首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
EcoR124 and EcoR124/3 are type I DNA restriction and modification systems. The EcoR124/3 system arose from the EcoR124 system some 15 years ago and at the electron microscopic DNA heteroduplex level the genes for both systems are still apparently identical. We have shown that the DNA sequences recognized by the two systems are GAA(N6)RTCG for EcoR124 and GAA(N7)RTCG for EcoR124/3. The sequences thus differ only in the length of the non-specific spacer. This difference nevertheless places the two specific domains of the EcoR124/3 recognition sequence 0.34 nm further apart and rotates them 36 degrees with respect to those of EcoR124, which implies major structural differences in the proteins recognizing these sequences. We have now determined the nucleotide sequences of the hsdS and hsdM genes of both systems and of the hsdR gene of EcoR124/3. The hsdS gene products provide DNA sequence specificity in both restriction and modification, the hsdM gene products are necessary for modification and all three hsd gene products are required for restriction. The only difference that we have detected between the two systems is that a 12 base-pair sequence towards the middle of the hsdS gene is repeated twice in the EcoR124 gene and three times in the EcoR124/3 gene. We have deleted one of the repeats in the EcoR124/3 gene and shown that this changes the specificity to that of EcoR124. Thus, the extra four amino acids in the middle of the EcoR124/3 hsdS gene product, which in an alpha-helical configuration would extend 0.6 nm, are sufficient to explain the differences in sequence recognition. We suggest that the EcoR124/3 system was generated by an unequal crossing over and argue that this kind of specificity change should not be rare in Nature.  相似文献   

2.
Type I restriction endonuclease holoenzymes contain methylase (M), restriction (R) and specificity (S) subunits, present in an M2:R2:S1 stoichiometry. These enzymes bind to specific DNA sequences and translocate dsDNA in an ATP-dependent manner toward the holoenzyme anchored at the recognition sequence. Once translocation is impeded, DNA restriction, which functions to protect the host cell from invading DNA, takes place. Translocation and DNA cleavage are afforded by the two diametrically opposed R-subunits. To gain insight into the mechanism of translocation, a detailed characterization of the ATPase activity of EcoR124I was done. Results show that following recognition sequence binding, ATP hydrolysis-coupled, bidirectional DNA translocation by EcoR124I ensues, with the R-subunits transiently disengaging, on average, every 515 bp. Macroscopic processivity of 2031(+/-184)bp is maintained, as the R-subunits remain in close proximity to the DNA through association with the methyltransferase. Transient uncoupling of ATP hydrolysis from translocation results in 3.1(+/-0.4) ATP molecules being hydrolyzed per base-pair translocated per R-subunit. This is the first clear demonstration of the coupling of ATP hydrolysis to dsDNA translocation, albeit inefficient. Once translocation is impeded on supercoiled DNA, the DNA is cleaved. DNA cleavage inactivates the EcoR124I holoenzyme partially and reversibly, which explains the stoichiometric behaviour of type I restriction enzymes. Inactivated holoenzyme remains bound to the DNA at the recognition sequence and immediately releases the nascent ends. The release of nascent ends was demonstrated using a novel, fluorescence-based, real-time assay that takes advantage of the ability of the Escherichia coli RecBCD enzyme to unwind restricted dsDNA. The resulting unwinding of EcoR124I-restricted DNA by RecBCD reveals coordination between the restriction-modification and recombination systems that functions to destroy invading DNA efficiently. In addition, we demonstrate the displacement of EcoR124I following DNA cleavage by the translocating RecBCD enzyme, resulting in the restoration of catalytic function to EcoR124I.  相似文献   

3.
The type I restriction enzyme EcoR124I cleaves DNA following extensive linear translocation dependent upon ATP hydrolysis. Using protein-directed displacement of a DNA triplex, we have determined the kinetics of one-dimensional motion without the necessity of measuring DNA or ATP hydrolysis. The triplex was pre-formed specifically on linear DNA, 4370 bp from an EcoR124I site, and then incubated with endonuclease. Upon ATP addition, a distinct lag phase was observed before the triplex-forming oligonucleotide was displaced with exponential kinetics. As the distance between type I and triplex sites was shortened, the lag time decreased whilst the displacement reaction remained exponential. This is indicative of processive DNA translocation followed by collision with the triplex and oligonucleotide displacement. A linear relationship between lag duration and inter-site distance gives a translocation velocity of 400+/-32 bp/s at 20 degrees C. Furthermore, the data can only be explained by bi-directional translocation. An endonuclease with only one of the two HsdR subunits responsible for motion could still catalyse translocation. The reaction is less processive, but can 'reset' in either direction whenever the DNA is released.  相似文献   

