首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Methylation driven by thiopurine S-methylatransferase (TPMT) is crucial for deactivation of cytostatic and immunosuppressant thiopurines. Despite its remarkable integration into clinical practice, the endogenous function of TPMT is unknown.

Methods

To address the role of TPMT in methylation of selenium compounds, we established the research on saturation transfer difference (STD) and 77Se NMR spectroscopy, fluorescence measurements, as well as computational molecular docking simulations.

Results

Using STD NMR spectroscopy and fluorescence measurements of tryptophan residues in TPMT, we determined the binding of selenocysteine (Sec) to human recombinant TPMT. By comparing binding characteristics of Sec in the absence and in the presence of methyl donor, we confirmed S-adenosylmethionine (SAM)-induced conformational changes in TPMT. Molecular docking analysis positioned Sec into the active site of TPMT with orientation relevant for methylation reaction. Se-methylselenocysteine (MeSec), produced in the enzymatic reaction, was detected by 77Se NMR spectroscopy. A direct interaction between Sec and SAM in the active site of rTPMT and the formation of both products, MeSec and S-adenosylhomocysteine, was demonstrated using NMR spectroscopy.

Conclusions

The present study provides evidence on in vitro methylation of Sec by rTPMT in a SAM-dependant manner.

General significance

Our results suggest novel role of TPMT and demonstrate new insights into enzymatic modifications of the 21st amino acid.  相似文献   

2.

Background  

The essential trace element selenium is used in a wide variety of biological processes. Selenocysteine (Sec), the 21st amino acid, is co-translationally incorporated into a restricted set of proteins. It is encoded by an UGA codon with the help of tRNASec (SelC), Sec-specific elongation factor (SelB) and a cis-acting mRNA structure (SECIS element). In addition, Sec synthase (SelA) and selenophosphate synthetase (SelD) are involved in the biosynthesis of Sec on the tRNASec. Selenium is also found in the form of 2-selenouridine, a modified base present in the wobble position of certain tRNAs, whose synthesis is catalyzed by YbbB using selenophosphate as a precursor.  相似文献   

3.

Background

The major biological form of selenium is that of the co-translationally inserted amino acid selenocysteine (Sec). In Archaea, the majority of proteins containing Sec, selenoproteins, are involved in methanogenesis. However, the function of this residue is often not known because selenium-independent homologs of the selenoproteins can be employed, sometimes even in one organism.

Scope of review

This review summarizes current knowledge about the selenoproteins of Archaea, the metabolic pathways where they are involved, and discusses the (potential) function of individual Sec residues. Also, what is known about the “archaeal” way of selenoprotein synthesis, and the regulatory mechanism leading to the replacement of the selenoproteins with selenium-independent homologs, will be presented. Where appropriate, similarities with (and differences to) the respective steps employed in the other two domains, Bacteria and Eukarya, will be emphasized.

Major conclusions

Genetic and biochemical studies guided by analysis of genome sequences of Sec-encoding archaea has revealed that the pathway of Sec synthesis in Archaea and Eukarya are principally identical and that Sec insertion in Eukarya probably evolved from an archaeal mechanism employed prior to the separation of the archaeal and eukaryal lines of decent.

General significance

In light of the emerging close phylogenetic relationship of Eukarya and Archaea, archaeal models may be highly valuable tools for unraveling “eukaryotic” principles in molecular and cell biology.  相似文献   

4.

Background

Protein translocation across the membrane of the Endoplasmic Reticulum (ER) is the first step in the biogenesis of secretory and membrane proteins. Proteins enter the ER by the Sec61 translocon, a proteinaceous channel composed of three subunits, α, β and γ. While it is known that Sec61α forms the actual channel, the function of the other two subunits remains to be characterized.

Results

In the present study we have investigated the function of Sec61β in Drosophila melanogaster. We describe its role in the plasma membrane traffic of Gurken, the ligand for the Epidermal Growth Factor (EGF) receptor in the oocyte. Germline clones of the mutant allele of Sec61β show normal translocation of Gurken into the ER and transport to the Golgi complex, but further traffic to the plasma membrane is impeded. The defect in plasma membrane traffic due to absence of Sec61β is specific for Gurken and is not due to a general trafficking defect.

Conclusion

Based on our study we conclude that Sec61β, which is part of the ER protein translocation channel affects a post-ER step during Gurken trafficking to the plasma membrane. We propose an additional role of Sec61β beyond protein translocation into the ER.  相似文献   

5.
6.

