首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the foraging patterns of two species of caterpillar (Junonia coenia: Nymphalidae and Spilosoma congrua: Arctiidae) that contrast in feeding specialization and crypticity on plantain (Plantago lanceolata) in the absence and presence of two different insect predators [stinkbugs, Podisus maculiventris (Pentatomidae) and wasps, Polistes fuscatus (Vespidae)]. Junonia larvae were quite apparent to human observers, feeding on upper leaf surfaces during daylight, whereas Spilosoma larvae were relatively cryptic, often hiding under leaves and in soil crevices during daylight. In the presence of either predator species, the non-cryptic Junonia caterpillars more quickly left the plant on which they were initially placed and were less apparent than Junonia larvae not exposed to predators. The presence of predators had no detectable influence on where the caterpillars occurred on the plants (new, intermediate-aged or mature leaves, or reproductive stalks). Surprisingly, the predators influenced the behavior of the inherently cryptic Spilosoma: the apparency of these larvae at night increased when wasps had access to the plots during the day. Survivorship of the non-cryptic Junonia was less than 12% when stinkbugs were present compared to 60% in their absence. Although the presence of wasps resulted in a lower relative growth rate for the non-cryptic Junonia larvae, the indirect effect of predators on reduction in survivorship due to alterations in prey growth rate through behavioral changes was less than 3%. After taking into account the decline in caterpillars per plot through predation, we found that both the amount of leaves eaten and the proportion of plants eaten were altered on plots with predators present, which suggests that the caterpillars' increased consumption countered increased maintenance costs due to the presence of predators. Overall, our results indicate that hostplant size, level of predation and type of predator can influence the degree to which these caterpillars react to the presence of insect predators. In contrast, degree of inherent feeding specialization and cryptic behavior seemed to have little effect on the expression of reactive behaviors of these caterpillars to predators.  相似文献   

2.
Nancy E. Stamp 《Oecologia》1992,92(1):124-129
Summary The relative susceptibility to predators of a cryptic generalist caterpillar (Spilosoma congrua: Arctiidae) and a non-cryptic specialist (Junonia coenia: Nymphalidae) using the same hostplant species (Plantago lanceolata) was examined. In a laboratory experiment using predatory stinkbugs (Podisus maculiventris), more Junonia caterpillars than Spilosoma caterpillars were killed (70% vs. 16%). This result was a consequence of the Spilosoma spending some time under cover, moving frequently, feeding on leaves while under or adjacent to them, and spending little time on the leaves. In a field experiment using predatory wasps (Polistes fuscatus), the wasps found 7 times as many of the Junonia as the Spilosoma, and overall 6 times as many Junonia were killed as Spilosoma. Initially, 71% of the Junonia caterpillars encountered by wasps were killed, but by the fourth day of the test, only 22% of the Junonia encountered by wasps were killed. Over three full days of observations, a constant 50% of the Spilosoma caterpillars encountered by the wasps per day were killed. For the Junonia, evasion of predators rested on passive chemical defense. For the Spilosoma, evasion depended on being unapparent, speedy movement between feeding and resting sites and, if found, on fleeing immediately and quickly. These results indicate that Spilosoma caterpillars, by way of cryptic and escape behaviors, can be less susceptible to insect predators than Junonia caterpillars.  相似文献   

3.
Lee A. Dyer  Ted Floyd 《Oecologia》1993,96(4):575-582
To evaluate the role of predation in the evolution of diet specialization and to determine the effectiveness of various larval defenses, we offered lepidopteran larvae to colonies of the tropical ant Paraponera clavata. We recorded behavioral and physical characteristics of prey items and used log-linear models to analyze their importance as deterrents to predation by P. clavata. The most important determinant of probability of prey rejection by P. clavata was a prey's diet breadth; specialists were rejected by the ants significantly more than generalists. Other less important, but significant, predictors of prey rejection included ontogeny, morphology and chemistry. Late instar caterpillars were rejected more frequently than early instars, hairy caterpillars were rejected more frequently than caterpillars with other morphologies, and one caterpillar species with an unpalatable extract was rejected more frequently than two species with palatable extracts.  相似文献   

