首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The incorporation of [2-(14)C]uridine into nucleic acids of bone cells was studied in rat and pig trabecular-bone fragments surviving in vitro. 2. The rapid uptake of uridine into trichloroacetic acid-soluble material, and its subsequent incorporation into a crude nucleic acid fraction of bone or purified RNA extracted from isolated bone cells, was proportional to uridine concentration in the incubation medium over a range 0.5-20.0mum. 3. During continued exposure to radioactive uridine, bulk RNA became labelled in a curvilinear fashion. Radioactivity rapidly entered nuclear RNA, which approached its maximum specific activity by 2hr. of incubation; cytoplasmic RNA, and particularly microsomal RNA, was more slowly labelled. The kinetics of labelling and rapid decline of the nuclear/microsomal specific activity ratio were consistent with a precursor-product relationship. 4. Bulk RNA preparations were resolved by zonal centrifugation in sucrose density gradients into components with approximate sedimentation coefficients 28s, 18s and 4s. 5. Rapidly labelled RNA, predominantly nuclear in location, demonstrated a polydisperse sedimentation pattern that did not conform to the major types of stable cellular RNA. Material of highest specific activity, sedimenting in the 4-18s region and insoluble in 10% (w/v) sodium chloride, rapidly achieved its maximum activity during continued exposure to radioactive precursor and decayed equally rapidly during ;chase' incubation, exhibiting an average half-life of 4.3hr. 6. Ribosomal 28s and 18s RNA were of lower specific activity, which increased linearly for at least 6hr. in the continued presence of radioactive uridine. There was persistent but variable incorporation into ribosomal RNA during ;chase' incubation despite rapid decline in total radioactivity of the acid-soluble pool containing RNA precursors.  相似文献   

2.
3.
—Thyroid hormone deficiency induced during the neonatal period in the rat, resulted in an enhanced incorporation of [2-14C]uridine and [8-14C]adenosine in vitro into cerebral cortical RNA at 25 days of age. An examination of the acid-soluble pool constituents separated by polyethyleneiminecellulose TLC, revealed that all phosphorylated derivatives were more highly labelled compared to controls. These differences were not apparent at a lower incubation temperature (4°C). When the average specific activity of precursor pool ATP labelled from adenosine was utilized for the calculation of the rate of RNA synthesis, no change was observed in hypothyroidism. The results are compatible with a maturational-dependent increase in nucleoside transport and rate of phosphorylation in hypothyroidism which is reflected in the stimulated incorporation into cerebral RNA. The apparent normal rate of RNA synthesis coupled with a diminished cellular RNA concentration in thyroid hormone deficiency, suggests an increased RNA turnover. Experiments with actinomycin D revealed no apparent difference in the rate of decay of rapidly-labelled (nuclear) RNA. The possibility is discussed that the processing of nuclear RNA, the formation of stable ribosomal complexes and events at the translational level are subject to modification in developing hypothyroid rats.  相似文献   

4.
Volker Ssymank 《Planta》1973,111(2):157-166
Summary Radioactive uridine is incorporated by Chlorella strain 211-8b/p into ribosomal subunits and their rapidly labelled RNA comigrates with chloroplast RNA on polycrylamide gels.Ribosomal particles which can be labelled by short pulses of orotic acid cosediment with the particles labelled by uridine pulses and contain the same RNA species as these when separated either on sucrose gradients or on polycrylamide gels. This incorporation is, like that of uridine, sensitive to rifampin and chloramphenicol, but insensitive to cycloheximide.A comparative study of short-time incorporation of uridine, orotic acid and guanosine into the RNA of Chlorella showed that all three precursors were incorporated mainly into RNA of chloroplastic origin. However, guanosine was also partly incorporated into cytoplasmic rRNA. Nitrogen-deficient cells always incorporated part of all three precursors into cytoplasmic rRNA, but the proportions of these were different among the different precursors.These results are consistent with the hypothesis that the described differences in the incorporation of the above mentioned precursors into RNA of different cellular compartments are largely attributable to effects of pool sizes.  相似文献   