Background

Protein kinase CK2 is a pleiotropic enzyme which is ubiquitously expressed in eukaryotic cells. Several years ago CK2 was found to be associated with the mammalian endoplasmic reticulum. So far nothing is known about the function of CK2 at the ER.

Methods

CK2 phosphorylation sites in the polypeptide chain of Sec63 were mapped using deletion mutants and a peptide library. Binding of Sec63 to CK2 and to Sec62 was analyzed by pull-down assays and by co-immunoprecipitation

Results

Sec63 was identified as a novel substrate and binding partner of protein kinase CK2.We identified serine 574, serine 576 and serine 748 as CK2 phosphorylation sites. Phosphorylation of Sec63 by CK2 enhanced its binding to Sec62.

Conclusions

Protein kinase CK2 phosphorylation of Sec63 leads to an enhanced binding of Sec63 to Sec62. This complex formation is a prerequisite for a functional ER protein translocon.

General significance

Thus, our present data indicate a regulatory role of CK2 in the ER protein translocation.  相似文献   

7.

Background and Aims

Mercury (Hg) is an extremely toxic pollutant, especially in the form of methylmercury (MeHg), whereas selenium (Se) is an essential trace element in the human diet. This study aimed to ascertain whether addition of Se can produce rice with enriched Se and lowered Hg content when growing in Hg-contaminated paddy fields and, if so, to determine the possible mechanisms behind these effects.

Methods

Two cultivars of rice (Oryza sativa, japonica and indica) were grown in either hydroponic solutions or soil rhizobags with different Se and Hg treatments. Concentrations of total Hg, MeHg and Se were determined in the roots, shoots and brown rice, together with Hg uptake kinetics and Hg bioavailability in the soil. Root anatonmy was also studied.

Key Results

The high Se treatment (5 μg g–1) significantly increased brown rice yield by 48 % and total Se content by 2·8-fold, and decreased total Hg and MeHg by 47 and 55 %, respectively, compared with the control treatments. The high Se treatment also markedly reduced ‘water-soluble’ Hg and MeHg concentrations in the rhizosphere soil, decreased the uptake capacity of Hg by roots and enhanced the development of apoplastic barriers in the root endodermis.

Conclusions

Addition of Se to Hg-contaminated soil can help produce brown rice that is simultaneously enriched in Se and contains less total Hg and MeHg. The lowered accumulation of total Hg and MeHg appears to be the result of reduced bioavailability of Hg and production of MeHg in the rhizosphere, suppression of uptake of Hg into the root cells and an enhancement of the development of apoplastic barriers in the endodermis of the roots.  相似文献   

8.

Background and aims

Selenium is an essential micro-nutrient for animals, humans and microorganisms; it mainly enters food chains through plants. This study proposes to explore effect of inorganic Se forms on its uptake and accumulation in Zea mays.

Methods

Zea mays was grown in a controlled-atmosphere chamber for 2 weeks in a hydroponic solution of low-concentration selenium (10 μg/L (i.e.0.12 μM) or 50 μg/L (i.e. 0.63 μM) of Se). For each concentration, four treatments were defined: control (without selenium), selenite alone, selenate alone and selenite and selenate mixed.

Results

At low concentrations, selenium did not affect the biomass production of Zea mays. However, for both concentrations, Se accumulation following a selenite-only treatment was always higher than with selenate-only. Moreover, in the selenate-only treatment, Se mainly accumulated in shoots whereas in the selenite-only treatment, Se was stocked more in the roots. Interactions between selenate and selenite were observed only at the higher concentration (0.63 μM of selenium in the nutrient solution).

Conclusions

Se form and concentration in the nutrient solution strongly influenced the absorption, allocation and metabolism of Se in Zea mays. Selenate seems to inhibit selenite absorption by the roots.  相似文献   

9.

Background  

Selenocysteine (Sec) is co-translationally inserted into protein in response to UGA codons. It occurs in oxidoreductase active sites and often is catalytically superior to cysteine (Cys). However, Sec is used very selectively in proteins and organisms. The wide distribution of Sec and its restricted use have not been explained.  相似文献   

10.
Abstract

Selenium (Se) is an essential trace element that functions in the form of the 21st amino acid, selenocysteine (Sec) in a defined set of proteins. Se deficiency is associated with pathological conditions in humans and animals, where incorporation of Sec into selenoproteins is reduced along with their expression and catalytic activity. Supplementation of Se-deficient population with Se has shown health benefits suggesting the importance of Se in physiology. An interesting paradigm to explain, in part, the health benefits of Se stems from the observations that selenoprotein-dependent modulation of inflammation and efficient resolution of inflammation relies on mechanisms involving a group of bioactive lipid mediators, prostanoids, which orchestrate a concerted action toward maintenance and restoration of homeostatic immune responses. Such an effect involves the interaction of various immune cells with these lipid mediators where cellular redox gatekeeper functions of selenoproteins further aid in not only dampening inflammation, but also initiating an effective and active resolution process. Here we have summarized the current literature on the multifaceted roles of Se/selenoproteins in the regulation of these bioactive lipid mediators and their immunomodulatory effects.  相似文献   

11.

