首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parkinson's disease is characterized by the progressive and selective loss of the dopaminergic neurons in the substantia nigra and the presence of ubiquitinated protein inclusions termed Lewy bodies. In the past six years, four genes involved in rare inherited forms of Parkinson's disease have been identified: mutations in the alpha-synuclein and ubiquitin carboxyterminal hydrolase L1 genes (UCH-L1) cause autosomal dominant forms, whereas mutations in the Parkin and DJ-1 genes are responsible for autosomal recessive forms of the disease. A toxic gain of function related to the ability of alpha-synuclein to assemble into insoluble amyloid fibrils may underlie neuronal cell death in parkinsonism due to alpha-synuclein gene mutations. In contrast, loss of protein function appears to be the cause of the disease in parkinsonism due to mutations in the genes encoding Parkin and UCH-L1, which are key enzymes of the ubiquitin-proteasome pathway. The presence of alpha-synuclein, Parkin and UCH-L1 in Lewy bodies suggests that dysfunction of pathways involved in protein folding and degradation is not only involved in the pathogenesis of familial Parkinson's disease, but could also play a role in the frequent sporadic form of the disease (idiopathic Parkinson's disease).  相似文献   

2.
The synuclein family and particularly alpha-synuclein takes a central part in etiology and pathogenesis of Parkinson's disease--one of the most common human neurodegenerative diseases. The pathological changes in certain other neurodegenerative diseases are also linked to changes in metabolism and function of alpha-synuclein, hence comprising a new group of diseases--synucleinopathies. The molecular and cellular mechanisms that are involved in the development of neurodegeneration in synucleinopathies are still largely unknown. As a result, the therapeutic approaches to the treatment of synucleinopathies are inadequately tampered. The development of models of neurodegenerative process in laboratory animals plays a crucial role in the study of these molecular mechanisms. Recently a special emphasis was placed on transgenic animal models with modified expression of genes, which mutations are associated with inherited forms of human neurodegenerative diseases. Current review is devoted to the analysis of different models of synucleinopathies as a result of genetic modifications of alpha-synuclein expression.  相似文献   

3.
Parkinson's disease is a neurodegenerative disorder characterized by the progressive degeneration of the dopaminergic nigrostriatal pathway, and the presence of Lewy bodies. Over the past few years, several genes involved in inherited forms of the disease have been uncovered. In a small number of families with autosomal dominant inheritance, mutations have been identified in the genes encoding a-synuclein and ubiquitin carboxy-terminal hydrolase L1. Mutations in the parkin gene are a common cause of autosomal recessive parkinsonism with early onset, and also account for more than 15% of isolated cases with onset before age 45. The function of Parkin, a ubiquitin ligase involved in the degradation of protein substrates by the ubiquitin-proteasome pathway, highlights that ubiquitin-mediated proteolysis may play an important role in the pathophysiology of idiopathic Parkinson's disease.  相似文献   

4.
In this paper, we review experimental advances in molecular neurobiology of Alzheimer's disease (AD), with special emphasis on analysis of neural function of proteins involved in AD pathogenesis, their relation with several signaling pathways and with oxidative stress in neurons. Molecular genetic studies have found that mutations in APP, PS1 and PS2 genes and polymorphisms in APOE gene are implicated in AD pathogenesis. Recent studies show that these proteins, in addition to its role in beta-amyloid processing, are involved in several neuroplasticity-signaling pathways (NMDA-PKA-CREB-BDNF, reelin, wingless, notch, among others). Genomic and proteomic studies show early synaptic protein alterations in AD brains and animal models. DNA damage caused by oxidative stress is not completely repaired in neurons and is accumulated in the genes of synaptic proteins. Several functional SNPs in synaptic genes may be interesting candidates to explore in AD as genetic correlates of this synaptopathy in a "synaptogenomics" approach. Thus, experimental evidence shows that proteins implicated in AD pathogenesis have differential roles in several signaling pathways related to neuromodulation and neurotransmission in adult and developing brain. Genomic and proteomic studies support these results. We suggest that oxidative stress effects on DNA and inherited variations in synaptic genes may explain in part the synaptic dysfunction seen in AD.  相似文献   

