首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A contiguous region of about 30 kbp of DNA putatively encoding reactions in daunomycin biosynthesis was isolated from Streptomyces sp. strain C5 DNA. The DNA sequence of an 8.1-kbp EcoRI fragment, which hybridized with actI polyketide synthase (PKS) and actIII polyketide reductase (PKR) gene probes, was determined, revealing seven complete open reading frames (ORFs), two in one cluster and five in a divergently transcribed cluster. The former two genes are likely to encode PKR and a bifunctional cyclase/dehydrase. The five latter genes encode: (i) a homolog of TcmH, an oxygenase of the tetracenomycin biosynthesis pathway; (ii) a PKS Orf1 homolog; (iii) a PKS Orf2 homolog (chain length factor); (iv) a product having moderate sequence identity with Escherichia coli beta-ketoacyl acyl carrier protein synthase III but lacking the conserved active site; and (v) a protein highly similar to several acyltransferases. The DNA within the 8.1-kbp EcoRI fragment restored daunomycin production to two dauA non-daunomycin-producing mutants of Streptomyces sp. strain C5 and restored wild-type antibiotic production to Streptomyces coelicolor B40 (act VII; nonfunctional cyclase/dehydrase), and to S. coelicolor B41 (actIII) and Streptomyces galilaeus ATCC 31671, strains defective in PKR activity.  相似文献   

2.
Saprolmycins A–E are anti-Saprolegnia parasitica antibiotics. To identify the gene cluster for saprolmycin biosynthesis in Streptomyces sp. TK08046, polymerase chain reaction using aromatase and cyclase gene-specific primers was performed; the spr gene cluster, which codes for angucycline biosynthesis, was obtained from the strain. The cluster consists of 36 open reading frames, including minimal polyketide synthase, ketoreductase, aromatase, cyclase, oxygenase, and deoxy sugar biosynthetic genes, as defined by homology to the corresponding genes of the urdamycin, Sch-47554, and grincamycin biosynthetic gene clusters in Streptomyces fradiae, Streptomyces sp. SCC-2136, and Streptomyces lusitanus, respectively. To establish the function of the gene cluster, an expression cosmid vector containing all 36 open reading frames was introduced into Streptomyces lividans TK23. The transformant was confirmed to express the biosynthetic genes and produce saprolmycins by liquid chromatography–mass spectrometry analysis of the extract.  相似文献   

3.
Mutations in the tcmII-tcmIV region of the Streptomyces glaucescens chromosome block the C-3 and C-8 O-methylations of the polyketide antibiotic tetracenomycin C (Tcm C). The nucleotide sequence of this region reveals the presence of two genes, tcmN and tcmO, whose deduced protein products display similarity to the hydroxyindole O-methyl transferase of the bovine pineal gland, an enzyme that catalyzes a phenolic O-methylation analogous to those required for the biosynthesis of Tcm C. The deduced product of the tcmN gene also has an N-terminal domain that shows similarity to the putative ActVII and WhiE ORFVI proteins of Streptomyces coelicolor. The tcmN N-terminal domain can be separated from the remainder of the tcmN gene product, and when coupled on a plasmid with the Tcm C polyketide synthase genes (tcmKLM), this domain enables high-level production of an early, partially cyclized intermediate of Tcm C in a Tcm C- null mutant or in a heterologous host (Streptomyces lividans). By analogy to fatty acid biosynthesis, the tcmKLM polyketide synthase gene products are probably sufficient to produce the linear decaketide precursor of Tcm C; thus, the tcmN N-terminal domain is most likely responsible for one or more of the early cyclizations and, perhaps, the attendant dehydrations that lead to the partially cyclized intermediate. The tcmN gene therefore appears to encode a multifunctional cyclase-dehydratase-3-O-methyl transferase. The tcmO gene encodes the 8-O-methyl transferase.  相似文献   