4.
Type I restriction enzymes cleave DNA at non-specific sites far from their recognition sequence as a consequence of ATP-dependent DNA translocation past the enzyme. During this reaction, the enzyme remains bound to the recognition sequence and translocates DNA towards itself simultaneously from both directions, generating DNA loops, which appear to be supercoiled when visualised by electron microscopy. To further investigate the mechanism of DNA translocation by type I restriction enzymes, we have probed the reaction intermediates with DNA topoisomerases. A DNA cleavage-deficient mutant of EcoAI, which has normal DNA translocation and ATPase activities, was used in these DNA supercoiling assays. In the presence of eubacterial DNA topoisomerase I, which specifically removes negative supercoils, the EcoAI mutant introduced positive supercoils into relaxed plasmid DNA substrate in a reaction dependent on ATP hydrolysis. The same DNA supercoiling activity followed by DNA cleavage was observed with the wild-type EcoAI endonuclease. Positive supercoils were not seen when eubacterial DNA topoisomerase I was replaced by eukaryotic DNA topoisomerase I, which removes both positive and negative supercoils. Furthermore, addition of eukaryotic DNA topoisomerase I to the product of the supercoiling reaction resulted in its rapid relaxation. These results are consistent with a model in which EcoAI translocation along the helical path of closed circular DNA duplex simultaneously generates positive supercoils ahead and negative supercoils behind the moving complex in the contracting and expanding DNA loops, respectively. In addition, we show that the highly positively supercoiled DNA generated by the EcoAI mutant is cleaved by EcoAI wild-type endonuclease much more slowly than relaxed DNA. This suggests that the topological changes in the DNA substrate associated with DNA translocation by type I restriction enzymes do not appear to be the trigger for DNA cleavage.  相似文献   

5.
Large scale purification of the type I modification methylase EcoR124 has been achieved from an over-expressing strain by a two step procedure using ion-exchange and heparin chromatography. Pure methylase is obtained at a yield of 30 mg per gm of cell paste. Measurements of the molecular weight and subunit stoichiometry show that the enzyme is a trimeric complex of 162 kDa consisting of two subunits of HsdM (58 kDa) and one subunit of HsdS (46 kDa). The purified enzyme can methylate a DNA fragment bearing its cognate recognition sequence. Binding of the methylase to synthetic DNA fragments containing either the EcoR124 recognition sequence GAAN6RTCG, or the recognition sequence GAAN7RTCG of the related enzyme EcoR124/3, was followed by fluorescence competition assays and by gel retardation analysis. The results show that the methylase binds to its correct sequence with an affinity of the order 10(8) M-1 forming a 1:1 complex with the DNA. The affinity for the incorrect sequence, differing by an additional base pair in the non-specific spacer, is almost two orders of magnitude lower.  相似文献   

6.
I Taylor  D Watts    G Kneale 《Nucleic acids research》1993,21(21):4929-4935
The type I DNA modification methylase M.EcoR124I binds sequence specifically to DNA and protects a 25bp fragment containing its cognate recognition sequence from digestion by exonuclease III. Using modified synthetic oligonucleotide duplexes we have investigated the catalytic properties of the methylase, and have established that a specific adenine on each strand of DNA is the site of methylation. We show that the rate of methylation of each adenine is increased at least 100 fold by prior methylation at the other site. However, this is accompanied by a significant decrease in the affinity of the methylase for these substrates according to competitive gel retardation assays. In contrast, methylation of an adenine in the recognition site which is not a target for the enzyme results in only a small decrease in both DNA binding affinity and rate of methylation by the enzyme.  相似文献   

7.
The type I restriction-modification enzyme EcoR124I comprises three subunits with the stoichiometry HsdR2/HsdM2/HsdS1. The HsdR subunits are archetypical examples of the fusion between nuclease and helicase domains into a single polypeptide, a linkage that is found in a great many other DNA processing enzymes. To explore the interrelationship between these physically linked domains, we examined the DNA translocation properties of EcoR124I complexes in which the HsdR subunits had been mutated in the RecB-like nuclease motif II or III. We found that nuclease mutations can have multiple effects on DNA translocation despite being distinct from the helicase domain. In addition to reductions in DNA cleavage activity, we also observed decreased translocation and ATPase rates, different enzyme populations with different characteristic translocation rates, a tendency to stall during initiation and altered HsdR turnover dynamics. The significance of these observations to our understanding of domain interactions in molecular machines is discussed.  相似文献   