Background

Autophagy is an inducible autodigestive process that allows cells to recycle proteins and other materials for survival during stress and nutrient deprived conditions. The kinase ULK1 is required to activate this process. ULK1 phosphorylates a number of target proteins and regulates many cellular processes including the early secretory pathway. Recently, ULK1 has been demonstrated to phosphorylate Sec16 and affects the transport of serotonin transporter at the ER exit sites (ERES), but whether ULK1 may affect the transport of other cargo proteins and general secretion has not been fully addressed.

Results

In this study, we identified Sec23A, a component of the COPII vesicle coat, as a target of ULK1 phosphorylation. Elevated autophagy, induced by amino acid starvation, rapamycin, or overexpression of ULK1 caused aggregation of the ERES, a region of the ER dedicated for the budding of COPII vesicles. Transport of cargo proteins was also inhibited under these conditions and was retained at the ERES. ULK1 phosphorylation of Sec23A reduced the interaction between Sec23A and Sec31A. We identified serine 207, serine 312 and threonine 405 on Sec23A as ULK1 phosphorylation sites. Among these residues, serine 207, when changed to phospho-deficient and phospho-mimicking mutants, most faithfully recapitulated the above-mentioned effects of ULK1 phospho-regulation.

Conclusion

These findings identify Sec23A as a new target of ULK1 and uncover a mechanism of coordinating intracellular protein transport and autophagy.
  相似文献   

12.

Background

The transport of endoplasmic reticulum (ER)-derived COPII vesicles toward the ER-Golgi intermediate compartment (ERGIC) requires cytoplasmic dynein and is dependent on microtubules. p150Glued, a subunit of dynactin, has been implicated in the transport of COPII vesicles via its interaction with COPII coat components Sec23 and Sec24. However, whether and how COPII vesicle tether, TRAPP (Transport protein particle), plays a role in the interaction between COPII vesicles and microtubules is currently unknown.

Principle Findings

We address the functional relationship between COPII tether TRAPP and dynactin. Overexpressed TRAPP subunits interfered with microtubule architecture by competing p150Glued away from the MTOC. TRAPP subunit TRAPPC9 bound directly to p150Glued via the same carboxyl terminal domain of p150Glued that binds Sec23 and Sec24. TRAPPC9 also inhibited the interaction between p150Glued and Sec23/Sec24 both in vitro and in vivo, suggesting that TRAPPC9 serves to uncouple p150Glued from the COPII coat, and to relay the vesicle-dynactin interaction at the target membrane.

Conclusions

These findings provide a new perspective on the function of TRAPP as an adaptor between the ERGIC membrane and dynactin. By preserving the connection between dynactin and the tethered and/or fused vesicles, TRAPP allows nascent ERGIC to continue the movement along the microtubules as they mature into the cis-Golgi.  相似文献   

13.
Edgar AJ 《BMC genomics》2003,4(1):18-12

Background

Overlapping sense/antisense genes orientated in a tail-to-tail manner, often involving only the 3'UTRs, form the majority of gene pairs in mammalian genomes and can lead to the formation of double-stranded RNA that triggers the destruction of homologous mRNAs. Overlapping polyadenylation signal sequences have not been described previously.

Results

An instance of gene overlap has been found involving a shared single functional polyadenylation site. The genes involved are the human alpha/beta hydrolase domain containing gene 1 (ABHD1) and Sec12 genes. The nine exon human ABHD1 gene is located on chromosome 2p23.3 and encodes a 405-residue protein containing a catalytic triad analogous to that present in serine proteases. The Sec12 protein promotes efficient guanine nucleotide exchange on the Sar1 GTPase in the ER. Their sequences overlap for 42 bp in the 3'UTR in an antisense manner. Analysis by 3' RACE identified a single functional polyadenylation site, ATTAAA, within the 3'UTR of ABHD1 and a single polyadenylation signal, AATAAA, within the 3'UTR of Sec12. These polyadenylation signals overlap, sharing three bp. They are also conserved in mouse and rat. ABHD1 was expressed in all tissues and cells examined, but levels of ABHD1 varied greatly, being high in skeletal muscle and testis and low in spleen and fibroblasts.

