首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The roles of apical and basolateral transport mechanisms in the regulation of cell volume and the hydraulic water permeabilities (Lp) of the individual cell membranes of the Amphiuma early distal tubule (diluting segment) were evaluated using video and optical techniques as well as conventional and Cl-sensitive microelectrodes. The Lp of the apical cell membrane calculated per square centimeter of tubule is less than 3% that of the basolateral cell membrane. Calculated per square centimeter of membrane, the Lp of the apical cell membrane is less than 40% that of the basolateral cell membrane. Thus, two factors are responsible for the asymmetry in the Lp of the early distal tubule: an intrinsic difference in the Lp per square centimeter of membrane area, and a difference in the surface areas of the apical and basolateral cell membranes. Early distal tubule cells do not regulate volume after a reduction in bath osmolality. This cell swelling occurs without a change in the intracellular Cl content or the basolateral cell membrane potential. In contrast, reducing the osmolality of the basolateral solution in the presence of luminal furosemide diminishes the magnitude of the increase in cell volume to a value below that predicted from the change in osmolality. This osmotic swelling is associated with a reduction in the intracellular Cl content. Hence, early distal tubule cells can lose solute in response to osmotic swelling, but only after the apical Na/K/Cl transporter is blocked. Inhibition of basolateral Na/K ATPase with ouabain results in severe cell swelling. This swelling in response to ouabain can be inhibited by the prior application of furosemide, which suggests that the swelling is due to the continued entry of solutes, primarily through the apical cotransport pathway.  相似文献   

2.
Summary The optical sectioning video imaging technique was used for measurements of the volume of mitochondria-rich (m.r.) cells of the isolated epithelium of toad skin. Under short-circuit conditions, cell volume decreased by about 14% in response to bilateral exposure to Cl-free (gluconate substitution) solutions, apical exposure to ouabain resulted in a large increase in volume, which could be prevented either by the simultaneous application of amiloride in the apical solution or by the exposure of the epithelium to bilateral Cl-free solutions. Unilateral exposure to a Cl-free solution did not prevent ouabain-induced cell swelling. It is concluded that m.r. cells have an amiloride-blockable Na conductance in the apical membrane, a ouabain-sensitive Na pump in the basolateral membrane, and a passive Cl permeability in both membranes. From the initial rate of ouabain-induced cell volume increase the active Na current carried by a single m.r. cell was estimated to be 9.9±1.3 pA. Voltage clamping of the preparation in the physiological range of potentials (0 to –100 mV, serosa grounded) resulted in a cell volume increase with a time course similar to that of the stimulation of the voltage-dependent activation were prevented by exposure of the tissue to a Cl-free apical solution. The steady-state volume of the m.r. cells increased with the clamping voltage, and at –100 mV the volume was about 1.15 times that under short-circuit conditions. The rate of volume increase during current passage was significantly decreased by lowering the serosal K concentration (K i ) to 0.5mm, but was independent of whether K i was 2.4, 5, or 10mm. This indicates that the K conductance of the serosal membrane becomes rate limiting for the uptake of KCl when K i is significantly lower than its physiological value. It is concluded that the voltage-activated Cl currents flow through the m.r. cells and that swelling is caused by an uptake of Cl ions from the apical bath and K ions from the serosal bath. Bilateral exposure of the tissue to hypo- or hypertonic bathing solutions changed cell volume without detectable changes in the Cl conductance. The volume response to external osmotic perturbations followed that of an osmometer with an osmotically inactive volume of 21%. Using this value and the change in cell volume in response to bilateral Cl-free solutions, we calculated an intracellular steady-state Cl concentration of 19.8±1.7mm (n=6) of the short-circuited cell.  相似文献   

