首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Up-regulation of embryonic NCAM in an EC cell line by retinoic acid   总被引:2,自引:0,他引:2  
The impact of retinoic acid (RA) on the expression of the neural cell adhesion molecules (NCAMs) and their developmentally regulated polysialic acid (PSA) moiety was studied in embryonal carcinoma (EC) cell lines. These cell lines are known to be capable of RA-induced differentiation into neurons (murine P19 cells) or parietal endoderm (murine F9 cells), respectively. Monoclonal antibodies were employed to monitor expression of NCAM and PSA. F9 and P19 cells were both found to express NCAM but only P19 cells carried the highly polysialylated "embryonic form" of NCAM (E-NCAM). The amount of NCAM in aggregated P19 cells but not in F9 cells was dramatically increased upon treatment with RA. Since NCAMs play an important role in cell interactions during embryogenesis it is tempting to speculate that the regulative impact of RA on NCAMs is related to its morphogenic property.  相似文献   

2.
Retinoid X receptors (RXRs) heterodimerize with multiple nuclear hormone receptors and are thought to exert pleiotropic functions. To address the role of RXRs in retinoic acid- (RA) mediated gene regulation, we designed a dominant negative RXR beta. This mutated receptor, termed DBD-, lacked the DNA binding domain but retained the ability to dimerize with partner receptors, resulting in formation of nonfunctional dimers. DBD- was transfected into P19 murine embryonal carcinoma (EC) cells, in which reporters containing the RA-responsive elements (RAREs) were activated by RA through the activity of endogenous RXR-RA receptor (RAR) heterodimers. We found that DBD- had a dominant negative activity on the RARE reporter activity in these cells. P19 clones stably expressing DBD- were established; these clones also failed to activate RARE-driven reporters in response to RA. Further, these cells were defective in RA-induced mRNA expression of Hox-1.3 and RAR beta, as well as in RA-induced down-regulation of Oct3 mRNA. Gel mobility shift assays demonstrated that RA treatment of control P19 cells induces RARE-binding activity, of which RXR beta is a major component. However, the RA-induced binding activity was greatly reduced in cells expressing DBD-. By genomic footprinting, we show that RA treatment induces in vivo occupancy of the RARE in the endogenous RAR beta gene in control P19 cells but that this occupancy is not observed with the DBD- cells. These data provide evidence that the dominant negative activity of DBD- is caused by the lack of receptor binding to target DNA. Finally, we show that in F9 EC cells expression of DBD- leads to inhibition of the growth arrest that accompanies RA-induced differentiation. Taken together, these results demonstrate that RXR beta and partner receptors play a central role in RA-mediated gene regulation and in the control of growth and differentiation in EC cells.  相似文献   

3.
Fgf8 is a member of the fibroblast growth factor (FGF) family that plays an important role in early neural development. Cellular aggregation and retinoic acid (RA) are needed for mouse embryonic carcinoma (EC) P19 cell neural differentiation. We have examined the Fgf8 gene in P19 cells during neural differentiation and identified 2 alternatively spliced Fgf8 isoforms, Fgf8a and Fgf8b, among the 8 known splicing isoforms in mammals. The expression of Fgf8a and Fgf8b mRNAs transiently and rapidly increased in the early stage of P19 cells during RA-induced neural differentiation, followed by a decline in expression. The relative amount of Fgf8b was clearly higher than that of Fgf8a at different time-points measured within 24 h after RA treatment. Increased Fgf8b mRNA expression was cellular-aggregation dependent. The results demonstrated that cellular-aggregation-induced Fgf8b, but not Fgf8a, may play a pivotal role in early neural differentiation of P19 cells.  相似文献   