4.
Effects of prey quality on social wasps when given a choice of prey   总被引:1,自引:0,他引:1  
The effect of prey quality on foraging behavior and colony demographics of the social wasp Polistes fuscatus was examined by providing a choice between non‐toxic prey (Manduca sexta caterpillars) and sublethally toxic prey (Junonia coenia caterpillars), and then comparing the performance of these colonies to others given only the non‐toxic prey. In the choice, one of two types of Manduca were used: those fed an artificial diet or those fed plantain (Plantago lanceolata), which contains iridoid glycosides (IGs) that Junonia coenia store but which Manduca does not. Despite the negative correlation between the number of Junonia prey used and number of adult offspring produced, when a surplus of non‐toxic prey was available, the wasps did not completely avoid the toxic prey. However, they were more discriminating when the choice was between Manduca fed an artificial diet and Junonia fed plantain vs. when both prey species had eaten the plantain. Because the wasps had a choice of prey types and had a surplus of prey on about one‐third of the days, the wasps were able to take enough non‐toxic prey to avoid some of the negative consequences of IGs. For example, the total number of wasp offspring per nest was not affected, but mean weight of female offspring per colony was less for colonies given both prey types eating plantain, compared to that for colonies fed only non‐toxic prey, or those given a choice of non‐toxic prey vs. toxic prey. In addition, compared to the control (only non‐toxic prey), the proportion of males produced was less in the treatment that provided a clear contrast between non‐toxic and toxic prey. Why these wasps did not avoid the toxic prey is discussed.  相似文献   

5.
Effects of prey quantity and quality on predatory wasps   总被引:1,自引:0,他引:1  
1. The simultaneous effects of prey quantity and prey quality on fitness correlates of the predatory wasp Polistes fuscatus were examined in a glasshouse study. Prey quantity was manipulated by providing prey in excess (high quantity) or one‐third of that (low quantity). Prey quality was manipulated by providing either palatable (Manduca sexta) caterpillars or unpalatable (Junonia coenia) caterpillars. 2. The effect of prey quality on wasp production depended on prey quantity. Nests given unpalatable prey produced few wasps whereas nests given palatable prey increased wasp production with increased prey. 3. The low production of nests given unpalatable prey reflected the low acceptability of those prey. The wasps preferred the palatable prey and learned to reject the unpalatable prey. With no choice of prey, they took only enough unpalatable prey to develop a small nest or colony. 4. A diet of unpalatable prey also resulted in smaller wasps and reduced the proportion of males produced, from about 40% to just 8–14%, depending on the year.  相似文献   

6.
Foraging by individual Polistes dominulus (Christ) (Hymenoptera: Vespidae) was observed and compared on Brassica oleracea L. plants that differed in surface wax bloom. Twenty-six wasps, previously trained to forage on plants for 4th instar Trichoplusia ni (Walker), were presented in the greenhouse with mixtures of plants with normal wax bloom or genetically reduced wax bloom, and on which T. ni caterpillars had been placed. During foraging, the wasps were observed to slip significantly more frequently from the leaf surfaces of normal-wax bloom plants than from reduced-wax bloom plants (129 vs 63 occurrences) and to retrieve significantly fewer pieces of caterpillar after attack on normal-wax bloom plants (151 vs 223 pieces). Altogether the wasps retrieved 333 caterpillar pieces from reduced-wax bloom plants and 248 pieces from normal-wax bloom plants. Despite these differences, the number of caterpillars attacked and killed did not differ between the two wax bloom types (116 vs 121), nor did handling time for individual attacks (time from contact with prey until prey piece was carried to the nest) (170±12.5 s vs 180±10.5 s). Thus, in contrast with previous reports for smaller predators, wax bloom variation in B. oleracea did not influence the effectiveness of P. dominulus as a predator of T. ni.  相似文献   