4.
5.
Brünker P  McKinney K  Sterner O  Minas W  Bailey JE 《Gene》1999,227(2):125-135
Streptomyces arenae produces the aromatic polyketide naphthocyclinone, which exhibits activity against Gram-positive bacteria. A cosmid clone containing the putative naphthocyclinone gene cluster was isolated from a genomic library of S. arenae by hybridization with a conserved region from the actinorhodin PKS of S. coelicolor. Sequence analysis of a 5.5-kb DNA fragment, which hybridizes with the actI probe, revealed three open reading frames coding for the minimal polyketide synthase. A strong sequence similarity was found to several previously described ketosynthases, chain length factors and acyl carrier proteins from other polyketide gene clusters. An additional open reading frame downstream of the PKS genes of S. arenae showed 53% identity to act VII probably encoding an aromatase. Another open reading frame was identified in a region of 1.436 bp upstream of the PKS genes, which, however, had no similarity to known genes in the database. Approximately 8 kb upstream of the PKS genes, a DNA fragment was identified that hybridizes to an actVII--actIV specific probe coding for a cyclase and a putative regulatory protein, respectively. Disruption of the proposed naphthocyclinone gene cluster by insertion of a thiostrepton resistance gene completely abolished production of naphthocyclinones in the mutant strain, showing that indeed the naphthocyclinone gene cluster had been isolated. Heterologous expression of the minimal PKS genes in S. coelicolor CH999 in the presence of the act ketoreductase led to the production of mutactin and dehydromutactin, indicating that the S. arenae polyketide synthase forms a C-16 backbone that is subsequently dimerized to build naphthocyclinone. The functions of the proposed cyclase and aromatase were examined by coexpression with genes from different polyketide core producers.  相似文献   

6.
Key information about the biosynthesis of polyketide metabolites has been uncovered by sequence analysis of the tetracenomycin C polyketide synthase genes (tcml) from Streptomyces glaucescens GLA.0. The sequence data revealed the presence of three complete open reading frames (ORFs). ORF1 and ORF2 appear to be translationally coupled and would encode proteins containing 426 and 405 amino acids, respectively. The two deduced proteins are homologous to known beta-ketoacyl synthases. ORF3 begins 70 nucleotides after the stop codon of ORF2 and would code for an 83 amino acid protein with a strong resemblance to known bacterial, animal and plant acyl-carrier proteins (ACP). The presence of an ACP gene within the tcm gene cluster suggests that different ACPs are used in fatty acid and polyketide biosynthesis in Streptomyces. We conclude from these data and earlier information that polyketide biosynthesis in S. glaucescens, and most likely in other bacteria, involves a multienzyme complex consisting of at least five types of enzymes: acylCoA transferases that load the acyl and 2-carboxyacyl precursors onto the ACP; a beta-ketoacyl synthase that, along with the acylated ACP, forms the poly-beta-ketoacyl intermediates; a poly-beta-ketone cyclase that forms carbocyclic structures from the latter intermediates; a beta-ketoacyl oxidoreductase that forms beta-hydroxyacyl intermediates or reduces ketone groups in fully formed polyketides; and a thioesterase that releases the assembled polyketide from the enzyme.  相似文献   

7.
Nonactin is the parent compound of a group of highly atypical polyketide metabolites produced by Streptomyces griseus subsp. griseus ETH A7796. In this paper we describe the isolation, sequencing, and analysis of 15? omitted?559 bp of chromosomal DNA, containing the potential nonactin biosynthesis gene cluster, from S. griseus subsp. griseus ETH A7796. Fourteen open reading frames were observed in the DNA sequence. Significantly, type II polyketide synthase (PKS) homologues were discovered in an apparent operon structure, which also contained the nonactate synthase gene (nonS), clustered with the tetranactin resistance gene. The deduced products of two of the genes (nonK and nonJ) are quite unusual ketoacyl synthase (KAS) alpha and KASbeta homologues. We speculate that nonactic acid, the polyketide precursor of nonactin, is synthesized by a type II PKS system.  相似文献   

8.
The acyl carrier protein (ACP) of the tetracenomycin C polyketide synthase, encoded by the tcmM gene, has been expressed in both Streptomyces glaucescens and Escherichia coli and purified to homogeneity. Expression of the tcmM gene in E. coli results mainly in the TcmM apo-ACP, whereas expression in S. glaucescens yields solely the holo-ACP. The purified holo-TcmM is active in a malonyl coenzyme A:ACP transacylase assay and is labeled by radioactive beta-alanine, confirming that it carries a 4'-phosphopantetheine prosthetic group.  相似文献   

9.
Three proteins, including the beta-keto acyl synthase and the acyl carrier protein, involved in the synthesis of the polyketide antibiotic tetracenomycin C by Streptomyces glaucescens GLA.0 were produced in Escherichia coli by using the T7 RNA polymerase-dependent pT7-7 expression vector. Changing the N-terminal codon usage of two of the genes greatly increased the level of protein produced without affecting mRNA levels, suggesting improvements in translational efficiency. Western immunoblot analysis of cytoplasmic and membrane fractions of S. glaucescens with antibodies raised to synthetic oligopeptides corresponding to the two presumed components of the beta-keto acyl synthase indicated that both proteins were membrane bound; one appears to be proteolytically cleaved before or during association with the membrane. The beta-keto acyl synthase could be detected in stationary-phase cultures but not in rapidly growing cultures, correlating with the time of appearance of tetracenomycin C in the medium.  相似文献   