3.
Summary Hyposmotic swelling of pig red cells leads to a selective increase in K permeability, whereas hyperosmotic cell shrinkage augments the Na permeability. In this regard, the ouabain-resistant (OR) Na flux of red cells of newborn and adult pigs is characterized in detail. A reduction in cell volume by approximately 18% leads to an increase in the OR Na efflux of fetal and adult cells by 15-and fourfold, respectively. The OR Na influx in both cell types is equally influenced by cell shrinkage. Depletion of cellular K does not influence the volume-activated OR Na efflux. Nor does OR Na influx require external K. Both OR Na efflux and influx activated by shrinkage are inhibited by the diuretics furosemide and amiloride. The rank order of decreasing anion sensitivity for diuretic-sensitive Na efflux was acetate > chloride > gluconate > nitrate. Cell shrinkage induced by the addition of hypertonic salts results in an acidification of the unbuffered and CO2-free media, provided that both Na and DIDS are present. The qcidification process can be reversed by either of the diuretic agents. These findings suggest that the shrinkageactivated OR Na flux is primarily mediated by a Na/H exchanger rather than by a Na/K/Cl cotransporter. Once loaded with either cAMP or cGMP, cell swelling can no longer activate the Na/H exchanger. The Na/H exchanger activity is detectable in the fetal cells of normal volume but quiescent in adult cells, indicating that the exchanger undergoes a developmental change during the transition from the fetal to adult stage.  相似文献   

4.
This review focuses on using the knowledge on volume-sensitive transport systems in Ehrlich ascites tumour cells and NIH-3T3 cells to elucidate osmotic regulation of salt transport in epithelia. Using the intestine of the European eel (Anguilla anguilla) (an absorptive epithelium of the type described in the renal cortex thick ascending limb (cTAL)) we have focused on the role of swelling-activated K+- and anion-conductive pathways in response to hypotonicity, and on the role of the apical (luminal) Na+-K+-2Cl- cotransporter (NKCC2) in the response to hypertonicity. The shrinkage-induced activation of NKCC2 involves an interaction between the cytoskeleton and protein phosphorylation events via PKC and myosin light chain kinase (MLCK). Killifish (Fundulus heteroclitus) opercular epithelium is a Cl(-)-secreting epithelium of the type described in exocrine glands, having a CFTR channel on the apical side and the Na+/K+ ATPase, NKCC1 and a K+ channel on the basolateral side. Osmotic control of Cl- secretion across the operculum epithelium includes: (i) hyperosmotic shrinkage activation of NKCC1 via PKC, MLCK, p38, OSR1 and SPAK; (ii) deactivation of NKCC by hypotonic cell swelling and a protein phosphatase, and (iii) a protein tyrosine kinase acting on the focal adhesion kinase (FAK) to set levels of NKCC activity.  相似文献   

5.
Net fluid transport (Jv) and electrical properties of the cell membranes and paracellular pathway of Necturus gallbladder epithelium were studied before and after the addition of ouabain (10(-4) M) to the serosal bathing medium. The glycoside inhibited Jv by 70% in 15 min and by 100% in 30 min. In contrast, the potentials across both cell membranes did not decrease significantly until 20 min of exposure to ouabain. At 30 min, the basolateral membrane potential (Vcs) fell only by ca 7 mV. If basolateral Na transport were electrogenic, with a coupling ratio (Na:K) of 3:2, the reductions of Vcs at 15 and 30 min should be 12--15 and 17--21 mV, respectively. Thus, we conclude that the mechanism of Na transport from the cells to the serosal bathing solution is not electrogenic under normal transport conditions. The slow depolarization observed in ouabain is caused by a fall of intracellular K concentration, and by a decrease in basolateral cell membrane K permeability. Prolonged exposure to ouabain results also in an increase in paracellular K selectivity, with no change of P Na/P Cl.  相似文献   

6.
Recent studies on frog skin acini have challenged the question whether Cl(-) secretion or Na(+) absorption in the airways is driven by luminal K(+) channels in series to a basolateral K(+) conductance. We examined the possible role of luminal K(+) channels in electrolyte transport in mouse trachea in Ussing-chamber experiments. Tracheas of both normal and CFTR (-/-) mice showed a dominant amiloride-sensitive Na+ absorption under both, control conditions and after cAMP-dependent stimulation. The lumen-negative transepithelial voltage was enhanced after application of IBMX and forskolin and Cl(-) secretion was activated. Electrolyte secretion induced by IBMX and forskolin was inhibited by luminal glibenclamide and the blocker of basolateral Na(+2)Cl(-)K(+) cotransporter azosemide. Similarly, the compound 293B, a blocker of basolateral KCNQ1/KCNE3 K(+) channels effectively blocked Cl(-) secretion when applied to either the luminal or basolateral side of the epithelium. RT-PCR analysis suggested expression of additional K(+) channels in tracheal epithelial cells such as Slo1 and Kir6.2. However, we did not detect any functional evidence for expression of luminal K(+) channels in mouse airways, using luminal 293B, clotrimazole and Ba(2+) or different K(+) channel toxins such as charybdotoxin, apamin and a-dendrotoxin. Thus, the present study demonstrates Cl(-) secretion in mouse airways, which depends on basolateral Na(+2)Cl(-)K(+) cotransport and luminal CFTR and non-CFTR Cl(-) channels. Cl(-) secretion is maintained by the activity of basolateral K(+) channels, while no clear evidence was found for the presence of a luminal K(+) conductance.  相似文献   