5.
Parkin and the molecular pathways of Parkinson's disease   总被引:10,自引:0,他引:10  
Giasson BI  Lee VM 《Neuron》2001,31(6):885-888
Parkinson's disease (PD) is a neurodegenerative disease characterized by the selective demise of specific neuronal populations leading to impairment of motor functions. Recent genetic studies have uncovered several genes involved in inherited forms of the disease. These gene products are implicated in the biochemical pathways underlying the etiology of sporadic PD. Mutations in the parkin gene causal of autosomal recessive juvenile parkinsonism highlight that ubiquitin-mediated proteolysis may play an important role in the pathobiology of PD.  相似文献   

6.
Caught in the act: alpha-synuclein is the culprit in Parkinson's disease   总被引:6,自引:0,他引:6  
Previous reports on Parkinson's disease indicate that genetic mutations in alpha-synuclein result in the aberrant accumulation of this protein, causing toxic gain of function leading to the development of Parkinson's. A recent report on the Iowan kindred, an extended pedigree with an autosomal dominant form of this disease, provides new mechanistic insight into Parkinson's disease by showing that an elevation in wild-type alpha-synuclein protein is sufficient to develop the early-onset form of the disorder. This review discusses how insights gained from these studies of alpha-synuclein may direct future research into Parkinson's disease.  相似文献   

7.
Shadrina MI  Slominskiĭ PA 《Genetika》2006,42(8):1045-1059
The current views on the role of genetic factors in the pathogenesis of Parkinson's disease are considered. The review is focused on monogenic forms of the disease, for which 11 loci are mapped and seven genes whose mutations cause the disease are identified. In addition, a number of candidate genes for sporadic Parkinson's disease are described. The further development of studying genetic bases of Parkinson's disease will follow two main directions: in-depth analysis of genes related to the monogenic form of the disease and more large-scale associative investigation of candidate genes for the sporadic form of Parkinson's disease.  相似文献   

8.
Obstructive sleep apnea syndrome (OSAS) is a complex chronic clinical syndrome, characterized by snoring, periodic apnea, hypoxemia during sleep, and daytime hypersomnolence. It affects 4-5% of the general population. Racial studies and chromosomal mapping, familial studies and twin studies have provided evidence for the possible link between the OSAS and genetic factors and also most of the risk factors involved in the pathogenesis of OSAS are largely genetically determined. A percentage of 35-40% of its variance can be attributed to genetic factors. It is likely that genetic factors associated with craniofacial structure, body fat distribution and neural control of the upper airway muscles interact to produce the OSAS phenotype. Although the role of specific genes that influence the development of OSAS has not yet been identified, current researches, especially in animal model, suggest that several genetic systems may be important. In this chapter, we will first define the OSAS phenotype, the pathogenesis and the risk factors involved in the OSAS that may be inherited, then, we will review the current progress in the genetics of OSAS and suggest a few future perspectives in the development of therapeutic agents for this complex disease entity.Key Words: Obstructive sleep apnea, genetic, hypopnea, AHI, snoring, risk factors, phenotype, multifactorial disease.  相似文献   

9.
Several species of the genus Fusarium and related fungi produce trichothecenes which are sesquiterpenoid epoxides that act as potent inhibitors of eukaryotic protein synthesis. Interest in the trichothecenes is due primarily to their widespread contamination of agricultural commodities and their adverse effects on human and animal health. In this review, we describe the trichothecene biosynthetic pathway in Fusarium species and discuss genetic evidence that several trichothecene biosynthetic genes are organized in a gene cluster. Trichothecenes are highly toxic to a wide range of eukaryotes, but their specific function, if any, in the survival of the fungi that produce them is not obvious. Trichothecene gene disruption experiments indicate that production of trichothecenes can enhance the severity of disease caused by Fusarium species on some plant hosts. Understanding the regulation and function of trichothecene biosynthesis may aid in development of new strategies for controlling their production in food and feed products.  相似文献   