8.
Type I restriction endonucleases such as EcoR124I cleave DNA at undefined loci, distant from their recognition sequences, by a mechanism that involves the enzyme tracking along the DNA between recognition and cleavage sites. This mechanism was examined on plasmids that carried recognition sites for EcoR124I and recombination sites for resolvase, the latter to create DNA catenanes. Supercoiled substrates with either one or two restriction sites were linearized by EcoR124I at similar rates, although the two-site molecule underwent further cleavage more readily than the one-site DNA. The catenane from the plasmid with one EcoR124I site, carrying the site on the smaller of the two rings, was cleaved by EcoR124I exclusively in the small ring, and this underwent multiple cleavage akin to the two-site plasmid. Linear substrates derived from the plasmids were cleaved by EcoR124I at very slow rates. The communication between recognition and cleavage sites therefore cannot stem from random looping. Instead, it must follow the DNA contour between the sites. On a circular DNA, the translocation of non-specific DNA past the specifically bound protein should increase negative supercoiling in one domain and decrease it in the other. The ensuing topological barrier may be the trigger for DNA cleavage.  相似文献   

9.
Type I restriction enzymes use two motors to translocate DNA before carrying out DNA cleavage. The motor function is accomplished by amino-acid motifs typical for superfamily 2 helicases, although DNA unwinding is not observed. Using a combination of extensive single-molecule magnetic tweezers and stopped-flow bulk measurements, we fully characterized the (re)initiation of DNA translocation by EcoR124I. We found that the methyltransferase core unit of the enzyme loads the motor subunits onto adjacent DNA by allowing them to bind and initiate translocation. Termination of translocation occurs owing to dissociation of the motors from the core unit. Reinitiation of translocation requires binding of new motors from solution. The identification and quantification of further initiation steps--ATP binding and extrusion of an initial DNA loop--allowed us to deduce a complete kinetic reinitiation scheme. The dissociation/reassociation of motors during translocation allows dynamic control of the restriction process by the availability of motors. Direct evidence that this control mechanism is relevant in vivo is provided.  相似文献   

10.
The Type I restriction-modification enzyme EcoR124I is an ATP-dependent endonuclease that uses dsDNA translocation to locate and cleave distant non-specific DNA sites. Bioinformatic analysis of the HsdR subunits of EcoR124I and related Type I enzymes showed that in addition to the principal PD-(E/D)xK Motifs, I, II and III, a QxxxY motif is also present that is characteristic of RecB-family nucleases. The QxxxY motif resides immediately C-terminal to Motif III within a region of predicted alpha-helix. Using mutagenesis, we examined the role of the Q and Y residues in DNA binding, translocation and cleavage. Roles for the QxxxY motif in coordinating the catalytic residues or in stabilizing the nuclease domain on the DNA are discussed.  相似文献   

11.
Type I restriction-modification (RM) systems are large, multifunctional enzymes composed of three different subunits. HsdS and HsdM form a complex in which HsdS recognizes the target DNA sequence, and HsdM carries out methylation of adenosine residues. The HsdR subunit, when associated with the HsdS-HsdM complex, translocates DNA in an ATP-dependent process and cleaves unmethylated DNA at a distance of several thousand base-pairs from the recognition site. The molecular mechanism by which these enzymes translocate the DNA is not fully understood, in part because of the absence of crystal structures. To date, crystal structures have been determined for the individual HsdS and HsdM subunits and models have been built for the HsdM-HsdS complex with the DNA. However, no structure is available for the HsdR subunit. In this work, the gene coding for the HsdR subunit of EcoR124I was re-sequenced, which showed that there was an error in the published sequence. This changed the position of the stop codon and altered the last 17 amino acid residues of the protein sequence. An improved purification procedure was developed to enable HsdR to be purified efficiently for biophysical and structural analysis. Analytical ultracentrifugation shows that HsdR is monomeric in solution, and the frictional ratio of 1.21 indicates that the subunit is globular and fairly compact. Small angle neutron-scattering of the HsdR subunit indicates a radius of gyration of 3.4 nm and a maximum dimension of 10 nm. We constructed a model of the HsdR using protein fold-recognition and homology modelling to model individual domains, and small-angle neutron scattering data as restraints to combine them into a single molecule. The model reveals an ellipsoidal shape of the enzymatic core comprising the N-terminal and central domains, and suggests conformational heterogeneity of the C-terminal region implicated in binding of HsdR to the HsdS-HsdM complex.  相似文献   

