首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of glycosylation on the stability and subunit interactions of vicilin, the major storage protein in pea seeds, were investigated. Glycosylated vicilin derivatives were prepared by alkylation of lysine epsilon-amino groups with various carbohydrates. Average modification levels of 13.4 +/- 3.0, 11.1 +/- 3.6, 7.5 +/- 4.2, and 4.7 +/- 0.3 moles of carbohydrate/mol of vicilin were obtained with glucose, galactose, galacturonic acid, and lactose, respectively. Nondenaturing polyacrylamide gel electrophoresis and size-exclusion chromatography indicated that the quaternary structure and hydrodynamic radius of vicilin were not affected by glycosylation at the levels used. We have previously shown that application of hydrostatic pressure causes dissociation of vicilin subunits [C. Pedrosa and S. T. Ferreira (1994) Biochemistry 33, 4046-4055]. Analysis of pressure dissociation data allowed determination of the Gibbs free energy change (deltaG(diss)) and molar volume change (deltaV(diss)) of dissociation of vicilin subunits. For unmodified vicilin, deltaG(diss) = 18.2 kcal/mol and deltaV(diss) = -102 ml/mol. Glycosylated vicilin derivatives were significantly stabilized against subunit dissociation, with deltaG(diss) of 19.4, 19.2, 20.6, and 22.1 kcal/mol for glucose, galactose, lactose, and galacturonic acid derivatives, respectively. No changes in deltaV(diss) were found for the glucose and galactose derivatives, whereas deltaV(diss) of -128 and -135 ml/mol, respectively, were found for the lactose and galacturonic acid derivatives. The glycosylated derivatives also appeared more resistant to unfolding by guanidine hydrochloride than unmodified vicilin. Intrinsic fluorescence lifetime measurements showed that glycosylation caused a significant increase in heterogeneity of the fluorescence decay, possibly reflecting increased conformational heterogeneity of glycosylated derivatives relative to unmodified vicilin. These results indicate that the stability and subunit interactions of vicilin may be modulated by mild, selective glycosylation at low modification levels, an effect that may be of interest in the study of other oligomeric proteins.  相似文献   

2.
We report a method for the purification of vicilin from mung bean (Vigna radiata) mainly on the basis of solubility of mung bean vicilin even in high salt. Mung bean vicilin remains in solution even after 90% relative saturation of ammonium sulphate. The resulting supernatant after dialysis was subjected to gel filtration (Sephadex G-150) to remove other contaminant polypeptides, and finally the protein was purified by DEAE cellulose chromatography. This purified fraction exhibited 3 bands on SDS-PAGE compared with vicilin from other legumes which exhibite more than 3 bands generally. The results raise the possibility that the presence of the two small polypeptides in vicilin preparations is the breakdown product of the major larger one of mol.wt. 52 K and that vicilin may be a tetramer of four subunits of Mr 52000. That the high salt-soluble protein containing 52 K subunit is vicilin has been determined by several criteria.  相似文献   

3.
Pigeonpea (Cajanus cajan) vicilin (Mr 190 kD) holoprotein contains 2 subunits and the N-terminal amino acid sequence is Gly-Ala-Arg-Val-Asp-Gln-Glu for purified vicilin subunit 1 (Mr 72 kD) and Thr-Thr-Cys-Met-Glu-Ser-Gly for purified vicilin subunit 2 (Mr 57 kD). Circular dichroism spectra of vicilin indicate the occurrence of a predominant beta- pleated sheet structure. The fluorescence studies of vicilin reveal its unusual stability to 8 M urea and 6 M guanidine HCl.  相似文献   

4.
D. J. Wright  D. Boulter 《Planta》1972,105(1):60-65
Summary Vicilin and legumin were extracted from developing seeds at different stages using the classical method of repeated isoelectric precipitations. The subunits of these two protein fractions were separated by SDS gel electrophoresis, and it was shown that the sub-unit structure of vicilin changed during development whereas that of legumin did not. Thus vicilin is not a single protein.Vicilin was formed prior to legumin during seed development although the rate of synthesis of the latter was faster, so that in the mature seed the ratio of legumin to vicilin was about 4:1 by weight.  相似文献   

