relative to seven different P-element insertion sites, and cortex was mapped relative to 23 different P-elements. The results allowed us to map grauzone to a region of about 50 kb, and cortex distal to the chromosomal region 33E. These experiments demonstrate that P-element-induced site-specific male recombination is an efficient and general method to map Drosophila autosomal mutations.  相似文献   

12.
Konev AY  Yan CM  Acevedo D  Kennedy C  Ward E  Lim A  Tickoo S  Karpen GH 《Genetics》2003,165(4):2039-2053
Heterochromatin is a major component of higher eukaryotic genomes, but progress in understanding the molecular structure and composition of heterochromatin has lagged behind the production of relatively complete euchromatic genome sequences. The introduction of single-copy molecular-genetic entry points can greatly facilitate structure and sequence analysis of heterochromatic regions that are rich in repeated DNA. In this study, we report the isolation of 502 new P-element insertions into Drosophila melanogaster centric heterochromatin, generated in nine different genetic screens that relied on mosaic silencing (position-effect variegation, or PEV) of the yellow gene present in the transposon. The highest frequencies of recovery of variegating insertions were observed when centric insertions were used as the source for mobilization. We propose that the increased recovery of variegating insertions from heterochromatic starting sites may result from the physical proximity of different heterochromatic regions in germline nuclei or from the association of mobilizing elements with heterochromatin proteins. High frequencies of variegating insertions were also recovered when a potent suppressor of PEV (an extra Y chromosome) was present in both the mobilization and selection generations, presumably due to the effects of chromatin structure on P-element mobilization, insertion, and phenotypic selection. Finally, fewer variegating insertions were recovered after mobilization in females, in comparison to males, which may reflect differences in heterochromatin structure in the female and male germlines. FISH localization of a subset of the insertions confirmed that 98% of the variegating lines contain heterochromatic insertions and that these schemes produce a broader distribution of insertion sites. The results of these schemes have identified the most efficient methods for generating centric heterochromatin P insertions. In addition, the large collection of insertions produced by these screens provides molecular-genetic entry points for mapping, sequencing, and functional analysis of Drosophila heterochromatin.  相似文献   

13.
FLP recombinase-mediated site-specific recombination in rice   总被引:3,自引:0,他引:3  
The feasibility of using the FLP/ FRT site-specific recombination system in rice for genome engineering was evaluated. Transgenic rice plants expressing the FLP recombinase were crossed with plants harbouring the kanamycin resistance gene ( neomycin phosphotransferase II , nptII ) flanked by FRT sites, which also served to separate the corn ubiquitin promoter from a promoterless gusA . Hybrid progeny were tested for excision of the nptII gene and the positioning of the ubiquitin promoter proximal to gusA . While the hybrid progeny from various crosses exhibited β-glucuronidase (GUS) expression, the progeny of selfed parental rice plants did not show detectable GUS activity. Despite the variable GUS expression and incomplete recombination displayed in hybrids from some crosses, uniform GUS staining and complete recombination were observed in hybrids from other crosses. The recombined locus was shown to be stably inherited by the progeny. These data demonstrate the operation of FLP recombinase in catalysing excisional DNA recombination in rice, and confirm that the FLP/ FRT recombination system functions effectively in the cereal crop rice. Transgenic rice lines expressing active FLP recombinase generated in this study provide foundational stock material, thus facilitating the future application and development of the FLP/ FRT system in rice genetic improvement.  相似文献   

14.
The FLP recombinase of yeast catalyses site-specific recombination between repeated FLP recombinase target (FRT) elements in yeast and in heterologous system (Escherichia coli, Drosophila, mosquito and cultured mammalian cells). In this report, it is shown that transient FLP recombinase expression can recombine and activate an extrachromosomal silent reporter gene following coinjection into fertilized one-cell mouse eggs. Furthermore, it is demonstrated that introduction of a FLP-recombinase expression vector into transgenic one-cell fertilized mouse eggs induces a recombination event at a chromosomal FRT target locus. The resulting event occured at the one-cell stage and deleted a chromosomal tandem array of a FRT containinglacZ expression cassette down to one or two copies. These results demonstrate that the FLP recombinase can be utilized to manipulate the genome of transgenic animals and suggest that FLP recombinase-mediated plasmid-to-chromosome targeting is feasible in microinjected eggs.  相似文献   