7.
Some parasitoids are restricted with respect to the host stage that they attack and even to a certain age within a stage. In this paper we investigate whether the parasitoidCotesia glomerata can discriminate between old and young caterpillar instars of its host,Pieris brassicae, before contacting these hosts, since contacts with older instars are very risky with a chance of being killed, due to the aggressive defensive behaviour of the caterpillars. Flight chamber dual choice tests showed that volatile chemicals emitted by Brussels sprouts plants (Brassica oleracea var. gemmifera) after feeding damage by 1st and 5th larval instars are equally attractive to the wasps. Simulated herbivore damage by 2nd and 5th larval instars, obtained by treating mechanically damaged leaves with carterpillar regurgitant, was also equally attractive, even when the wasps were exposed to repeated experience on different larval instars to increase their discriminatory ability. In contrast, single choice contact bioassays showed that the time spent searching on a leaf with feeding damage of 1st instar larvae was significantly longer than the time spent on 5th instar feeding damage or on mechanically damaged leaves. Both flight and contact bioassays did not show any effect of egg-related infochemicals. The results demonstrate thatC. glomerata can discriminate between young and old larval instars ofP. brassicae, without contacting the caterpillars. This is not done through volatile herbivore-induced synomones but through cues that are contacted after arrival at a caterpillar-infested leaf.  相似文献   

8.
Experiments were performed to determine the effect of caterpillar feeding damage on wasp foraging behavior and to determine the relative importance of visual and olfactory plant cues for foraging wasps. In an experiment using caterpillar-damaged leaves, wasps took significantly more larvae from the previously damaged plants compared to the controls in the experiments with tobacco plants, but wasps did not distinguish between damaged and control plants in the experiments with tomato plants. Another experiment indicated that wasps use a combination of visual and olfactory cues of plant damage in their search for prey rather than just visual or olfactory cues alone. Furthermore, these results suggest that leaf shape may affect wasp detection of caterpillar feeding damage and thus detection of prey.  相似文献   

9.
1. Group living in caterpillars may enhance individual performance due to sharing of costs associated with individual tasks when dealing with biotic or abiotic ecological factors. 2. In the gregarious caterpillar Battus polydamas archidamas (Papilionidae) egg clusters and caterpillar groups vary in size. We hypothesized that individual survival would be higher in larger groups and that group living would enhance individual performance: shorter development time and/or reduced frequency of (presumably costly) defensive reactions in larvae and larger adult size. We also tested whether the group size conferring the highest survival to laboratory-reared caterpillars matched the most frequent egg clutch size in the field. 3. We collected egg clutches in the field and reared caterpillars in groups of 1, 6, 10, and 14 individuals. We quantified larval survival and stage duration as well as adult mass under laboratory conditions, excluding natural enemies. We also recorded the frequency of larval defensive reactions (thrashing and osmeterium display) against a tactile stimulus of first-instar larvae. 4. Group living enhanced caterpillar survival, particularly during the first instars, when caterpillars are 100% gregarious. Groups of intermediate size reduced larval development time but group living did not affect adult mass. Individual caterpillars in groups showed defensive reactions less frequently than solitary individuals, revealing a cost-saving feature of gregariousness for this swallowtail species. The most frequent clutch size in the field (9–10 eggs) did not match the larval group with highest survival (14 individuals), but did match the group with shortest development time.  相似文献   