10.
A standard type II polyketide synthase (PKS) gene cluster was isolated while attempting to clone the biosynthetic gene for lipstatin from Streptomyces toxytricini NRRL 15,443. This result was observed using a Southern blot of a PstI-digested S. toxytricini chromosomal DNA library with a 444 bp amplified probe of a ketosynthase (KS) gene fragment. Four open reading frames [thioesterase (TE), beta-ketoacyl systhase (KAS), chain length factor (CLF), and acyl carrier protein (ACP)], were identified through the nucleotide sequence determination and analysis of a 4.5 kb cloned DNA fragment. In order to confirm the involvement of a cloned gene in lipstatin biosynthesis, a gene disruption experiment for the KS gene was performed. However, the resulting gene disruptant did not show any significant difference in lipstatin production when compared to wild-type S. toxytricini. This result suggests that lipstatin may not be synthesized by a type II PKS.  相似文献   

11.
Streptomyces curacoi produces curamycin, an antibiotic based on a modified orsellinic acid skeleton that is synthesized by the polyketide pathway. We have cloned, characterized, and partly sequenced a polyketide synthase gene cluster of S. curacoi. The sequence data reveal an organization of open reading frames that is similar to those of other polyketide synthetic clusters, although the biosynthetic products differ considerably in size and structure. We propose that one of the predicted open reading frames (curA) encodes polykeptide synthase, on the basis of its homology with other enzymes with similar functions. Expression of the cloned chromosomal fragment in the heterologous host S. lividans leads to the production of a brown pigment in large quantities. The analysis and expression of the cur genes for detailed molecular studies of the mechanism of polyketide biosynthesis is discussed.  相似文献   

12.
Certain mutations in the tcmVI region of the Streptomyces glaucescens chromosome affect formation of the D ring of the polyketide antibiotic tetracenomycin C (TCM C). This region lies immediately upstream from the TCM C polyketide synthase genes (tcmKLM), and the nucleotide sequence reveals the presence of three small genes, tcmH, tcmI, and tcmJ. On the basis of the phenotypes of mutants and the effects of these genes, when coupled on a plasmid with the tcmKLMN177 genes (tcmN177 is a 3'-truncated version of tcmN), on the production of TCM intermediates in a TCM- mutant, the tcmH gene encodes the C-5 monooxygenase that converts TCM F1 to TCM D3, the tcmI gene encodes the D-ring cyclase that converts TCM F2 to TCM F1 (mutations in this gene are responsible for the type VI phenotype), and the tcmJ gene most likely encodes the B-ring cyclase that acts in the biosynthesis of TCM F2. Furthermore, it appears that the N-terminal domain of the tcmN gene product (encoded by the tcmN177 gene) acts later in the biosynthesis of TCM F2 than the product of tcmJ, suggesting that the N-terminal domain of the TcmN protein is the C-ring cyclase.  相似文献   

13.
Oxytetracycline (OTC) is a 19-carbon polyketide antibiotic made by Streptomyces rimosus. The otcC gene encodes an anhydrotetracycline oxygenase that catalyzes a hydroxylation of the anthracycline structure at position C-6 after biosynthesis of the polyketide backbone is completed. A recombinant strain of S. rimosus that was disrupted in the genomic copy of otcC synthesized a novel C-17 polyketide. This result indicates that the absence of the otcC gene product significantly influences the ability of the OTC "minimal" polyketide synthase to make a polyketide product of the correct chain length. A mutant copy of otcC was made by site-directed mutagenesis of three essential glycine codons located within the putative NADPH-binding domain. The mutant gene was expressed in Escherichia coli, and biochemical analysis confirmed that the gene product was catalytically inactive. When the mutant gene replaced the ablated gene in the chromosome of S. rimosus, the ability to make a 19-carbon backbone was restored, indicating that OtcC is an essential partner in the quaternary structure of the synthase complex.  相似文献   