5.
《Phytochemistry》1987,26(3):627-631
The highly specific proteolytic breakdown observed upon prolonged treatment of pea legumin and pea and jack bean vicilin with a thiol endopeptidase purified from mature lupin seeds has been studied in detail. Proteolytic cleavage occurred in the acidic subunits of pea legumin, whereas the basic subunits were unaffected. Jack bean vicilin (M, 47 K) was cleaved near the middle of the polypeptide chain, whereas pea vicilin (M, 50 K) was cleaved into two fragments of M, 30 K and 20 K, respectively. The 30 K M, polypeptide chain contained covalently linked carbohydrate and had an N-terminal sequence suggesting that cleavage had taken place between the α and β region of the vicilin 50 K M, polypeptide as previously described in vivo. These results suggested that the cleavage specificity of lupin endopeptidase was in the proximity of paired arginine amino acid residues.The changes in the vicilin polypeptides due to proteolytic cleavage by lupin enzyme and those occurring during germination of pea seeds are also reported and discussed.  相似文献   

6.
Summary Legumin and vicilin were purified from seeds of Vicia faba L. var. Scuro, characterized in different electrophoretic systems, and used to produce polyclonal antibodies in rabbits. Two-dimensional electrophoretic studies showed a wide range of heterogeneity in the subunits of both legumin and vicilin. Legumin was found to be composed of 29 disulphide-linked subunit pairs with different molecular weight and/or isoelectric point. Western blot analysis of legumin of several mutants revealed molecular polymorphism based on a corresponding gene family. Three different -major legumin patterns were found, and inheritance studies showed that the 34.3-kD legumin polypeptide is the product of one locus, Lg-1, which is the first legumin genetic locus described in Vicia faba. Vicilin was found to be composed of as many as 59 subunits distributed in a molecular weight range of 65.7 to 42.8 kD (major polypeptides) and 37.2 to 15.2 kD (minor polypeptides), with different isoelectric points. A model is proposed that explains the possible formation of the minor subunits and the major subunits of 48.2 and 46 kD molecular weight (MW) from proteolytic cleavages and/or glycosilation of precursor polypeptides. Ten different vicilin electrophoretic patterns were observed among the analyzed accessions, which showed large molecular polymorphism that proved to be under genetic control.Contribution no. 55 from the Center of Vegetable Breeding, Portici, Italy  相似文献   

7.
Polyribosomes which have template activity in the wheat germ system have been isolated from developing pea seeds. Some of the translation products have identical mobilities to the vicilin and legumin subunits by SDS-PAGE. Certain products were specifically immunoprecipitated with antisera prepared against purified vicilin and legumin fractions. Various RNA fractions including poly A-rich RNA have also been isolated from polyribosomes and shown to direct the synthesis of polyripeptides whose properties are similar to the storage protein subunits. The results are discussed in relationship to other investigations with seed storage protein biosynthesis in vitro.Abbreviations DTT dithiothreitol - SDS-PAGE SDS-polyacrylamide gel electrophoresis - TCA tricarboxylic acid  相似文献   

8.
Cotyledons of Phaseolus aureus contain protein-bound glucosamine which is metabolized during germination. The glucosamine is present in storage glycoproteins, and these are concurrently metabolized along with the glucosamine. These glycoproteins are associated with protein bodies. Characterization of the glucosamine-containing storage proteins showed them to be identical with vicilin and legumin, the major storage proteins of the Leguminosae. Phaseolus aureus vicilin has a sedimentation constant of 8.0S and is made up of four nonidentical subunits. It contains 0.2% glucosamine and 1% mannose. Legumin has a sedimentation constant of 11.3S and is made up of three nonidentical subunits. It contains about 0.1% glucosamine.  相似文献   