10.
Summary Caterpillars of Maculinea arion are obligate predators of the brood of Myrmica sabuleti ants. In the aboratory, caterpillars eat the largest available ant larvae, although eggs, small larvae and prepupae are also palatable. This is an efficient way to predate. It ensures that newly-adopted caterpillars consume the final part of the first cohort of ant brood in a nest, before this pupates in early autumn and becomes unavailable as prey. At the same time, the fixed number of larvae in the second cohort is left to grow larger before being killed in late autumn and spring. Caterpillars also improve their feeding efficiency by hibernating for longer than ants in spring, losing just 6% of their weight while the biomass of ant larvae increases by 27%. Final instar caterpillars acquire more than 99% of their ultimate biomass in Myrmica nests, growing from 1.3 mg to an estimated 173 mg. A close correlation was found between the weights of caterpillars throughout autumn and the number of large ant larvae they had eaten. This was used to calculate the number of larvae eaten in spring, allowing both for the loss of caterpillar weight during winter and the increase in the size of their prey in spring. It is estimated that 230 of the largest available larvae, and a minimum nest size of 354 M. sabuleti workers, is needed to support one butterfly. Few wild M. sabuleti nests are this large: on one site, it was estimated that 85% of nests were too small to produce a butterfly, and only 5% could support two or more. This prediction was confirmed by the mortalities of 376 caterpillars in 151 wild M. sabuleti nests there. Mortalities were particularly high in nests that adopted more than two caterpillars, apparently due to scramble competition and starvation in autumn. Survival was higher than predicted in wild nests that adopted one caterpillar. These caterpillars seldom exhaust their food before spring, when there is intense competition among Myrmica for nest sites. Ants often desert their nests in the absence of brood, leaving the caterpillar behind. Vacant nests are frequently repopulated by a neighbouring colony, carrying in a fresh supply of brood. Maculinea arion caterpillars have an exceptional ability to withstand starvation, and sometimes survive to parasitize more than one Myrmica colony. Despite these adaptations, predation is an inefficient way to exploit the resources of a Myrmica nest. By contrast, Maculinea rebeli feeds mainly at a lower trophic level, on the regurgitations of worker ants. Published data show that Myrmica nests can support 6 times more caterpillars of Maculinea rebeli than of M. arion in the laboratory. This is confirmed by field data.  相似文献   

11.
We investigated the effects of transgenic maize (Zea mays) expressing Bacillus thuringienses toxin (Bt maize) on larval and adult Poecilus cupreus carabid beetles in laboratory studies. In no-choice trials, neonate P. cupreus larvae were fed exclusively with Spodoptera littoralis caterpillars, which had been raised on Bt maize. S. littoralis raised on conventional maize or high quality Calliphora sp. pupae were fed to the beetle larvae in two control treatments. Bt-maize-fed caterpillar prey increased mortality to 100 within 40days. The experiment was repeated with 10-day-old beetle larvae. Bt treatment resulted in fewer pupae than in both controls, and in a higher mortality than in the Calliphora control. S. littoralis was suitable as exclusive prey in no-choice tests, at least for 40days, although prey quality seemed to be low compared to Calliphora pupae. The observed effects are most likely indirect effects due to further reduced nutritional prey quality. However, direct effects cannot be excluded. In the second part of the study, exposure of P. cupreus to Bt intoxicated prey was examined in paired-choice tests. Adult beetles were offered a choice between different prey conditions (frozen and thawed, freshly killed or living), prey types (S. littoralis caterpillars, Calliphorasp. pupae, cereal aphids) and prey treatments (raised on Bt or conventional maize). Living prey was preferred to frozen and dead prey. Caterpillars were only preferred to fly pupae and aphids when living. Prey treatment seemed to be least important for prey selection. The tests showed that P. cupreus ingested caterpillars readily and there was no evidence of them avoiding Bt containing prey, which means exposure in the field could occur. The presented protocols are a first step towards ecological risk assessment for carabid beetles.  相似文献   