12.
The type I DNA methyltransferase M.EcoR124I consists of two methylation subunits (HsdM) and one DNA recognition subunit (HsdS). When expressed independently, HsdS is insoluble, but this subunit can be obtained in soluble form as a GST fusion protein. We show that the HsdS subunit, even as a fusion protein, is unable to form a discrete complex with its DNA recognition sequence. When HsdM is added to the HsdS fusion protein, discrete complexes are formed but these are unable to methylate DNA. The two complexes formed correspond to species with one or two copies of the HsdM subunit, indicating that blocking the N-terminus of HsdS affects one of the HsdM binding sites. However, removal of the GST moiety from such complexes results in tight and specific DNA binding and restores full methylation activity. The results clearly demonstrate the importance of the HsdM subunit for DNA binding, in addition to its catalytic role in the methyltransferase reaction.  相似文献   

13.
The type IC DNA methyltransferase M.EcoR124I is a trimeric enzyme of 162 kDa consisting of two modification subunits, HsdM, and a single specificity subunit, HsdS. Studies have been largely restricted to the HsdM subunit or to the intact methyltransferase since the HsdS subunit is insoluble when over-expressed independently of HsdM. Two soluble fragments of the HsdS subunit have been cloned, expressed and purified; a 25 kDa N-terminal fragment (S3) comprising the N-terminal target recognition domain together with the central conserved domain, and a 8.6 kDa fragment (S11) comprising the central conserved domain alone. Analytical ultracentrifugation shows that the S3 subunit exists principally as a dimer of 50 kDa. Gel retardation and competition assays show that both S3 and S11 are able to bind to HsdM, each with a subunit stoichiometry of 1:1. The tetrameric complex (S3/HsdM)(2) is required for effective DNA binding. Cooperative binding is observed and at low enzyme concentration, the multisubunit complex dissociates, leading to a loss of DNA binding activity. The (S3/HsdM)(2) complex is able to bind to both the EcoR124I DNA recognition sequence GAAN(6)RTCG and a symmetrical DNA sequence GAAN(7)TTC, but has a 30-fold higher affinity binding for the latter DNA sequence. Exonuclease III footprinting of the (S3/HsdM)(2) -DNA complex indicates that 29 nucleotides are protected on each strand, corresponding to a region 8 bp on both the 3' and 5' sides of the recognition sequence bound by the (S3/HsdM)(2) complex.  相似文献   

14.
15.
Type I restriction-modification (R-M) enzymes are composed of three different subunits, of which HsdS determines DNA specificity, HsdM is responsible for DNA methylation and HsdR is required for restriction. The HsdM and HsdS subunits can also form an independent DNA methyltransferase with a subunit stoichiometry of M2S1. We found that the purified Eco R124I R-M enzyme was a mixture of two species as detected by the presence of two differently migrating specific DNA-protein complexes in a gel retardation assay. An analysis of protein subunits isolated from the complexes indicated that the larger species had a stoichiometry of R2M2S1and the smaller species had a stoichiometry of R1M2S1. In vitro analysis of subunit assembly revealed that while binding of the first HsdR subunit to the M2S1complex was very tight, the second HsdR subunit was bound weakly and it dissociated from the R1M2S1complex with an apparent K d of approximately 2.4 x 10(-7) M. Functional assays have shown that only the R2M2S1complex is capable of DNA cleavage, however, the R1M2S1complex retains ATPase activity. The relevance of this situation is discussed in terms of the regulation of restriction activity in vivo upon conjugative transfer of a plasmid-born R-M system into an unmodified host cell.  相似文献   

16.
Type III restriction enzymes are multifunctional heterooligomeric enzymes that cleave DNA at a fixed position downstream of a non-symmetric recognition site. For effective DNA cleavage these restriction enzymes need the presence of two unmethylated, inversely oriented recognition sites in the DNA molecule. DNA cleavage was proposed to result from ATP-dependent DNA translocation, which is expected to induce DNA loop formation, and collision of two enzyme-DNA complexes. We used scanning force microscopy to visualise the protein interaction with linear DNA molecules containing two EcoP15I recognition sites in inverse orientation. In the presence of the cofactors ATP and Mg(2+), EcoP15I molecules were shown to bind specifically to the recognition sites and to form DNA loop structures. One of the origins of the protein-clipped DNA loops was shown to be located at an EcoP15I recognition site, the other origin had an unspecific position in between the two EcoP15I recognition sites. The data demonstrate for the first time DNA translocation by the Type III restriction enzyme EcoP15I using scanning force microscopy. Moreover, our study revealed differences in the DNA-translocation processes mediated by Type I and Type III restriction enzymes.  相似文献   