9.
豌豆球蛋白及其亚基的分离提纯   总被引:3,自引:0,他引:3  
本文详细地叙述了提取、分离、提纯豌豆球蛋白及其亚基的方法:用硼酸钠缓冲液提取豌豆球蛋白,用85%饱和度硫酸铵沉淀除去其它蛋白质杂质,再用凝胶柱进一步提纯;提纯的豌豆球蛋白通过DE_(52)-纤维素阴离子树脂柱(8M尿素作为变性分离试剂)和S_(200)凝胶柱(70%甲酸作为变性分离试剂)则可分离出豌豆球蛋白的各个亚基;试验结果还表明:在pH8.5时,33,000的亚基携带少量负电荷;而12,000的亚基携带大量负电荷。  相似文献   

10.
From the storage proteins of the pea (Pisum sativum), the fraction which interacts with the pea lectin by the sugar-binding site was studied. By electrophoretical subunit patterns and other criteria, this fraction resembles the group of the 7S storage proteins (vicilins). The fraction was resolved into subunits by micropreparative SDS PAGE. The N-terminal sequences of the individual subunits were determined. Most of these are identical with published vivilin subunit sequences; therefore this lectin-binding fraction belongs to the vicilins. Selected subunits and tryptic fragments were analysed for amino-acid compositions. Though unequivocal assignments to vicilin segments were possible, significant differences could be recognized, in particular in the tryptic fragments.  相似文献   

11.
Cotyledons of developing pea seeds (pisum sativum L.) were labeled with radioactive amino acids and glucosamine, and extracts were prepared and separated into fractions rich in endoplasmic reticulum (ER) or protein bodies, The time-course of synthesis of the polypeptides of legumin and vicilin and the site of their assembly into protein oligomers were studied using immunoaffinity gels and sucrose density gradients. When cotyledons were pulse-labeled (1-2 h), newly synthesized vicilin was present as a series of polypeptides with M(r) 60,000-65,000, and newly synthesized vicilin was present as series of polypeptides with M(r) 75,000, 70,000, 50,000, and 49,000. These radioactive polypeptides were found primarily in the ER (Chrispeels et al., 1982, J Cell Biol., 93:5- 14). During a subsequent chase period, newly synthesized reserve proteins were initially present in the protein bodies in the above-named polypeptides. Between 1 and 20 h later, radioactive legumin subunits (M(r) 40,000 and 19,000) and smaller vicilin polypeptides (M(r) 34,000, 30,000, 25,000, 18,000, 14,000, 13,000, and 12,000) appeared in the protein bodies. The appearance of these labeled polypeptides in the protein bodies was not the result of a slow transport from the ER (or cytoplasm). Newly synthesized legumin and vicilin polypeptides were assembled into oligomers of 8S and 7S, respectively, in the ER. They appeared in the protein bodies in these oligomeric forms before the appearance of the smaller polypeptides (M(r) less than 49,000). These results indicate that the smaller vicilin polypeptides (M(r) less than 49,000) arise delayed posttranslational processing of some or all of the larger vicilin polypeptides. The precursors of legumin are completely processed in the protein bodies 2-3 h after their synthesis. The processing of the vicilin precursors is much slower (6-20 h) and only a fraction of the precursor molecules are processed. As a result both large (M(r) more than 49,000) and small polypeptides of vicilin accumulate in the protein bodies, whereas legumin accumulates only as polypeptides of M(r) 40,000 and 19,000.  相似文献   

12.
Extracts of bean (Phaseolus vulgaris L. cv. Greensleeves) cotyledons contained two abundant proteins: vicilin and phytohemagglutinin. Vicilin, a 6.9 S protein fraction at neutral pH, associated to an 18.0 S form at pH 4.5 and had 3 non-identical subunits with molecular weights (MW) of 52,000, 49,000 and 46,000. Phytohemagglutinin, a 6.4 S protein fraction, had 2 non-identical subunits with MW of 34,000 and 36,000. Phytohemagglutinin could be separated by isoelectrofocusing into a mitogenic and non-erythroagglutinating protein with a single subunit of MW=34,000, and a mitogenic and erythroagglutinating protein fraction which contained both subunits. Vicilin is apparently identical with the so called glycoprotein II (A. Pusztai and W.B. Watt, Biochim. Biophys. Acta 365, 57–71, 1970) and with globulin G1 (R.C. McLeester, T.C. Hall, S.M. Sun, F.A. Bliss, Phytochem. 2, 85; 1973), while phytohemagglutinin is identical with globulin G2 (McLeester et al., 1973). Since vicilin and phytohemagglutinin are internationally used names there is no need to introduce new names to describe P. vulgaris reserve proteins. Both proteins are catabolized in the course of seedling growth and are located in the protein bodies, indicating that they are reserve proteins. Vicilin isolated in its 18.0 S form from the cotyledons of young seedlings contains substantial quantities of smaller polypeptides, in addition the 3 original ones. We suggest that the presence of these small polypeptides represents partial breakdown of the vicilin prior to its complete catabolism.  相似文献   