5.
EFFECTS OF HYPOPHYSECTOMY ON RNA METABOLISM IN RAT BRAIN STEM   总被引:3,自引:2,他引:1  
Abstract— Ribosomal aggregates were isolated from rat brain stem and characterized as polysomes by sedimentation analysis and by their sensitivity to RNase and EDTA treatment.
Three weeks following hypophysectomy there was a significant decrease in the content of large polysomes in the rat brain stem. The incorporation of radioactive uridine into RNA was studied using a double-labelling technique with [3H]- and [14C]uridine and labelling periods of 70 and 180 min. It was found that after hypophysectomy the incorporation of radioactive uridine into total, nuclear and cytoplasmic RNA and in polysomes was decreased after 70 and 180 min. Information on the nature of the rapidly-labelled RNA in the various subcellular fractions was obtained by sucrose gradient sedimentation analysis.
After 70 min of labelling the nucleus contained heterogeneous RNA with a considerable fraction of RNA sedimenting faster than 28 S. In the cytoplasmic fraction heterogeneous 4 to 30 S RNA was found, presumably associated with RNP particles, whereas after 180 min the polyribosomal aggregates were also labelled.
The present results indicate a profound effect of hypophysectomy on the metabolism of all species of brain RNA investigated.  相似文献   

6.
Various species of rapidly labelled, informational ribonucleoproteins can be isolated from homogenates of newt oocytes. Polyribosome-associated ribonucleoprotein can be separated from heterogeneous nuclear ribonucleoprotein and free cytoplasmic ribonucleoprotein by sucrose gradient centrifugation. The polyribosome-associated ribonucleoprotein can be released from the ribosome complex by treatment with low concentrations of EDTA and has the following properties: 1. It is rapidly labelled with [3H]uridine under condition (incubation of oocytes for 4 h and less at 20 degrees C) where there is no detectable labelling of ribosomal subunits. 2. It is heterogeneous in size, consisting of particles most of which sediment between 40 S and 80 S. 3. Its sedimentation coefficient is related directly to the size of the polyribosomal complex from which it is derived. 4. Its density ranges from 1.35 g/cm3 to 1.55 g/cm3 irrespective of size. This indicates protein to RNA ratios of 4:1 to 2:1. 5. It is active, when complexed with ribosomes, in cell-free protein synthesis. It is concluded that this polyribosome-associated ribonucleoprotein is functional messenger and its role in oocyte maturation is discussed.  相似文献   

7.
1. Canine pancreas slices were incubated with [6-(14)C]orotic acid and the rate of its incorporation into RNA was measured. RNA was fractionated by shaking homogenates with phenol at 2 degrees , 50 degrees , 65 degrees and 80 degrees . Cytoplasmic RNA was extracted at the lowest temperature and nuclear RNA at the higher temperatures. The samples were centrifuged through sucrose gradients and the E(260) and (14)C-sedimentation patterns determined. Incorporation of orotic acid was very rapid into cytoplasmic 4s RNA. This probably represents end-group turnover. No incorporation into cytoplasmic ribosomal RNA was observed. 2. The nuclear 50 degrees -RNA exhibited two E(260) peaks, at 18s and 28s. This portion of the sample contained but moderate amounts of [(14)C]RNA. The highly labelled material had sedimentation coefficients in the range 35-50s. The nuclear 65 degrees -RNA showed an E(260) peak at 16s. The [(14)C]RNA peak occurred at 25-35s and this portion demonstrated the highest specific activity of any RNA fraction. 3. The 50 degrees -RNA, 65 degrees -RNA and 80 degrees -RNA were hydrolysed and their base compositions were determined. All three samples possess a ribosomal type of composition (G+C)/(A+U)=(1.4-1.7). For this reason they are considered to contain ribosomal precursor RNA as their major constituent. 4. Actinomycin D (0.5mug./ml.) in the incubation medium inhibited incorporation of orotic acid into both nuclear fractions but not into 4s RNA. 5. The cholinergic drug Urecholine inhibited incorporation into the heavy, high-specific-activity portions of the nuclear fractions but did not inhibit incorporation into the ribosomal precursor type of nuclear RNA. A similar result was also obtained with the hormone pancreozymin. Moderate inhibition of incorporation of orotic acid into 4s RNA likewise resulted from the presence of the drug and the hormone.  相似文献   