4.
In both embryonal carcinoma (EC) and embryonic stem (ES) cells, the differentiation pathway entered after treatment with retinoic acid (RA) varies as it is based upon different conditions of culture. This study employs mouse EC cells P19 to investigate the effects of serum on RA-induced neural differentiation occurring in a simplified monolayer culture. Cell morphology and expression of lineage-specific molecular markers document that, while non-neural cell types arise after treatment with RA under serum-containing conditions, in chemically defined serum-free media RA induces massive neural differentiation in concentrations of 10(-9) M and higher. Moreover, not only neural (Mash-1) and neuroectodermal (Pax-6), but also endodermal (GATA-4, alpha-fetoprotein) genes are expressed at early stages of differentiation driven by RA under serum-free conditions. Furthermore, as determined by the luciferase reporter assay, the presence or absence of the serum does not affect the activity of the retinoic acid response element (RARE). Thus, mouse EC cells are able to produce neural cells upon exposure to RA even without culture in three-dimensional embryoid bodies (EBs). However, in contrast to standard EBs-involving protocol(s), neural differentiation in monolayer only takes place when complex signaling from serum factors is avoided. This simple and efficient strategy is proposed to serve as a basis for neurodifferentiation studies in vitro.  相似文献   

5.
6.
Phospholipase D (PLD) activity in mammalian cells has been associated with cell proliferation and differentiation. Here, we investigated the expression of PLD during differentiation of pluripotent embryonal carcinoma cells (P19) into astrocytes and neurons. Retinoic acid (RA)-induced differentiation increased PLD1 and PLD2 mRNA levels and PLD activity that was responsive to phorbol myristate acetate. Various agonists of membrane receptors activated PLD in RA-differentiated cells. Glutamate was a potent activator of PLD in neurons but not in astrocytes, whereas noradrenaline and carbachol increased PLD activity only in astrocytes. P19 neurons but not astrocytes released glutamate in response to a depolarizing stimulus, confirming the glutamatergic phenotype of these neurons. These results indicate upregulation of PLD gene expression associated with RA-induced neural differentiation.  相似文献   

7.
The pluripotent mouse embryonal carcinoma cell line P19 is widely used as a model for research on all-trans-retinoid acid (RA)-induced neuronal differentiation; however, the signaling pathways involved in this process remain unclear. This study aimed to reveal the molecular mechanism underlying the RA-induced neuronal differentiation of P19 cells. Real-time quantitative polymerase chain reaction and Western blot analysis were used to determine the expression of neuronal-specific markers, whereas flow cytometry was used to analyze cell cycle and cell apoptosis. The expression profiles of messenger RNAs (mRNAs) in RA-induced neuronal differentiation of P19 cells were analyzed using high-throughput sequencing, and the functions of differentially expressed mRNAs (DEMs) were determined by bioinformatics analysis. RA induced an increase in both class III β-tubulin (TUBB3) and neurofilament medium (NEFM) mRNA expression, indicating that RA successfully induces neuronal differentiation of P19 cells. Cell apoptosis was not affected; however, cell proliferation decreased. We found 4117 DEMs, which were enriched in the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, Wnt signaling pathway, and cell cycle. Particularly, a few DEMs could be identified in the PI3K/Akt signaling pathway networks, such as PI3K, Akt, glycogen synthase kinase-3β (GSK3β), cyclin-dependent kinase 4 (CDK4), P21, and Bax. RA significantly increased the protein expression of PI3K, Akt, phosphorylated Akt, GSK3β, phosphorylated GSK3β, CDK4, and P21, but it reduced Bax protein expression. The Akt inhibitor affected the increase of TUBB3 and NEFM mRNA expression in RA-induced P19 cells. The molecular mechanism underlying the RA-induced neuronal differentiation of P19 cells is potentially involved in the PI3K/Akt/GSK3β signaling pathway. The decreased cell proliferation ability of neuronally differentiated P19 cells could be associated with the expression of cell cycle proteins.  相似文献   

8.
9.
Stable transfectants with expression of small interfering RNA for targeting cyclophilin A (CypA) in p19 cells lose their potential for retinoic acid (RA)-induced neuronal differentiation but not Me(2)SO-induced mesodermal differentiation. This difference suggests that CypA is specifically required for the RA-induced neuronal pathway. In addition to the loss of RA-induced RA receptor beta expression and retinoic acid response element (RARE)-binding activity, a dramatic reduction in RA-induced RARE-mediated luciferase activity in the CypA knockdown cell line suggests that CypA affects RARE-mediated regulation of gene expression. Silent mutation of target sequences confirms the specificity of RNA interference in p19 embryonal carcinoma cells. Collectively, our data reveal that a novel function of CypA is required in the processing of RA-induced neuronal differentiation in p19 embryonal carcinoma cells.  相似文献   