13.
The glycoprotein nature of legumin and vicilin, the reserve globulins in the cotyledons of Pisum sativum was studied. Legumin from mature seed was found to contain 1% neutral sugars (mannose and glucose) and 0.1% amino sugar (glucosamine), whereas vicilin contained 0.3% neutral sugar (mannose) and 0.2% amino sugar (glucosamine). On the basis of the incorporation of 14C-labeled glucosamine, it appeared that not all of the component subunits of the reserve proteins are glycosylated to the same extent. In addition, it has been established that glycosylation occurs after peptide synthesis. During seed development there was a change in neutral sugars and amino sugar ratio in vicilin. During germination, the neutral sugars and the amino sugar content of the glycoproteins declined. These findings are discussed in relation to the synthesis and degradation of the glycosyl component of the glycoproteins.  相似文献   

14.
Phaseolus coccineus storage globulins were extracted from mature cotyledons, purified and characterized. Three major proteins were separated. A component showing erythroagglutinating activity was thoroughly purified by thyroglobulin-Sepharose chromatography. The relative molecular masses of the three fractions are Mr = 330, 178, and 500 kDa as determined by polyacrylamide gel electrophoresis (PAGE). They correspond to the proteins found in other systems and classified as phytohaemagglutinin (PHA), vicilin and legumin, respectively. Electrophoretic analyses under denaturating conditions (SDS-PAGE) evidenced the major subunits for the three proteins. Isoelectrofocusing of the isolated proteins indicated a large heterogeneity for vicilin. Part I.  相似文献   

15.
Intact pea (Pisum sativum L.) cotyledons were incubated with [14C]glucosamine at several stages of seed development and the resultant radioactive proteins were analysed by gel electrophoresis combined with immunoaffinity chromatography and sucrose gradient fractionation. Glucosamine was incorporated into at least five vicilin polypeptides (approx. molecular weight 70,000; 50,000, two components; 14,000, two components). No incorporation was detected into the subunits of legumin. Tunicamycin at 50 g/ml largely inhibited glucosamine incorporation but had little effect on the incorporation of 14C-labelled amino acids into cotyledon proteins, including vicilin. The assembly of vicilin polypeptides into full-sized protein oligomers (7–9 S) was also unaffected by tunicamycin. Chromatography on concanavalin A confirmed that glycosylation of cotyledon proteins was inhibited by tunicamycin. It is concluded that glycosylation of most cotyledonary proteins involves lipid-linked sugar intermediates, but that glycosylation itself is not an essential step in the synthesis of vicilin polypeptides nor in their assembly into oligomers.Abbreviations IgG immunoglobulin G - M Wt approximate molecular weight based on electrophoretic mobility relative to that of protein standards - SDS-PAGE Na-dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

16.
Serological studies and comparison of N-terminal amino acid sequences with the amino acid sequence deduced from a cDNA clone have been used to establish the sequence relationships between the subunits of the pea seed storage protein, vicilin. Subunits smaller than Mr~50 000 (i.e., Mr 34 000, 30 000, 25 000, 18 000, 14 000, 13 000 and 12 000) show extensive homology with molecules within Mr~50 000 group. Both the sequencing and serological data confirm earlier evidence from studies on vicilin synthesisin vivo andin vitro which indicated that the vicilin subunits smaller than Mr~50 000 arose by endoproteolytic cleavage of parent molecules within the Mr~50 000 group. Cleavage in different Mr 50 000 parent molecules containing either one or both of two susceptible processing sites accounts for the formation of all the vicilin subunits smaller than Mr~50 000, with the possible exception of the Mr34 000 polypeptide. The position of these sites in the putative parents were defined by reference to a complete amino acid sequence deduced from the sequence of DNA complementary to mRNA for one member of the Mr~50 000 group.  相似文献   