8.
Abstract— By using a combination of subcutaneous and intraventricular injections of [14C]uridine and [3H]methyl- l -methionine we have obtained maximum incorporation in about 40 min of both radioactive precursors into nuclear RNA from rat brain. In this nuclear fraction we found at least two different types of RNA that were rapidly labelled. One of them incorporated both [14C]uridine and [3H]methyl groups and seemed to correspond to species of rRNA and their precursors. The other RNA fraction was less methylated or non-methylated and exhibited sedimentation coefficients distributed along a continuous 8–30 % sucrose density gradient. At least part of the latter type of RNA very probably was mRNA, but much of it must conespond to a different RNA similar to that recently described in HeLa cells by P enman , V esco and P enman (1968).
We also found that labelled 185 and 285 rRNA components began leaving the nucleus for the cytoplasm within 24 to 33 min after the radioactive precursors had been injected, and, in the cytoplasmic fraction, the patterns of incorporation for [14C]uridine and [3H]-methyl groups were similar for the 18S and 28S rRNA components. We estimate that in this fraction of rat brain the 18S rRNA component was 1·4 times more methylated than the 28S component. We also detected a lower sedimentation coefficient for the non- or slightly methylated, species of soluble RNA found in the cytoplasmic fraction.  相似文献   

9.
Formation of low molecular weight RNA species in HeLa cells   总被引:17,自引:0,他引:17  
It has been previously shown that newly synthesized nuclear low molecular weight RNA species C and D are first detected in the cytoplasm for a few minutes before they are finally found in the nucleus. The following are some of the observations made in the present study, regarding the formation of C and D RNA: (1) The 5′ end cap ribose methylation of the C RNA precursor is complete in its cytoplasmic stage; the internal ribose methylation of the precursor seems to be completed about the time of its apparent transition from cytoplasm to nucleus. (2) The few nucleotides lost from the D RNA precursor during maturation seem to be excised sometime near its apparent cytoplasmic → nuclear transition. Newly synthesized C RNA also appears to lose some of its non-conserved nucleotides about the time of that transition, while the other extra nucleotides are lost later, in the nucleus. (3) The maturation of C and D RNA is inhibited early during suppression of protein synthesis by cycloheximide, while their synthesis is not. (4) The cytoplasmic precursors of C and D RNA are not associated with ribonucleoprotein particles as large as those reported for mature C and D RNA, although they do not appear to be free in the cytoplasm. (5) When the cellular UTP pool is depleted by exposure of the cells to amino sugars, and the synthesis of C, D, and other RNA species decreases, the level of[3H]uridine labeling of C and D RNA increases, while that of 4 S and 5 S RNA does not. These data are compatible with the existence of more than one nuclear UTP pool.  相似文献   

10.
In this study it is shown that a cytoplasmic cell organelle, the chromatoid body, becomes labelled with [3H]uridine in the pachytene spermatocytes. The chromatoid body becomes labelled when the cells are first labelled for 2 h in the presence of [3H]uridine and thereafter chased for 9 h in the presence of unlabelled uridine. This labelling is inhibited by the specific RNA polymerase II inhibitor α-amanitin. Based on this it is suggested that part of the RNA synthesized in the pachytene spermatocytes is stored in the chromatoid body and transported to the postmeiotic spermatids where it is used in the differentiation of the spermatids.  相似文献   