7.
Summary WhenNecturus gallbladder epithelium is treated with ouabain the cells swell rapidly for 20–30 minutes then stabilize at a cell volume 30% greater than control. The cells then begin to shrink slowly to below control size. During the initial rapid swelling phase cell Na activity, measured with microelectrodes, rises rapidly. Calculations of the quantity of intracellular Na suggest that the volume increase is due to NaCl entry. Once the peak cell volume is achieved, the quantity of Na in the cell does not increase, suggesting that NaCl entry has been inhibited. We tested for inhibition of apical NaCl entry during ouabain treatment either by suddenly reducing the NaCl concentration in the mucosal bath or by adding bumetanide to the perfusate. Both maneuvers caused rapid cell shrinkage during the initial phase of the ouabain experiment, but had no effect on cell volume if performed during the slow shrinkage period. The lack of sensitivity to the composition of the mucosal bath during the shrinkage period occurred because of apparent feedback inhibition of NaCl entry. Another maneuver, reduction of the Na in the serosal bath to 10mm, also resulted in inhibition of apical NaCl uptake. The slow shrinkage which occurred after one or more hours of ouabain treatment was sensitive to the transmembrane gradients for K and Cl across the basolateral membrane and could be inhibited by bumetanide. Thus during pump inhibition inNecturus gallbladder epithelium cell Na and volume first increase due to continuing NaCl entry and then cell volume slowly decreases due to inhibition of the apical NaCl entry and activation of basolateral KCl exit.  相似文献   

8.
Whole skins and isolated epithelia were bathed with isotonic media (congruent to 244 mOsm) containing sucrose or glucose. The serosal osmolality was intermittently reduced (congruent to 137 mOsm) by removing the nonelectrolyte. Transepithelial and intracellular electrophysiological parameters were monitored while serosal osmolality was changed. Serosal hypotonicity increased the short-circuit current (ISC) and the basolateral conductance, hyperpolarized the apical membrane (psi mc), and increased the intracellular Na+ concentration. The increases in apical conductance and apical Na+ permeability (measured from Goldman fits of the relationship between amiloride-sensitive current and psi mc) were not statistically significant. To verify that the osmotically induced changes in ISC were mediated primarily at the basolateral membrane, the basolateral membrane potential of the experimental area was clamped close to 0 mV by replacing the serosal Na+ with K+ in Cl--free media. The adjoining control area was exposed to serosal Na+. Serosal hypotonicity produced a sustained stimulation of ISC across the control, but not across the adjoining depolarized tissue area. The current results support the concept that hypotonic cell swelling increases Na+ transport across frog skin epithelium by increasing the basolateral K+ permeability, hyperpolarizing the apical membrane, and increasing the electrical driving force for apical Na+ entry.  相似文献   

9.
Two types of K conductance can be distinguished in the basolateral membranes of polyene-treated colonic epithelial cells (see Germann, W. J., M. E. Lowy, S. A. Ernst, and D. C. Dawson, 1986, Journal of General Physiology, 88:237-251). The significance of these two types of K conductance was investigated by measuring the properties of the basolateral membrane under conditions that we presumed would lead to marked swelling of the epithelial cells. We compared the basolateral conductance under these conditions of osmotic stress with those observed under other conditions where changes in cell volume would be expected to be less dramatic. In the presence of a permeant salt (KCl) or nonelectrolyte (urea), amphotericin-treated colonic cell layers exhibited a quinidine-sensitive conductance. Light microscopy revealed that these conditions were also associated with pronounced swelling of the epithelial cells. Incubation of tissues in solutions containing the organic anion benzene sulfonate led to the activation of the quinidine-sensitive gK and was also associated with dramatic cell swelling. In contrast, tissues incubated with an impermeant salt (K-gluconate) or nonelectrolyte (sucrose) did not exhibit a quinidine-sensitive basolateral conductance in the presence of the polyene. Although such conditions were also associated with changes in cell volume, they did not lead to the extreme cell swelling detected under conditions that activated the quinidine-sensitive gK. The quinidine-sensitive basolateral conductance that was activated under conditions of osmotic stress was also highly selective for K over Rb, in contrast to the behavior of normal Na transport by the tissue, which was supported equally well by K or Rb and was relatively insensitive to quinidine. The results are consistent with the notion that the basolateral K conductance measured in the amphotericin-treated epithelium bathed by mucosal K-gluconate solutions or in the presence of sucrose was due to the same channels that are responsible for the basolateral K conductance under conditions of normal transport. Conditions of extreme osmotic stress, however, which led to pronounced swelling of the epithelial cells, were associated with the activation of a new conductance, which was highly selective for K over Rb and was blocked by quinidine or lidocaine.  相似文献   