17.
Vicilin from pigeon pea (Cajanus cajan) seeds was purified and characterised. It has a M, of ca 180 000 and consists of two types of subunits having M,s of ca 72 000 and 57 000. The subunits are not linked by disulphide bonds. The vicilin of pigeon pea differs from that of Pisum or Vicia in the absence of small M, subunits.  相似文献   

18.
Gene constructs were designed to test the effect of the endoplasmic reticulum (ER)-targeting signal, KDEL, on the level of accumulation of a foreign protein in transgenic plants. The gene for the pea seed protein vicilin was modified by the addition of a sequence coding for this tetrapeptide at its carboxyl terminus. The altered gene was placed under the control of a CaMV 35S promoter and its expression in the leaves of both tobacco and lucerne (alfalfa) was compared with that of an equivalent vicilin construct lacking the KDEL-coding sequence. The presence of the ER-targeting signal led to a greatly enhanced accumulation of the heterologous protein. In lucerne and tobacco leaves, the level of vicilin-KDEL protein was 20 and 100 times greater than that of the unmodified vicilin, respectively. These differences in expression level could not be explained by corresponding differences in the steady-state levels or the translatability of the mRNAs. However, when the stability of vicilin and vicilin-KDEL proteins was compared in their respective transgenic hosts, unmodified vicilin was found to be degraded with a half-life of 4.5 h while vicilin-KDEL was much more stable with a half-life of more than 48 h. Immunogold labelling of leaf tissues from transgenic lucerne and tobacco showed the presence of vicilin associated with large aggregates within the ER lumen of vicilin-KDEL plants. No such aggregates were detected in transgenic plants expressing wild-type vicilin. It is concluded that the carboxy-terminal KDEL caused the retention of the modified vicilin in the ER, and that this retention led to the increased stability and higher level of accumulation of vicilin-KDEL in leaves of transgenic plants.  相似文献   

19.
Two novel antifungal proteins were purified and characterized from cheeseweed (Malva parviflora). Both proteins, designated CW-1 and CW-2, are composed of two different subunits of 5000 and 3000 Da, respectively. These proteins possess very potent antifungal activities, and more interestingly the inhibition is fungicidal instead of fungistatic. At low salt condition, the IC(50) of CW-1 and CW-2 against Fusarium graminearum (Fg) is 2.5 ppm. At high salt condition which diminishes the antifungal activity of many antifungal proteins, both CW-1 and CW-2 still maintain potent activity against Fg with IC(50) of 10 ppm. The two subunits could be separated by gel filtration in the presence of 6 M urea, but their antifungal activity cannot be recovered after the removal of urea. Amino acid sequence analysis indicates that both subunits of CW-1 show homology to 2S albumin, whereas the two subunits of CW-2 have homology to vicilin protein from cotton. To our knowledge, this is the first report of isolation and characterization of heterologous antifungal proteins from any source.  相似文献   

20.
The primary structures for several members of both the vicilin and legumin families of storage proteins were examined using a computer routine based on amino acid physical characteristics. The comparison algorithm revealed that sequences from the two families could be aligned and share a number of predicted secondary structural features. The COOH-terminal half of the subunits in both families displayed a highly conserved core region that was largely hydrophobic and in which a high proportion of the residues were predicted to be in beta-sheet conformations. The central region of the molecules which contained mixed areas of predicted helical and sheet conformations showed more variability in residue selection than the COOH-terminal regions. The NH2-terminal segments of subunits from the two different families could not be aligned though they characteristically had a high proportion of residues predicted to be in helical conformations. The feature which most clearly distinguished subunits between the two families was an inserted span in the legumin group with a high proportion of acidic amino acids located between the central and COOH-terminal domains. Residues in this insertion were predicted to exist mainly in helical conformation. Since considerable size variation occurs in this area amongst the legumin subunits, alterations in this region may have a minimal detrimental effect on the structure of the proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号