17.
The HsdS subunit of a type I restriction-modification (R-M) system plays an essential role in the activity of both the modification methylase and the restriction endonuclease. This subunit is responsible for DNA binding, but also contains conserved amino acid sequences responsible for protein-protein interactions. The most important protein-protein interactions are those between the HsdS subunit and the HsdM (methylation) subunit that result in assembly of an independent methylase (MTase) of stoichiometry M(2)S(1). Here, we analysed the impact on the restriction and modification activities of the change Trp(212)-->Arg in the distal border of the central conserved region of the EcoR124I HsdS subunit. We demonstrate that this point mutation significantly influences the ability of the mutant HsdS subunit to assemble with the HsdM subunit to produce a functional MTase. As a consequence of this, the mutant MTase has drastically reduced DNA binding, which is restored only when the HsdR (restriction) subunit binds with the MTase. Therefore, HsdR acts as a chaperon allowing not only binding of the enzyme to DNA, but also restoring the methylation activity and, at sufficiently high concentrations in vitro of HsdR, restoring restriction activity.  相似文献   

18.
We have characterized a novel mutant of EcoDXXI, a type IC DNA restriction and modification (R-M) system, in which the specificity has been altered due to a Tn5 insertion into the middle of hsdS, the gene which encodes the polypeptide that confers DNA sequence specificity to both the restriction and the modification reactions. Like other type I enzymes, the wild type EcoDXXI recognizes a sequence composed of two asymmetrical half sites separated by a spacer region: TCA(N7)RTTC. Purification of the EcoDXXI mutant methylase and subsequent in vitro DNA methylation assays identified the mutant recognition sequence as an interrupted palindrome, TCA(N8)TGA, in which the 5' half site of the wild type site is repeated in inverse orientation. The additional base pair in the non-specific spacer of the mutant recognition sequence maintains the proper spacing between the two methylatable adenine groups. Sequencing of both the wild type and mutant EcoDXXI hsdS genes showed that the Tn5 insertion occurred at nucleotide 673 of the 1221 bp gene. This effectively deletes the entire carboxyl-terminal DNA binding domain which recognizes the 3' half of the EcoDXXI binding site. The truncated hsdS gene still encodes both the amino-terminal DNA binding domain and the conserved repeated sequence that defines the length of the recognition site spacer region. We propose that the EcoDXXI mutant methylase utilizes two truncated hsdS subunits to recognize its binding site. The implications of this finding in terms of subunit interactions and the malleability of the type I R-M systems will be discussed.  相似文献   

19.
DNA translocation by the restriction enzyme from E. coli K   总被引:16,自引:0,他引:16  
R Yuan  D L Hamilton  J Burckhardt 《Cell》1980,20(1):237-244
The restriction endonuclease Eco K binds to a host specificity site and then proceeds to cleave the DNA at sites that may to several thousand bases away. It does this by translocating the DNA past the enzyme in an ATP-dependent reaction that results in the formation of highly twisted loop intermediates. DNA cleavage can occur on either side of the host specificity site.  相似文献   

20.
Type I restriction-modification (RM) systems are comprised of two multi-subunit enzymes, the methyltransferase (~160 kDa), responsible for methylation of DNA, and the restriction endonuclease (~400 kDa), responsible for DNA cleavage. Both enzymes share a number of subunits. An engineered RM system, EcoR124I(NT), based on the N-terminal domain of the specificity subunit of EcoR124I was constructed that recognises the symmetrical sequence GAAN(7)TTC and is active as a methyltransferase. Here, we investigate the restriction endonuclease activity of R. EcoR124I(NT)in vitro and the subunit assembly of the multi-subunit enzyme. Finally, using small-angle neutron scattering and selective deuteration, we present a low-resolution structural model of the endonuclease and locate the motor subunits within the multi-subunit enzyme. We show that the covalent linkage between the two target recognition domains of the specificity subunit is not required for subunit assembly or enzyme activity, and discuss the implications for the evolution of Type I enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号