Conclusions

Mammalian ABHD1 and Sec12 genes contain a conserved 42 bp overlap in their 3'UTR, and share a conserved TTTATTAAA/TTTAATAAA sequence that serves as a polyadenylation signal for both genes. No inverse correlation between the respective levels of ABHD1 and Sec12 RNA was found to indicate that any RNA interference occurred.  相似文献   

14.

Background

This study was performed to demonstrate the widespread distribution and severity of selenium (Se) deficiency in sheep flocks and to evaluate the impact of influencing factors. In 150 flocks, ten serum samples of adult ewes were analysed for Se concentration. The farmers were interviewed concerning flock size, provision of mineral supplement, predominant form of husbandry (stationary fenced pasture/transhumance), predominant form of water provision (tap water/well/surface water) and predominant soil (sandy, silty/loamy, clay) in the area. The location of the flock was recorded as well as the production stage/season at the time of sampling. Intra-group variation and the validity to analyse pooled samples were tested.

Results

Pools of five samples correlated well with the mean of individually analysed samples. The intra-group range of serum Se concentration varied enormously (mean 45.4?±?18.8 μg Se/l). About 60% of the flocks showed mean serum Se concentrations below 80 μg/l, 37.4% were below 60 μg Se/l, representing a Se deficient stage. Using mineral supplement in general was no key factor for Se status. Stationary flocks on fenced pasture had constantly higher mean serum Se concentrations during breeding (outdoors, August-November), lambing (mainly indoors, December-March) and lactation (outdoors, April-July), whereas flocks practising transhumance had significantly lower Se status, except during lambing. There was no significant correlation between the soil type and the Se status, but flocks in Southern Germany tend to show a lower Se status compared to Central and Northern Germany. Increasing flock size was associated with lower mean serum Se concentrations. In stationary flocks only, the use of surface water was accompanied by significantly lower Se status.

Conclusion

Se deficiency is widespread in German sheep flocks. More than one third of the flocks showed Se deficiency, indicating the need to optimise the nutritional management. Factors raising suspicion of Se deficiency are large flocks, transhumance during lactation and the breeding season as well as surface water provision in stationary flocks.
  相似文献   

15.

Background

The essential trace element selenium is used in a wide variety of biological processes. Selenocysteine (Sec), the 21st amino acid, is co-translationally incorporated into a restricted set of proteins. It is encoded by an UGA codon with the help of tRNASec (SelC), Sec-specific elongation factor (SelB) and a cis-acting mRNA structure (SECIS element). In addition, Sec synthase (SelA) and selenophosphate synthetase (SelD) are involved in the biosynthesis of Sec on the tRNASec. Selenium is also found in the form of 2-selenouridine, a modified base present in the wobble position of certain tRNAs, whose synthesis is catalyzed by YbbB using selenophosphate as a precursor.

Results

We analyzed completely sequenced genomes for occurrence of the selA, B, C, D and ybbB genes. We found that selB and selC are gene signatures for the Sec-decoding trait. However, selD is also present in organisms that do not utilize Sec, and shows association with either selA, B, C and/or ybbB. Thus, selD defines the overall selenium utilization. A global species map of Sec-decoding and 2-selenouridine synthesis traits is provided based on the presence/absence pattern of selenium-utilization genes. The phylogenies of these genes were inferred and compared to organismal phylogenies, which identified horizontal gene transfer (HGT) events involving both traits.

Conclusion

These results provide evidence for the ancient origin of these traits, their independent maintenance, and a highly dynamic evolutionary process that can be explained as the result of speciation, differential gene loss and HGT. The latter demonstrated that the loss of these traits is not irreversible as previously thought.  相似文献   

16.

Background  

Selenocysteine (Sec) is a selenium-containing amino acid that is co-translationally inserted into nascent polypeptides by recoding UGA codons. Selenoproteins occur in both eukaryotes and prokaryotes, but the selenoprotein content of organisms (selenoproteome) is highly variable and some organisms do not utilize Sec at all.  相似文献   

17.

Background

Dictyostelium, an amoeboid motile cell, harbors several paralogous Sec7 genes that encode members of three distinct subfamilies of the Sec7 superfamily of Guanine nucleotide exchange factors. Among them are proteins of the GBF/BIG family present in all eukaryotes. The third subfamily represented with three members in D. discoideum is the cytohesin family that has been thought to be metazoan specific. Cytohesins are characterized by a Sec7 PH tandem domain and have roles in cell adhesion and migration.