14.
A 6.5 kb region of DNA from Streptomyces violaceoruber, which contains polyketide synthase (PKS) genes for production of the benzoisochromane quinone moiety of the antibiotic, granaticin, was cloned and sequenced. Of six open reading frames (ORFs) identified, four (ORFs 1-4) would be transcribed in one direction and two (ORFs 5 and 6) divergently from ORFs 1-4. ORF1 and ORF2, which show evidence for translation coupling, encode (deduced) gene products which strongly resemble each other and the Escherichia coli fatty acid ketoacyl synthase (condensing enzyme), FabB. We conclude that ORF1 (which contains a characteristic cysteine residue) functions as a condensing enzyme, possibly as part of a heterodimeric protein including the product of ORF2. The predicted ORF3 gene product strikingly resembles acyl carrier proteins (ACPs) of fatty acid synthase (FAS), particularly in the region of the active site motif, while the predicted ORF5 and ORF6 gene products resemble known oxidoreductases, suggesting that they function as reductive steps required during assembly of the granaticin carbon skeleton. Comparison of the deduced ORF4 gene product with available protein databases failed to elucidate its potential function. The overall conclusion is that the granaticin-producing PKS would consist of at least six separate enzymes involved in carbon chain assembly, thus resembling a Type II, rather than a Type I, FAS.  相似文献   

15.
The enzyme phenylalanine ammonia-lyase, which catalyzes the nonoxidative deamination of l-phenylalanine to trans-cinnamic acid, is ubiquitously distributed in plants. We now report its characterization for the first time in a bacterium. The phenylalanine ammonia-lyase homologous gene encP from the "Streptomyces maritimus" enterocin biosynthetic gene cluster was functionally characterized and shown to encode the first enzyme in the pathway to the enterocin polyketide synthase starter unit benzoyl-coenzyme A. The disruption of the encP gene completely inhibited the production of cinnamate and enterocin, whereas complementation of the mutant with benzoyl-coenzyme A pathway intermediates or with the wild-type gene encP restored the formation of the benzoate-primed polyketide antibiotic enterocin. Heterologous expression of the encP gene under the control of the ermE* promoter in Streptomyces coelicolor furthermore led to the production of cinnamic acid in the fermented cultures, confirming that the encP gene indeed encodes a novel bacterial phenylalanine ammonia-lyase.  相似文献   

16.
We cloned a new polyketide gene cluster, aur2, in Streptomyces aureofaciens CCM3239. Sequence analysis of the 9531-bp DNA fragment revealed 10 open reading frames, majority of which showed high similarity to the previously characterized type II polyketide synthase (PKS) genes. An unusual feature of the aur2 cluster is a disconnected organization of minimal PKS genes; ACP is located apart from the genes for ketosynthases KSalpha and KSbeta. The aur2 gene cluster was disrupted in S. aureofaciens CCM3239 by a homologous recombination, replacing the four genes (aur2A, E, F, G) including ketosynthase KSalpha, with antibiotic resistance marker gene. The disruption did not affect growth and differentiation, and disrupted strain produced spores with wild-type grey-pink pigmentation. The biochromatographic analysis of the culture extracts from S. aureofaciens wild type and aur2-disrupted strains did not reveal any difference in the pattern of antibacterial compounds.  相似文献   

17.
18.
The 54-kbp Type I polyketide synthase gene cluster, most probably involved in rifamycin biosynthesis by Amycolatopsis mediterranei, was cloned in E. coli and completely sequenced. The DNA encodes five closely packed, very large open reading frames reading in one direction. As expected from the chemical structure of rifamycins, ten polyketide synthase modules and a CoA ligase domain were identified in the five open reading frames which contain one to three polyketide synthase modules each. The order of the functional domains on the DNA probably reflects the order in which they are used because each of the modules contains the predicted acetate or propionate transferase, dehydratase, and β-ketoacyl-ACP reductase functions, required for the respective step in rifamycin biosynthesis.  相似文献   

19.
K Yang  L Han    L C Vining 《Journal of bacteriology》1995,177(21):6111-6117
The nucleotide sequence of a region upstream of the type II polyketide synthase genes in the cluster for biosynthesis of the polyketide antibiotic jadomycin B in Streptomyces venezuelae contained an open reading frame encoding a sequence of 196 amino acids that resembeled sequences deduced for a group of repressor proteins. The strongest similarity was to EnvR of Escherichia coli, but the sequence also resembled MtrR, AcrR, TetC, and TcmR, all of which are involved in regulating resistance to antibiotics or toxic hydrophobic substances in the environment. Disruption of the nucleotide sequence of this putative S. venezuelae repressor gene (jadR2), by insertion of an apramycin resistance gene at an internal MluI site, and replacement of the chromosomal gene generated mutants that produced jadomycin B without the stress treatments (exposure to heat shock or to toxic concentrations of ethanol) required for jadomycin B production by the wild type. When cultures of the disruption mutants were ethanol stressed, they overproduced the antibiotic. From these results it was concluded that expression of the jadomycin B biosynthesis genes are negatively regulated by jadR2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号