10.
The effect of cell swelling, induced by a hyposmotic shock, on K(+)(Rb(+)) efflux from lactating rat mammary tissue explants has been studied. A hyposmotic challenge increased the fractional release of K(+)(Rb(+)) from mammary tissue in the absence and presence of the loop-diuretic bumetanide (100 microM). However, the volume-sensitive moiety of K(+)(Rb(+)) efflux was proportionately larger when bumetanide was present in the incubation medium. On the other hand, a hyposmotic shock appeared to reduce the bumetanide-sensitive component of K(+)(Rb(+)) efflux. The increase in K(+)(Rb(+)) efflux, induced by cell swelling, was dependent upon the extent of the hyposmotic challenge. In the presence of bumetanide, substituting Cl(-) with NO(3)(-) reduced the initial increase in volume-sensitive K(+)(Rb(+)) efflux. However, volume-sensitive K(+)(Rb(+)) release was prolonged in the presence of NO(3)(-). Volume-activated K(+)(Rb(+)) efflux from rat mammary tissue explants was inhibited by quinine. Cell swelling increased the intracellular concentration of Ca(2+) in a fashion which depended on the presence of extracellular Ca(2+). However, removing extracellular Ca(2+) did not inhibit volume-activated K(+)(Rb(+)) efflux from rat mammary tissue explants. The results are consistent with the presence of volume-activated K(+) channels in lactating rat mammary tissue. Volume-activated K(+) efflux may play a central role in mammary cell volume regulation.  相似文献   

11.
12.
The volume of individual cells in intact frog urinary bladders was determined by quantitative microscopy and changes in volume were used to monitor the movement of solute across the basolateral membrane. When exposed to a serosal hyposmotic solution, the cells swell as expected for an osmometer, but then regulate their volume back to near control in a process that involves the loss of KCl. We show here that volume regulation is abolished by Ba++, which suggests that KCl movements are mediated by conductive channels for both ions. Volume regulation is also inhibited by removing Ca++ from the serosal perfusate, which suggests that the channels are activated by this cation. Previously, amiloride was observed to inhibit volume regulation: in this study, amiloride-inhibited, hyposmotically swollen cells lost volume when the Ca++ ionophore A23187 was added to Ca++-replete media. We attempted to effect volume changes under isosmotic conditions by suddenly inhibiting Na+ entry across the apical membrane with amiloride, or Na+ exit across the basolateral membrane with ouabain. Neither of these Na+ transport inhibitors produced the expected results. Amiloride, instead of causing a decrease in cell volume, had no effect, and ouabain, instead of causing cell swelling, caused cell shrinkage. However, increasing cell Ca++ with A23187, in both the absence and presence of amiloride, caused cells to lose volume, and Ca++-free Ringer's solution (serosal perfusate only) caused ouabain-blocked cells to swell. Finally, again under isosmotic conditions, removal of Na+ from the serosal perfusate caused a loss of volume from cells exposed to amiloride. These results strongly suggest that intracellular Ca++ mediates cell volume regulation by exerting a negative control on apical membrane Na+ permeability and a positive control on basolateral membrane K+ permeability. They also are compatible with the existence of a basolateral Na+/Ca++ exchanger.  相似文献   

13.
Previous work has shown that the basolateral membrane of turtle colon epithelium contains a quinidine-sensitive potassium conductance which can be activated by osmotic cell swelling. In this work and in the present study, potassium flow across the basolateral membrane was measured as a short-circuit current across intact pieces of epithelial tissue in which amphotericin B was used to permeabilize the apical membrane. Quinidine-sensitive currents were generated when the mucosal bath contained chloride, a permeant anion. Replacement of chloride by sulfate or addition of sucrose to the bathing solutions abolished 75-90% of the current and caused the quinidine-inhibitable fraction of the current to go from over 90% to around 6%--suggesting that decreases in cell volume had brought about inactivation of the quinidine-sensitive conductance. When metabolic inhibitors were present, inactivation of the conductance by these maneuvers was prevented. Activation of the conductance by replacement of mucosal SO4 by Cl, however, was not affected.  相似文献   