11.
In this study it is shown that a cytoplasmic cell organelle, the chromatoid body, becomes labelled with [3H]uridine in the pachytene spermatocytes. The chromatoid body becomes labelled when the cells are first labelled for 2 h in the presence of [3H]uridine and thereafter chased for 9 h in the presence of unlabelled uridine. This labelling is inhibited by the specific RNA polymerase II inhibitor α-amanitin. Based on this it is suggested that part of the RNA synthesized in the pachytene spermatocytes is stored in the chromatoid body and transported to the postmeiotic spermatids where it is used in the differentiation of the spermatids.  相似文献   

12.
Hybridizable ribonucleic acid of rat brain   总被引:5,自引:4,他引:1       下载免费PDF全文
1. Cerebral RNA of adult and newborn rats was labelled in vivo by intracervical injection of [5-3H]uridine or [32P]phosphate. Hepatic RNA of similar animals was labelled by intraperitoneal administration of [6-14C]orotic acid. Nuclear and cytoplasmic fractions were isolated and purified by procedures involving extraction with phenol and repeated precipitation with ethanol. 2. The fraction of pulse-labelled RNA from cerebral nuclei that hybridized to homologous DNA exhibited a wide range of turnover values and was heterogeneous in sucrose density gradients. 3. Base composition of the hybridizable RNA was similar to that of the total pulse-labelled material; both were DNA-like. 4. Pulse-labelled cerebral nuclear RNA hybridized to a greater extent than cytoplasmic RNA for at least a week after administration of labelled precursor. This finding suggested that cerebral nuclei contained a hybridizable component that was not transferred to cytoplasm. 5. The rates of decay of the hybridizable fractions of cerebral nuclei and cytoplasm were faster in the newborn animal than in the adult. Presumably a larger proportion of labile messenger RNA molecules was present in the immature brain. 6. Cerebral nuclear and cytoplasmic RNA fractions from newborn or adult rats, labelled either in vivo for periods varying from 4min. to 7 days or in vitro by exposure to [3H]-dimethyl sulphate, uniformly hybridized more effectively than the corresponding hepatic preparation. These data suggested that a larger proportion of RNA synthesis was oriented towards messenger RNA formation in brain than in liver.  相似文献   

13.
1. Electrophoresis on cellulose acetate membrane in a tris-pyrophosphate buffer was used to separate microsomal fractions into three components: (1) the lipoprotein; (2) the nucleoprotein (termed the beta-band); (3) traces of free RNA (termed the alpha-band). In tris buffer containing Mg(2+) the alpha-band was not obtained. 2. The incorporation of uridine and phosphate into RNA by excised pea-seedling root segments was studied by using this electrophoretic technique. 3. It was shown that after a short (;pulse') incubation in the radioactive precursor and a longer (;chase') incubation in the non-radioactive precursor most of the incorporation was into the RNA of the alpha-band and little into that of the beta-band. Previous work showed that in roots of whole seedlings the incorporation is mostly into the ribosomal RNA, corresponding to the material in the beta-band. 4. A pulse-labelled RNA has also been found; this seems to be a cell fraction distinct from the microsomes or ribosomes. 5. The apparent base compositions of labelled RNA in the alpha-band and small amounts of labelled RNA in the beta-band and of unfractionated RNA were very different from the composition of ribosomal or transfer RNA, and somewhat like that of DNA. 6. It is suggested that the excised root segment synthesizes a messenger-RNA fraction labelled after a pulse incubation and a distinct messenger RNA labelled after a pulse and chase incubation, but no ribosomal or transfer RNA. The system is thus similar to the ;step-down' culture conditions in bacteria.  相似文献   