Principal Findings

Dictyostelium SecG exhibits highest homologies to the cytohesins. It harbors at its amino terminus several ankyrin repeats that are followed by the Sec7 PH tandem domain. Mutants lacking SecG show reduced cell-substratum adhesion whereas cell-cell adhesion that is important for development is not affected. Accordingly, multicellular development proceeds normally in the mutant. During chemotaxis secG cells elongate and migrate in a directed fashion towards cAMP, however speed is moderately reduced.

Significance

The data indicate that SecG is a relevant factor for cell-substrate adhesion and reveal the basic function of a cytohesin in a lower eukaryote.  相似文献   

18.

Background

Selenium (Se) is not an essential element for plants, although it can benefit their growth and survival in some envionments. Excess tissue Se concentrations are toxic. The ability to sequester Se in vacuoles, synthesise non-toxic Se metabolites, or volatilise Se compounds determines maximum tissue Se concentrations and the ability to colonise seleniferous soils.

Scope of review

This review first classifies plant species on their abilities to accumulate Se in their tissues and to colonise seleniferous soils. It then presents our knowledge of Se uptake by roots and its movement within the plant, the primary and secondary metabolism of Se in plants, effects of Se on sulfur and nitrogen metabolism, and the detoxification of excessive Se by plants. Finally, it presents a current hypothesis for the evolution of seleniferous flora.

Major conclusions

Selenium and sulfur share the same primary metabolism. When grown in the same environment, most plant species have similar tissue Se/S quotients. However, Se-hyperaccumulator species, which can have tissue Se concentrations >1?mg?g?1 dry matter, have larger Se/S quotients than other species. Secondary Se metabolism determines differences in tissue Se concentration among plant species. Among non-hyperaccumulator species, alliums and brassicas have particularly large tissue Se concentrations. Selenium hyperaccumulation results from the effective metabolic detoxification of Se in tissues.

General significance

Differences in Se metabolism determine the maximum Se concentrations in plant tissues, which is important for the delivery of Se to diets of herbivores and for the evolution of plant species to colonise seleniferous soils.  相似文献   

19.

Background and Aims

Selenium (Se) is an essential nutrient for humans and animals. In order to ensure an optimal concentration of Se in crops, Se fertilisers are applied. Catch crops may be an alternative way to increase Se concentrations in vegetables.

Methods

Three experiments in Denmark between 2007–10 investigated the ability of catch crops (Italian ryegrass, fodder radish and hairy vetch) under different fertiliser regimes to reduce soil Se content in the autumn and to increase its availability in spring to the succeeding crop.

Results and Conclusions

The catch crops (Italian ryegrass and fodder radish) increased water-extractable Se content in the 0.25–0.75?m soil layer in only one of the experiments. Selenium uptake by the catch crops varied between 65 and 3263?mg?ha?1, depending on species, year and fertilisation treatment; this corresponded to 0.1–3.0% of the water-extractable soil Se content. The influence of catch crops on Se concentrations and uptake in onions and cabbage was low. There was a decrease in Se uptake and recovery of applied Se by onions following catch crops, which might indicate Se immobilisation during catch crop decomposition.  相似文献   

20.

Background and aims

As an essential mineral element, selenium (Se) plays a critical role in human health. Given the low concentrations (<100 mg Se kg–1) of Se in staple crops, the identification of genetic resources with enriched Se, as well as the genes controlling Se concentration, is valuable for the marker-assisted selection of Se-rich varieties.

Methods

We determined the chromosomal quantitative trait (QTL) for Se concentration over two consecutive plant growth cycles using recombinant inbred lines (RILs) treated with two different concentrations of Se under both field-grown and hydroponic conditions.

Results

Several QTL for Se concentration were detected across the different treatments. Significant genotypic variation in the tissues of the RIL was found at Se-deficicencycondition. Notably, a QTL located on 3D (interval 214.00–218.00, Qse.sau-3D) affected root length and Se concentration in the leaves and grains, suggesting the existence of the same allele with distinctly different functions. However, the QTL for the agronomic traits measured (plant height, flowering time, and tillering number) and Se concentration were not found to be located on the same chromosomal regions, suggesting that marker-assisted selection for both traits is feasible. Se concentrations in the grains were primarily determined by the mineral transport efficiency of the lines, and the line with the highest Se concentration in the grains always possessed larger, more fibrous root systems. The concentrations of Se in the plant tissues were in the order of: root > stem > grain.

Conclusions

This is the first study to document a Se-rich synthetic wheat line, and root structure and Se grain concentration was strongly affected by QTL located on 3D.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号