14.
Insect renal organs typically exhibit high rates of transport of inorganic and organic anions, and therefore provide useful models for the study of epithelial anion transport and its control. Isolated Malpighian tubules of some species secrete a volume of iso-osmotic fluid equal to their own volume in 10-15 s, which means that cellular Cl(-) content is exchanged every 3-5 s. Anion transport can also be achieved against extreme thermodynamic gradients. The concentration of K(+) and Cl(-) in the lumen of the Malpighian tubules of some desert beetles approaches or exceeds saturation. A basolateral Na(+):K(+):2Cl(-) cotransporter plays an important role in vectorial ion transport in Malpighian tubules of many species, but there is also evidence for coupling of Cl(-) transport to the movement of a single cationic species (Na(+) or K(+)). Although an apical vacuolar H(+)-ATPase plays a primary role in energizing transepithelial secretion of chloride via channels or cotransporters in the secretory segment of the Malpighian tubule, several different ATPases have been implicated in reabsorption of Cl(-) by the lower Malpighian tubule or hindgut. Chloride transport is known to be controlled by several neuropeptides, amines and intracellular second messengers. Insect renal epithelia are also important in excretion of potentially toxic organic anions, and the transporters involved may play a role in resistance to insecticides of natural or anthropogenic origin.  相似文献   

15.
Amphiuma red cells were incubated for several hours in hypotonic or hypertonic media. They regulate their volume in both media by using ouabain-insensitive salt transport mechanisms. After initially enlarging osmotically, cells in hypotonic media return toward their original size by losing K, Cl, and H2O. During this volume-regulatory decrease (VRD) response, K loss results from a greater than 10-fold increase in K efflux. Cells in hypertonic media initially shrink osmotically, but then return toward their original volume by gaining Na, Cl, and H2O. The volume-regulatory increase (VRI) response involves a large (greater than 100-fold) increase in Na uptake that is entirely blocked by the diuretic amiloride (10(-3) M). Na transport in the VRI response shares many of the characteristics of amiloride-sensitive transport in epithelia: (a) amiloride inhibition is reversible; (b) removal of amiloride from cells pretreated with amiloride enhances Na uptake relative to untreated controls; (c) amiloride appears to act as a competitive inhibitor (Ki = 1-3 microM) of Na uptake; (d) Na uptake is a saturable function of external Na (Km approximately 29 mM); (e) Li can substitute for Na but K cannot. Anomalous Na/K pump behavior is observed in both the VRD and the VRI responses. In the VRD response, pump activity increases 3-fold despite a decrease in intracellular Na concentration, while in the VRI response, a 10-fold increase in pump activity is observed when only a doubling is predicted from increases in intracellular Na.  相似文献   

16.
In Necturus gallbladder epithelium, lowering serosal [Na+] ([Na+]s) reversibly hyperpolarized the basolateral cell membrane voltage (Vcs) and reduced the fractional resistance of the apical membrane (fRa). Previous results have suggested that there is no sizable basolateral Na+ conductance and that there are apical Ca(2+)-activated K+ channels. Here, we studied the mechanisms of the electrophysiological effects of lowering [Na+]s, in particular the possibility that an elevation in intracellular free [Ca2+] hyperpolarizes Vcs by increasing gK+. When [Na+]s was reduced from 100.5 to 10.5 mM (tetramethylammonium substitution), Vcs hyperpolarized from -68 +/- 2 to a peak value of -82 +/- 2 mV (P less than 0.001), and fRa decreased from 0.84 +/- 0.02 to 0.62 +/- 0.02 (P less than 0.001). Addition of 5 mM tetraethylammonium (TEA+) to the mucosal solution reduced both the hyperpolarization of Vcs and the change in fRa, whereas serosal addition of TEA+ had no effect. Ouabain (10(-4) M, serosal side) produced a small depolarization of Vcs and reduced the hyperpolarization upon lowering [Na+]s, without affecting the decrease in fRa. The effects of mucosal TEA+ and serosal ouabain were additive. Neither amiloride (10(-5) or 10(-3) M) nor tetrodotoxin (10(-6) M) had any effects on Vcs or fRa or on their responses to lowering [Na+]s, suggesting that basolateral Na+ channels do not contribute to the control membrane voltage or to the hyperpolarization upon lowering [Na+]s. The basolateral membrane depolarization upon elevating [K+]s was increased transiently during the hyperpolarization of Vcs upon lowering [Na+]s. Since cable analysis experiments show that basolateral membrane resistance increased, a decrease in basolateral Cl- conductance (gCl-) is the main cause of the increased K+ selectivity. Lowering [Na+]s increases intracellular free [Ca2+], which may be responsible for the increase in the apical membrane TEA(+)-sensitive gK+. We conclude that the decrease in fRa by lowering [Na+]s is mainly caused by an increase in intracellular free [Ca2+], which activates TEA(+)-sensitive maxi K+ channels at the apical membrane and decreases apical membrane resistance. The hyperpolarization of Vcs is due to increase in: (a) apical membrane gK+, (b) the contribution of the Na+ pump to Vcs, (c) basolateral membrane K+ selectivity (decreased gCl-), and (d) intraepithelial current flow brought about by a paracellular diffusion potential.  相似文献   