12.
Summary The daily foraging patterns of seven colonies of the eastern tent caterpillar, Malacosoma americanum, were monitored photoelectronically during the last three larval stadia to provide the first detailed record of the foraging behavior of a gregarious caterpillar under field conditions. Colonies were active an average of 49.3% of each day. Three bouts of foraging, centered about 0600 h, 1500 h and 2000 h (EST), occurred daily during the fourth and fifth stadia. Although ambient temperatures were less favorable for foraging and food processing than at other times of the day, the caterpillars were most active at dusk and dawn, and spent comparatively little time away from the tent during the daylight hours. In the last (sixth) stadium, the caterpillars foraged only under the cover of darkness. A lack of relationship between the rate at which the caterpillars processed food and the spacing of their feeding bouts, indicates that this species follows a schedule of feeding and growth shaped by factors other than those directly related to feeding efficiency and ambient temperature. Colony foraging patterns may reduce caterpillar mortality by minimizing contact between larvae and day-active predators and parasitiods.  相似文献   

13.
Summary An indirect effects is defined here as a reduction in prey survivorship as a consequence of a reduction in growth rate of prey due to the presence of a predator that alters prey behavior. A method for partitioning the direct and indirect effects of predators on prey survivorship indicated that predatory wasps (Polistes sp.:. Vespidae) had both direct and indirect negative effects on survivorship of buckmoth caterpillars (Hemileuca lucina: Saturniidae). In a field experiment, the direct and indirect effects together accounted for 61% of the mortality of the caterpillars. A third of this reduction in survivorship due to the wasps was attributed to an indirect effect, due to the decreased growth rate of the caterpillars that moved into the interior of the hostplant to escape from the wasps. In contrast, in another field experiment, although predatory stinkbugs (Podisus maculiventris: Hemiptera) contributed to 56% of the mortality of buckeye caterpillars (Junonia coenia: Nymphalidae), the indirect effect of stinkbugs on buckeye caterpillars only accounted for 2% of the reduction in survivorship of these caterpillars. These differences in the indirect effect are discussed in particular relative to the behavior of predators and prey, ratio of predator to prey sizes, and morphology of the hostplants.  相似文献   

14.
Jenkins GP  King D 《Oecologia》2006,147(4):641-649
Intraguild predation (IGP) is common in most communities, but many aspects of density-dependent interactions of IG predators with IG prey are poorly resolved. Here, we examine how the density of an IG predator can affect feeding group size, IG egg predation, and the growth responses of IG prey. We used laboratory feeding trials and outdoor mesocosm experiments to study interactions between a social intraguild predator (larvae of the wood frog; Rana sylvatica) and its prey (spotted salamander; Ambystoma maculatum). Larvae of R. sylvatica could potentially affect A. maculatum by consuming shared larval food resources or by consuming eggs and hatchlings. However, successful egg predation requires group feeding by schooling tadpoles. We established from five to 1,190 hatchlings of R. sylvatica in mesocosms, then added either 20 A. maculatum hatchlings to study interspecific competition, or a single egg mass to examine IGP. Crowding strongly suppressed the growth of R. sylvatica, and IGP was restricted to the egg stage. In the larval competition experiment, growth of A. maculatum was inversely proportional to R. sylvatica density. In the predation experiment, embryonic mortality of A. maculatum was directly proportional to the initial density of R. sylvatica and the mean number of tadpoles foraging on egg masses. IGP on eggs reduced A. maculatum hatchling density, which accelerated larval growth. Surprisingly, the density of R. sylvatica had no overall effect on A. maculatum growth because release from intraspecific competition via egg predation was balanced by increased interspecific competition. Our results demonstrate that the density of a social IG predator can strongly influence the nature and intensity of interactions with a second guild member by simultaneously altering the intensity of IGP and intra- and interspecific competition.L . A. Burley and A. T. Moyer contributed equally to this work.  相似文献   