14.
1. A study was made of the sedimentation properties of purified preparations of the rapidly labelled RNA in the nucleus and the cytoplasm of the HeLa cell. The sedimentation of the rapidly labelled nuclear RNA was very sensitive to changes in ionic strength and bivalent cation concentration. Under the conditions usually used in sucrose-density-gradient centrifugation the rapidly labelled nuclear RNA showed extreme polydispersity, and much of it sedimented more rapidly than the 28s RNA. At low ionic strength and after removal of Mg(2+), however, the rapidly labelled nuclear RNA sedimented as a single peak at about 16s. The conversion of the polydisperse material into the 16s form did not involve degradation of the RNA, since the effect could be reversed by increasing the ionic strength of the solution. 2. The cytoplasm did not contain any RNA that showed polydisperse sedimentation under the usual conditions of sucrose-density-gradient centrifugation, or that had the same sensitivity as the rapidly labelled nuclear RNA to changes in ionic strength. All the radioactivity in the cytoplasmic RNA sedimented with the 28s, 16s and 4s components over a wide range of physical conditions, but these components did contain a labelled fraction with some of the features of the rapidly labelled nuclear RNA on columns of methylated albumin on kieselguhr. 3. In both nucleus and cytoplasm the RNA detected by ultraviolet absorption could also be converted into a 16s form by removal of bivalent cations at low ionic strength; this effect was again, within certain limits, reversible. The nuclear RNA as a whole was more susceptible to changes in ionic strength than the cytoplasmic RNA. 4. It thus appears that all the RNA in the cell, except the 4s RNA, can be prepared, without degradation, as a single peak sedimenting at about 16s. The relationship of these various 16s components to each other is discussed.  相似文献   

15.
RNA molecules from nuclear and cytoplasmic polyribosomes of adenovirus-infected HeLa cells were compared by hybridization to analyse the sequence content. Nuclear polyribosomes were released by exposure of intact detergent-washed nuclei to poly(U) and purified. Cytoplasmic polyribosomes were also purified from the same cells. To show that nuclear polyribosomes contain ribosomes linked by mRNA, polyribosomes were labelled with methionine and uridine in the presence of actinomycin D in adenovirus-infected cells. Purified nuclear polyribosomes were treated with EDTA under conditions which dissociate polyribosomes into ribosomes and subunits with a simultaneous release of mRNA, and sedimented. The treatment dissociated these polyribosomes, releasing the mRNA from them. Radiolabelled total RNA from each polyribosome population was fractionated in sucrose gradients into several pools or hybridized to intact adenovirus DNA to select virus-specific RNA. Sucrose-gradient-fractionated pool-3 RNA (about 28S) and virus-specific RNA were then hybridized to fragments of adenovirus DNA cleaved by restriction endonucleases SmaI, HindIII and EcoRI by the Southern-blot technique and by filter hybridization. The results showed that nuclear RNA contained sequences, from about 0 to 18 map units, which were essentially absent from cytoplasmic RNA. Furthermore, the amount of virus-specific RNA for a particular sequence was also different in the two populations.  相似文献   

16.
Summary After short time pulses with 5-[3H]uridine have been given to Chlorella cells, most of the radioactivity of the ribosome fractions is neither in the polysomes nor in the cytoplasmic ribosomes. Peaks with sedimentation of about 50 S and 30 S are found which are comparable in sedimentation to ribosomal subunits of Escherichia coli. During chase treatment with the one-hundred-fold amount of unlabelled uridine, the radioactivity shifts into the 70 S region. The RNA of the rapidly labelled 50 S and 30 S particles is shown to have 23 S, 14 S and 5 S, respectively.In contrast to this, radioactive inorganic phosphate and amino acids are mainly incorporated into the cytoplasmic ribosomes with 80 S and into, their polysomes.The chloroplast-damaged mutant of Chlorella, Nr.125 of Schwarze, shows no uridine incorporation into particles of 50 S and of 30 S, but some very weak labelling of the 80 S cytoplasmic monosomes.Nitrogen deficient Chlorella cells also incorporate uridine mainly into the 50 S and 30 S particles. When chase treatment with unlabelled uridine is performed under recovering conditions, the label shifts into the 70 S particles as well as into the 80 S cytoplasmic ribosomes.The results indicate that in Chlorella, uridine is incorporated into chloroplast ribosome precursors rather than into particles of nuclear origin.  相似文献   