17.
周亚亚  贺福初  姜颖 《生物磁学》2011,(15):2996-3000
Na-K-Cl协同转运蛋白是一类膜蛋白,负责转运Na、K、Cl离子进出上皮细胞与非上皮细胞。Na-K-Cl介导的转运过程是电中性的,多数情况下是1Na:1K:2C1(乌贼轴突中是2Na:1K:3C1),其活性被布美他尼(bumetanide)和呋塞米(furosemide)所抑制。迄今为止,Na-K-Cl协同转运蛋白被鉴定出来两个同源异构体:NKCCl和NKCC2。NKCCl存在于多个组织中,合有NKCCl的上皮大多数属于分泌上皮,而且会有Na-K-Cl协同转运蛋白位于基底膜外侧;NKCC2只存在于肾脏,位于上皮细胞致密斑的顶膜上。Na-K-Cl协同转运蛋白的调控在不同的细胞和组织中是不同的。Na-K-Cl协同转运蛋白的活性会受激素刺激和细胞体积变化的影响;有些组织中,这种调控作用(尤其是NKCCl亚基)是通过特定的激酶使该转运蛋白自身发生氧化/硝化、磷酸化/去磷酸化来实现的;蛋白过表达在Na-K-Cl协同转运蛋白的激活中也起重要作用。  相似文献   

18.
The diarrhea associated with malabsorption of bile salts such as the secondary hydrophobic taurodeoxycholate (TDC) may be partly explained by the TDC-induced increase in colon Cl(-) secretion. We, therefore, investigated the effects of TDC (0.5-8 mM) on electrical parameters and electrolyte transport of rat proximal colon mucosa mounted in Ussing chambers. Colonic secretion, measured as short circuit current (I(SC)), progressively increased on mucosal incubation with TDC ranging 0.5-2 mM; up to TDC 2 mM, a spontaneous recovery toward control values with no changes in epithelial resistance (Rt), and lactate dehydrogenase (LDH) release was observed. In contrast, for TDC > 2 mM, I(SC) increased further and the effect was progressive and associated with a significant decrease in the Rt and increased LDH release, implying a cytolytic effect. Mucosal preincubation with the Cl(-) channel inhibitor 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), fully prevented the precytolytic effect of TDC on I(SC). Serosal preincubation with furosemide, a Na(+)/K(+)/2Cl(-) cotransporter inhibitor, significantly reduced TDC-induced increase in I(SC). Inhibition of the basolateral Ca(2+)-dependent K(+) channel-rSK4-with serosal clotrimazole or incubation with mucosal Ca(2+)-free (EGTA) buffer completely prevented precytolytic TDC-induced increase in I(SC). In conclusion, Cl(-) secretion is activated in colon mucosa by TDC low concentrations; while at higher concentrations, a detergent cytotoxic effect intervenes. Activation of the Ca(2+)-dependent basolateral K(+) pathway, through TDC-induced apical Ca(2+) influx, provides the Na(+)/K(+)/2Cl(-) basolateral activation, thereby the driving force for the apical exit of Cl(-) ions. These findings further enhance the knowledge of the pathogenic mechanisms of diarrhea associated with bile salt malabsorption.  相似文献   