15.
This study reports on the biocontrol role birds play in caterpillar pest control of tea plantations of Northeast India. In this area large tracts of tea plantations have been extensively defoliated by the recent invasion of two forest-dwelling geometrid looper caterpillars, Hyposidra spp. and a lymantriid hairy caterpillar, Arctornis submarginata. This exacerbated tea herbivory by two resident pest caterpillars, Biston suppressaria and Eterusia magnifera. Currently there are no identified resident insect predators for any life stage of Hyposidra spp. and A. submarginata. Larvae of these pests drop from tea bushes using salivary thread, allowing caterpillars to escape from insect predators. The study identified 38 native insectivorous bird species in tea plantations, of which four species (Asian-pied starling, Chestnut-tailed starling, Jungle Myna, Red-vented Bulbul) could be potential control agents of looper and hairy caterpillar pests. These species had high population densities. Their cumulative abundances represented a major proportion of the total bird community during both the infested (86.44%) and non-infested phase (75.34%). They foraged in mixed-species flocks in both tea foliage and on the ground. This behavior is suited to capture foliage-living and dropped caterpillars that were flushed from tea bushes by foraging birds. Abundance and species richness of overall tea layer-foraging birds were higher in infested phase when compared to non-infested phase. The predation rate of four bird species of the foraging flock varied significantly. These results suggest that birds should be considered as important biological control agent of caterpillar pests of tea and considered in pest management plans.  相似文献   

16.
The selection response of the polymorphic hostD. melanogaster (Meigen) to the braconid waspA. tabida (Nees) is addressed. Cages of flies with and without wasps were initiated with a population ofD. melanogaster that exhibited variation both in larval foraging behavior and in encapsulation ability. Encapsulation ability was measured as the proportion of parasitized larvae that produce a hardened capsule which encapsulates the wasp egg and ultimately kills the wasp larva. We determined whether the host population changed its encapsulation ability and/or its foraging behavior in response to the wasp. Both species were collected from a local orchard whereA. tabida is the only wasp known to parasitizeD. melanogaster larvae. The naturally occurring genetic polymorphism for rover and sitter larval foraging behavior inD. melanogaster is also found in this field population.A. tabida's vibrotactic search behavior enables it to detect rover more frequently than sitter larvae. Rover larvae move significantly more while feeding than do sitter larvae. In this field population, rover larvae also show higher encapsulation abilities than do sitter larvae. Six cage populations, three without wasps and three with wasps, each containing an equal mixture of rover and sitter flies, were established in the laboratory and maintained for 19 fly generations. Selection pressure in the laboratory was similar to that found in the field population from which the flies and wasps were derived. We found that larvae from cages with wasps developed a significantly higher frequency of encapsulation than those reared without wasps. We were, however, unable to detect a change in larval movement (rover or sitter behavior) in larvae from cages subject to selection from wasps compared to larvae from cages containing no wasps. This may have resulted from a balance between two selective forces, selection against rovers by the wasps' use of vibrotaxis, and selection for rovers resulting from their increased encapsulation abilities  相似文献   

17.
Birds require additional resources for raising young, and the breeding currency hypothesis predicts that insectivorous species exploit large soft‐bodied prey during the breeding season, but shift to small, likely hard‐bodied, prey during the non‐breeding season. To test this hypothesis, we examined prey use by Cerulean Warblers (Setophaga cerulea), foliage‐gleaning Nearctic‐Neotropical migrants, during the breeding and non‐breeding seasons. We collected data on foraging behavior during the breeding season (including observations of prey items fed to young) in upland mixed‐oak forest in southeastern Ohio in 2009 and 2010 and, during the non‐breeding season, in shade coffee in the Cordillera de Merida, Venezuela, in 2008–2009. Cerulean Warblers captured 7% more large prey (visible prey extending beyond the bill) during the breeding than the non‐breeding season, but foraged at similar rates during both seasons. Large, soft‐bodied prey appeared to be especially important for feeding young. We found that adults delivered large prey on >50% of provisioning visits to nests and 69% of identifiable large prey fed to nestlings were greenish larvae (likely Lepidoptera or caterpillars) that camouflage against leaves where they would tend to be captured by foliage‐gleaning birds. Availability of specific taxa appeared to influence tree species foraging preferences. As reported by other researchers, we found that Cerulean Warblers selected trees in the genus Carya for foraging and our examination of caterpillar counts from the central Appalachian Mountains (Butler and Strazanac 2000 ) showed that caterpillars with greenish coloration, especially Baileya larvae, may be almost twice as abundant on Carya than Quercus. Our results provide evidence for the breeding currency hypothesis, and highlight the importance of caterpillars to a foliage‐gleaning migrant warbler of conservation concern.  相似文献   