15.
Transposable elements (such as the P-element and piggyBac) have been used to introduce thousands of transgenic constructs into the Drosophila genome. These transgenic constructs serve many roles, from assaying gene/cell function, to controlling chromosome arm rearrangement. Knowing the precise genomic insertion site for the transposable element is often desired. This enables identification of genomic enhancer regions trapped by an enhancer trap, identification of the gene mutated by a transposon insertion, or simplifying recombination experiments. The most commonly used transgene mapping method is inverse PCR (iPCR). Although usually effective, limitations with iPCR hinder its ability to isolate flanking genomic DNA in complex genomic loci, such as those that contain natural transposons. Here we report the adaptation of the splinkerette PCR (spPCR) method for the isolation of flanking genomic DNA of any P-element or piggyBac. We report a simple and detailed protocol for spPCR. We use spPCR to 1) map a GAL4 enhancer trap located inside a natural transposon, pinpointing a master regulatory region for olfactory neuron expression in the brain; and 2) map all commonly used centromeric FRT insertion sites. The ease, efficiency, and efficacy of spPCR could make it a favored choice for the mapping of transposable element in Drosophila.  相似文献   

16.
17.
The FLP recombinase derived from Saccharomyces cerevisiae mediates precise site‐specific recombination between a pair of FLP recognition targets (FRTs). Like the Cre/loxP system derived from bacteriophage P1, the FLP/FRT system has recently been applied to gene regulation systems using an FLP‐expressing recombinant adenovirus (rAd) (Nakano et al, Nucleic Acids Res. 29: e40, 2001). In an attempt to improve the FLP/FRT system by altering its DNA substrates, we compared the recombination efficiency among different substrates by a quantitative in vitro assay using FLP expressed in mammalian cells. Unexpectedly, we found that one linearized DNA substrate showed 4‐ to > 20‐fold lower recombination efficiency than other substrates, which phenomenon has not been observed in the Cre/loxP system. The quantitative in vitro assay using truncated DNA substrates suggested that the recombination efficiency seemed to be influenced not only by the linearized position of the substrate, but also by the length between a pair of FRTs. Such substrate preference of FLP expressed in mammalian cells should probably be noted when designing versatile applications of the FLP/FRT system as a gene regulation system in mammalian systems. Fortunately, however, we demonstrated that no substrate preference was observed when using a particular substrate (pCAFNF5) and the preference was reduced when using a certain pair of mutant FRTs (f72), which will also be a promising tool for simultaneous gene regulation in combination with wild‐type FRT.  相似文献   

18.
Oh SW  Kingsley T  Shin HH  Zheng Z  Chen HW  Chen X  Wang H  Ruan P  Moody M  Hou SX 《Genetics》2003,163(1):195-201
With the completion of the nucleotide sequences of several complex eukaryotic genomes, tens of thousands of genes have been predicted. However, this information has to be correlated with the functions of those genes to enhance our understanding of biology and to improve human health care. The Drosophila transposon P-element-induced mutations are very useful for directly connecting gene products to their biological function. We designed an efficient transposon P-element-mediated gene disruption procedure and performed genetic screening for single P-element insertion mutations, enabling us to recover 2500 lethal mutations. Among these, 2355 are second chromosome mutations. Sequences flanking >2300 insertions that identify 850 different genes or ESTs (783 genes on the second chromosome and 67 genes on the third chromosome) have been determined. Among these, 455 correspond to genes for which no lethal mutation has yet been reported. The Drosophila genome is thought to contain approximately 3600 vital genes; 1400 are localized on the second chromosome. Our mutation collection represents approximately 56% of the second chromosome vital genes and approximately 24% of the total vital Drosophila genes.  相似文献   

19.
20.
An efficient method for generating embryonic mosaics using a yeast site-specific recombinase (FLP), under the control of a heat shock promoter, is described. FLP-recombinase can promote mitotic exchange between homologous chromosomes that contain FRT (FLP Recombination Target) sequences. To demonstrate the efficiency of FLP-recombinase to generate embryonic mosaics, clones of the recessive and cell autonomous mutation armadillo (arm), detected by their ability to differentiate ectopic denticles in the naked cuticle of each abdominal segment, have been induced. We have analyzed the parameters of FLP-recombinase induced embryonic mitotic recombination and have demonstrated that clones can be efficiently induced during the postblastoderm mitotic divisions. We discuss applications of this technique for the analyses of the roles of various mutations during embryonic patterning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号