19.
In order to assess the role of different classes of K(+) channels in recirculation of K(+) across the basolateral membrane of rabbit distal colon epithelium, the effects of various K(+) channel inhibitors were tested on the activity of single K(+) channels from the basolateral membrane, on macroscopic basolateral K(+) conductance, and on the rate of Na(+) absorption and Cl(-) secretion. In single-channel measurements using the lipid bilayer reconstitution system, high-conductance (236 pS), Ca(2+)-activated K(+) (BK(Ca)) channels were most frequently detected; the second most abundant channel was a low-conductance K(+) channel (31 pS) that exhibited channel rundown. In addition to Ba(2+) and charybdotoxin (ChTX), the BK(Ca) channels were inhibited by quinidine, verapamil and tetraethylammonium (TEA), the latter only when present on the side of the channel from which K(+) flow originates. Macroscopic basolateral K(+) conductance, determined in amphotericin-permeabilised epithelia, was also markedly reduced by quinidine and verapamil, TEA inhibited only from the lumen side, and serosal ChTX was without effect. The chromanol 293B and the sulphonylurea tolbutamide did not affect BK(Ca) channels and had no or only a small inhibitory effect on macroscopic basolateral K(+) conductance. Transepithelial Na(+) absorption was partly inhibited by Ba(2+), quinidine and verapamil, suggesting that BK(Ca) channels are involved in basolateral recirculation of K(+) during Na(+) absorption in rabbit colon. The BK(Ca) channel inhibitors TEA and ChTX did not reduce Na(+) absorption, probably because TEA does not enter intact cells and ChTX is 'knocked off' its extracellular binding site by K(+) outflow from the cell interior. Transepithelial Cl(-) secretion was inhibited completely by Ba(2+) and 293B, partly by quinidine but not by the other K(+) channel blockers, indicating that the small (<3 pS) K(V)LQT1 channels are responsible for basolateral K(+) exit during Cl(-) secretion. Hence different types of K(+) channels mediate basolateral K(+) exit during transepithelial Na(+) and Cl(-) transport.  相似文献   

20.
Serous cells are the predominant site of cystic fibrosis transmembrane conductance regulator expression in the airways, and they make a significant contribution to the volume, composition, and consistency of the submucosal gland secretions. We have employed the human airway serous cell line Calu-3 as a model system to investigate the mechanisms of serous cell anion secretion. Forskolin-stimulated Calu-3 cells secrete HCO-3 by a Cl-offdependent, serosal Na+-dependent, serosal bumetanide-insensitive, and serosal 4,4'-dinitrostilben-2,2'-disulfonic acid (DNDS)-sensitive, electrogenic mechanism as judged by transepithelial currents, isotopic fluxes, and the results of ion substitution, pharmacology, and pH studies. Similar studies revealed that stimulation of Calu-3 cells with 1-ethyl-2-benzimidazolinone (1-EBIO), an activator of basolateral membrane Ca2+-activated K+ channels, reduced HCO-3 secretion and caused the secretion of Cl- by a bumetanide-sensitive, electrogenic mechanism. Nystatin permeabilization of Calu-3 monolayers demonstrated 1-EBIO activated a charybdotoxin- and clotrimazole- inhibited basolateral membrane K+ current. Patch-clamp studies confirmed the presence of an intermediate conductance inwardly rectified K+ channel with this pharmacological profile. We propose that hyperpolarization of the basolateral membrane voltage elicits a switch from HCO-3 secretion to Cl- secretion because the uptake of HCO-3 across the basolateral membrane is mediated by a 4,4 '-dinitrostilben-2,2'-disulfonic acid (DNDS)-sensitive Na+:HCO-3 cotransporter. Since the stoichiometry reported for Na+:HCO-3 cotransport is 1:2 or 1:3, hyperpolarization of the basolateral membrane potential by 1-EBIO would inhibit HCO-3 entry and favor the secretion of Cl-. Therefore, differential regulation of the basolateral membrane K+ conductance by secretory agonists could provide a means of stimulating HCO-3 and Cl- secretion. In this context, cystic fibrosis transmembrane conductance regulator could serve as both a HCO-3 and a Cl- channel, mediating the apical membrane exit of either anion depending on basolateral membrane anion entry mechanisms and the driving forces that prevail. If these results with Calu-3 cells accurately reflect the transport properties of native submucosal gland serous cells, then HCO-3 secretion in the human airways warrants greater attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号