18.
  • 1 For their larval development, parasitoids depend on the quality and quantity of resources provided by a single host. Therefore, a close relationship is predicted between the size of the host at parasitism and the size of the emerging adult wasp. This relationship is less clear for koinobiont than for idiobiont parasitoids.
  • 2 As size differentiation in host species exhibiting sexual size dimorphism (SSD) is likely to occur already during larval development, in koinobiont larval endoparasitoids the size of the emerging adult may also be constrained based on the sex of the host caterpillar.
  • 3 Sex‐specific growth trajectories were compared in unparasitised Plutella xylostella caterpillars and in second and fourth instar hosts that were parasitised by the solitary larval koinobiont endoparasitoid Diadegma semiclausum. Both species exhibit SSD, where females are significantly larger than males.
  • 4 Healthy female P. xylostella caterpillars developed significantly faster than their male conspecifics. Host regulation induced by D. semiclausum parasitism depended on the instar attacked. Parasitism in second‐instar caterpillars reduced growth compared to healthy unparasitised caterpillars, whereas parasitism in fourth‐instar caterpillars arrested development. The reduction in growth was most pronounced in hosts producing male D. semiclausum.
  • 5 Parasitism itself had the largest impact on host growth. SSD in the parasitoid is mainly the result of differences in growth rate of the parasitoid–host complex producing male and female wasps and differences in exploitation of the host resources. Female wasps converted host biomass more efficiently into adult biomass than males.
  相似文献   

19.
Colonies of the social caterpillar Malacosoma disstria Hubner (Lepidoptera: Lasiocampidae) travel in groups following silk trails marked with pher-omone. This study examined first, the cues involved in following behavior and second, the responses to these cues at different larval stadia. Both second and fourth instar larvae discriminated between fresh and older trails, and travelled faster in the presence of trails. In addition to trail following, young caterpillars exhibited leader following, which might be particularly important in exploring unmarked territory. Indeed, second instar caterpillars were more likely to travel together when trails were absent. Fourth instar larvae exhibited greater independent locomotion in the absence of trails than did younger larvae. These findings help explain patterns of social behavior observed in forest tent caterpillar colonies in the field.  相似文献   

20.
We studied three species of Lasiocampidae with social, tent-building caterpillars in Northern Bavaria, viz. Eriogaster lanestris, Eriogaster catax, and Malacosoma neustria. We used key life-history data (number of larval instars, sizes and weights of eggs, caterpillars, and moths, size of egg clutches) as well as behavioral data (activity patterns, tent-building behavior, trail following behavior) for a comparative study. Although larvae of all three species are active only in spring, show overlapping habitat requirements, and use the same major host-plant (Prunus spinosa) with only minor differences in phenology, they show markedly different life-history and behavioral strategies.E. catax lays comparatively few but large eggs while E. lanestris lays more but smaller eggs. M. neustria lays the smallest eggs but large clusters. E. lanestris caterpillars build a large tent with an accessible interior while those of E. catax build a small tent that is only used as a resting and molting platform. M. neustria shows a flexible behavior, may abandon the primary tent and build a new one several times. M. neustria colonies also subdivide and reunite regularly while Eriogaster colonies stay together until larvae become solitary. In E. lanestris all tentmates of a colony are highly synchronized while foraging or resting. Instead, in E. catax small subgroups leave the tent for foraging while at every time the majority rests on the tent. M. neustria caterpillars forage more or less individually and only synchronize by night. Results are discussed in relation to other species of the genera Eriogaster and Malacosoma and with regard to the evolution and diversification of caterpillar sociality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号