10.
过量表达Wnt-1基因诱导P19细胞的神经分化   总被引:11,自引:1,他引:10  
Yang J  Sun H  Bian W  Jing NH 《生理学报》1998,50(3):289-295
Wnt-1基因在小鼠神经发育过程中起着重要的作用。该基因在胚胎性癌细胞P19细胞经分化过程中存在瞬时性表达。利用克隆到的Wnt-1基因转染P19细胞,可使细胞不经视黄酸诱导,自发向神经细胞方向分化。  相似文献   

11.
12.
13.
An J  Yuan Q  Wang C  Liu L  Tang K  Tian HY  Jing NH  Zhao FK 《Proteomics》2005,5(6):1656-1668
Mouse embryonic carcinoma P19 cell has been used extensively as a model to study molecular mechanisms of neural differentiation in vitro. After retinoic acid (RA) treatment and aggregation, P19 cells can differentiate into neural cells including neurons and glial cells. In this study, comparative proteomic analysis is utilized to approach the protein profiles associated with the RA-induced neural differentiation of P19 cells. Image analysis of silver stained two-dimensional gels indicated that 28 protein spots had significantly differential expression patterns in both quantity and quality. With mass spectrometry analysis and protein functional exploration, many proteins demonstrated an association with distinct aspects of neural differentiation. These proteins were gag polyprotein, rod cGMP-specific 3',5'-cyclic phosphodiesterase, 53 kDa BRG1-associated factor A, N-myc downstream regulated 1, Vitamin D receptor associated factor 1, stromal cell derived factor receptor 1, phosphoglycerate mutase, Ran-specific GTPase-activating protein, and retinoic acid (RA)-binding protein. While some cytoskeleton-related proteins such as beta cytoskeletal actin, gamma-actin, actin-related protein 1, tropomyosin 1, and cofilin 1 are related to cell migration and aggregation, other proteins have shown a relationship with distinct aspects of neural differentiation including energy production and utilization, protein synthesis and folding, cell signaling transduction, and self-protection. The differential expression patterns of these 28 proteins indicate their different roles during the neural differentiation of P19 cells. As an initial step toward unveiling the regulations involved in the commitment of pluripotent cells to a neural fate, information from this study may be helpful to uncover the molecular mechanisms of neural differentiation.  相似文献   

14.
P19 embryonal carcinoma cells provide an in vitro model system to analyze the events involved in neural differentiation. These multipotential stem cells can be induced by retinoic acid (RA) to differentiate into neural cells. We have investigated the ability of several variant forms of the protein-tyrosine kinase (PTK) pp60src to modulate cell fate determination in this system. Normally, P19 cells are induced to differentiate along a neural lineage when allowed to form extensive cell-cell contacts in large multicellular aggregates during exposure to RA. Through analysis of markers of epithelial (keratin and desmosomal proteins) and neuronal (neurofilament) cells we have found that RA-induced P19 cells transiently express epithelial markers before neuronal differentiation. Under these inductive conditions, expression of pp60v-src or expression of the neuronal variant pp60c-src+ inhibited neuronal differentiation, and resulted in maintained expression of an epithelial phenotype. Morphological analysis showed that expression of pp60src PTKs results in decreased cell-cell adhesion during the critical cell aggregation stage of the neural differentiation procedure. The effects of pp60v-src on cell fate and cell-cell adhesion could be mimicked by direct modulation of Ca+(+)-dependent cell-cell contact during RA induction of normal P19 cells. We conclude that the neural lineage of P19 cells includes an early epithelial intermediate and suggest that tyrosine phosphorylation can modulate cell fate determination during an early cell-cell adhesion-dependent event in neurogenesis.  相似文献   

15.
When cultured in the presence of either retinoic acid (RA) or dimethyl sulfoxide (DMSO), aggregates of the P19 line of mouse embryonal carcinoma (EC) cells differentiate and the spectrum of cell types formed depends on the drug dose. It is shown here the EC cells rapidly lose their colony-forming ability when cultured as aggregates in the presence of DMSO. This loss of plating efficiency (PE) also occurs rapidly following RA treatment. Loss of PE has been used as a quantitative procedure for assessing the rate of drug-induced differentiation. The relationship between drug dose and loss of PE is much steeper for DMSO than for RA, suggesting that these two drugs affect different stages of the differentiation decision-making apparatus. Mutant EC cell lines (D3 and RAC65) do not differentiate in the presence of drug-inducers (DMSO and RA, respectively). Neither differentiation-deficient mutant has an altered ability to form gap junctions. When D3 and P19 cells were mixed within the same DMSO-treated aggregates, the D3 cells remained undifferentiated and the P19 cells differentiated much less efficiently than if they were cultured in the absence of the D3 cells. When RAC65 and P19 cells were mixed in RA-treated aggregates, each cell responded to the drug as though the other were absent. Thus RA behaves as a cell-autonomous inducer of differentiation, whereas DMSO-induced differentiation seems to be mediated by interactions between neighboring cells.  相似文献   