17.
18.
19.
1. Twenty minutes after injection of [(3)H]orotic acid into rats the rapidly labelled RNA from the liver is mainly associated with the nuclear fraction and little with the ribosomal cytoplasmic fraction. 2. The thermal denaturation of RNA from the fractions was not as reversible as that of the RNA extracted from whole liver. 3. Rapidly labelled RNA is synthesized by cells from a transplantable hepatoma when incubated in the presence of [(3)H]uridine and, after extraction and centrifugation, the label is present in three main fractions: one which sediments to the bottom of a gradient and is associated with DNA, a second which sediments to the heavy side of the 28s RNA, and a third which has a peak of activity between 28s RNA and 18s RNA and is associated with DNA. 4. After labelling and extraction of the RNA from Ehrlich ascites cells the distribution of radioactive components is similar to that of the material from the hepatoma cells. 5. The difference between the tumour cells and liver is due to some extent to the method of homogenizing the tissues and the nature of the components is discussed.  相似文献   

20.
1. The incorporation in vitro of [(32)P]phosphate into phospholipids and RNA and of [(125)I]iodide into protein-bound iodine by pig thyroid slices incubated for up to 6hr. was studied. The subcellular distribution of the labelled products formed after incubation with radioactive precursor in the nuclear, mitochondrial, smooth-microsomal, rough-microsomal and cell-sap fractions was also studied. 2. Pig thyroid slices actively took up [(32)P]phosphate from the medium during 6hr. of incubation; the rate of incorporation of (32)P into phospholipids was two to five times that into RNA. 3. The uptake of [(125)I]iodide by the slices from the medium was rapid for 4hr. of incubation, 6-10% of the label being incorporated into iodoprotein. 4. Much of the (32)P-labelled phospholipid accumulated in mitochondria and microsomes, whereas the nuclear fraction contained most of the (32)P-labelled RNA. After 2hr. of incubation most of the (32)P-labelled cytoplasmic RNA accumulated in the rough-microsomal fraction. The major site of localization of proteinbound (125)I was the smooth-microsomal fraction, and gradually increasing amounts appeared in the soluble cytoplasm fraction, suggesting a vectorial discharge of [(125)I]iodoprotein (presumably thyroglobulin) from smooth vesicles into the colloid. 5. The addition of 0.1-0.4 unit of thyrotrophic hormone/ml. of incubation medium markedly enhanced the accumulation of (32)P-labelled phospholipids in the microsomal fractions and to a much smaller extent that of (32)P-labelled RNA without any increase in the total uptake of the label. Almost simultaneously the hormone increased the uptake of [(125)I]iodide by the slices and enhanced the accumulation of protein-bound (125)I in the smooth-microsomal fraction. 6. As a function of time of incubation, thyrotrophic hormone had a biphasic effect on [(125)I]iodide uptake and protein-bound (125)I formation, the stimulatory effect being reversed after 4hr. of incubation. 7. 6-N-2'-O-Dibutyryl-3',5'-(cyclic)-AMP, but not 3',5'-(cyclic)-AMP or 5'-AMP, mimicked the action of thyrotrophic hormone on iodine uptake as well as on iodination of protein. On the other hand, the mimicry by 6-N-2'-O-dibutyryl-3',5'-(cyclic)-AMP of the stimulatory effect of thyrotrophic hormone on the formation of labelled thyroid phospholipids and RNA was only an apparent one resulting from an enhanced uptake of [(32)P]phosphate. 8. It is concluded that thyrotrophic hormone causes a co-ordinated increase in the formation or accumulation of phospholipids, RNA and iodoprotein associated with the endoplasmic reticulum, and that 6-N-2'-O-dibutyryl-3',5'-(cyclic)-AMP mimics the more rapid effects of thyrotrophic hormone on transport and metabolic functions of thyroid cells, but does not influence their slower biosynthetic responses to the hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号