16.
N-cadherin is one of the important molecules for cell to cell interaction in the development of the central nervous system (CNS). In this report, we have shown that N-cadherin mRNA and protein were increased rapidly in retinoic acid (RA)-induced neuronal differentiation of embryonic carcinoma P19 cells. To explore possible roles for N-cadherin during this process, N-cadherin-overexpressing P19 cell lines were established. These transfected cells could differentiate into neurofilament-expressing neurons in the absence of RA. RT-PCR revealed that the expression patterns of development-related genes, such as Oct-3/4, nestin, Notch-1, and Mash-1 were similar between the transfected P19 cells and the RA-induced wild-type P19 cells during their neuronal differentiation. On the contrary, the Wnt-1 gene was up-regulated in the N-cadherin-overexpressing P19 cells, but could not be detected in the wild-type P19 cells. These results suggest N-cadherin may play a role in neuronal differentiation of P19 cells, possibly through the Wnt-1 signaling pathway.  相似文献   

17.
18.
Mouse P19 embryonal carcinoma (EC) cells express on their surfaces a Thy-1 glycoprotein. The expression of Thy-1 at the mRNA and protein levels is down-regulated during differentiation induced by retinoic acid (RA). Thy-1 is also expressed in human NTERA-2 EC cells, but its expression is not down-regulated during RA-induced differentiation. As a first step towards understanding differential regulation of the mouse and human Thy-1 gene in EC cells, we have introduced genomic DNA fragments encompassing the mouse or human Thy-1 gene into NTERA-2 and P19-derived cells and analyzed surface properties of the transfectants. In the transient transfection assay, both mouse and human Thy-1 genes were expressed on cell surfaces at comparable levels. P19-derived stable transfectants exhibited great clonal variations in the expressions of the transfected Thy-1 gene products, which in part reflected copy numbers. There was no simple correlation between the expression of the transfected Thy-1 gene and two stem cell surface markers, TEC-1 and TEC-4. In the course of differentiation induced by RA several clones with a surface phenotype of EC cells exhibited a significant decrease in the expression of the transfected mouse Thy-1, whereas expression of the human Thy-1 was less efficiently down-regulated. The results suggest the presence of multiple cis- and trans-acting elements controlling expression of the mouse and human Thy-1 genes in P19 EC cells and their differentiated derivatives.  相似文献   

19.
Summary Heat shock proteins (HSPs) have been recognized as molecules that maintain cellular homeostasis during changes in the environment. Here we report that HSP90 functions not only in stress responses but also in certain aspects of cellular differentiation. We found that HSP90 slowed remarkably high expression in undifferentiated human embryonal carcinoma (EC) cells, which were subsequently dramatically down-regulated during in vitro cellular differentiation, following retinoic acid (RA) treatment, at the protein level. Surprisingly, heat shock treatment also triggered the down-regulation of HSP90 within 48 h at the protein level. Furthermore, the heat treatment induced cellular differentiation into neural cells. This down-regulation of HSP90 by heat treatment was shifted to an up-regulation attern after cellular differentiation in response to RA treatment. In order to clarify the functions of HSP90 in cellular differentiation, we conducted various experiments, including overexpression of HSP90 via gene transfer. We showed that the RA-induced differentiation of EC cells into a neural cell lineage was inhibited by overexpression of the HSP90α or-β isoform via the gene transfer method. On the other hand, the overexpression of HSP90β alone impaired cellular differentiation into trophoectoderm. These results show that down-regulation of HSP90 is a physiological critical event in the differentiation of human EC cells and that specific HSP90 isoforms may be involved in differentiation into specific cell lineages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号