10.
Parkinson's disease is the most common neurodegenerative movement disorder, affecting about 6 million people worldwide with a slow progression of the symptoms. Its prevalence is expected to double in the most populated areas within the next two decades, according to increasing aged population. Consequently, Parkinson's disease is a socio-economic trouble and a major challenge for the public health system. Parkinson's disease treatment is merely symptomatic, as clinical symptoms appear when about 70% of the involved neurons are lost and potential disease-modifying/neuroprotective therapies would have no effect. In turn, the availability of an objective measure that allows early diagnosis would strongly impact on the costs that biotech- and pharma-companies will sustain in order to develop disease-modifying therapies. The establishment of suitable models to investigate the mechanisms of Parkinson's disease progression and, on the other hand, the discovery and validation of selective and specific molecular biomarkers for early and differential diagnosis are indeed two important goals for a better management of the disease. In this review, we focus on cellular and animal models of Parkinson's disease by describing their advantages and limitations as useful tools to identify pathogenetic pathways that deserve further exploitation. In parallel, we discuss how proteomics may provide a potent tool to observe altered pathways in models or altered biomarkers in patients with an unbiased, hypothesis-free approach.  相似文献   

11.
Parkinson's disease is the most common neurodegenerative movement disorder, affecting about 6 million people worldwide with a slow progression of the symptoms. Its prevalence is expected to double in the most populated areas within the next two decades, according to increasing aged population. Consequently, Parkinson's disease is a socio-economic trouble and a major challenge for the public health system. Parkinson's disease treatment is merely symptomatic, as clinical symptoms appear when about 70% of the involved neurons are lost and potential disease-modifying/neuroprotective therapies would have no effect. In turn, the availability of an objective measure that allows early diagnosis would strongly impact on the costs that biotech- and pharma-companies will sustain in order to develop disease-modifying therapies. The establishment of suitable models to investigate the mechanisms of Parkinson's disease progression and, on the other hand, the discovery and validation of selective and specific molecular biomarkers for early and differential diagnosis are indeed two important goals for a better management of the disease. In this review, we focus on cellular and animal models of Parkinson's disease by describing their advantages and limitations as useful tools to identify pathogenetic pathways that deserve further exploitation. In parallel, we discuss how proteomics may provide a potent tool to observe altered pathways in models or altered biomarkers in patients with an unbiased, hypothesis-free approach.  相似文献   

12.
Tumor suppressor genes have been shown to be necessary for proper maintenance of cell growth control. Inactivation of these genes in the germline of humans is linked to inherited cancer predisposition. Moreover, sporadically arising human tumors often have somatic mutations in tumor suppressor genes. During the past few years, advances in molecular and cellular biology have led to the creation of animal models that have germline mutations of various tumor suppressor genes. Such mice potentially represent important animal models for familial cancer predisposition syndromes, and the study of the tumorigenesis process has been greatly assisted by their development. Such models have also demonstrated the importance of tumor suppressor function in embryonic development. In this review, we describe mice with inactivated germline tumor suppressor genes that are genetically analogous to 10 different inherited cancer syndromes in humans. We describe the variable usefulness of the mutant mice as models for human disease.  相似文献   

13.
Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, prion diseases and polyglutamine disorders, including Huntington's disease and various spinocerebellar ataxias, are associated with the formation of protein aggregates. These aggregates and/or their precursors are thought to be toxic disease-causing species. Autophagy is a major degradation pathway for intracytosolic aggregate-prone proteins, including those associated with neurodegeneration. It is a constitutive self-degradative process involved both in the basal turnover of cellular components and in response to nutrient starvation in eukaryotes. Enhancing autophagy may be a possible therapeutic strategy for neurodegenerative disorders where the mutant proteins are autophagy substrates. In cell and animal models, chemical induction of autophagy protects against the toxic insults of these mutant aggregate-prone proteins by enhancing their clearance. We will discuss various autophagy-inducing small molecules that have emerged in the past few years that may be leads towards the treatment of such devastating diseases.  相似文献   

14.
The normal development and function of photoreceptors is essential for eye health and visual acuity in vertebrates. Mutations in genes encoding proteins involved in photoreceptor development and function are associated with a suite of inherited retinal dystrophies, often as part of complex multi-organ syndromic conditions. In this review, we focus on the role of the photoreceptor outer segment, a highly modified and specialized primary cilium, in retinal health and disease. We discuss the many defects in the structure and function of the photoreceptor primary cilium that can cause a class of inherited conditions known as ciliopathies, often characterized by retinal dystrophy and degeneration, and highlight the recent insights into disease mechanisms.  相似文献   

15.
《Organogenesis》2013,9(1):69-85
The normal development and function of photoreceptors is essential for eye health and visual acuity in vertebrates. Mutations in genes encoding proteins involved in photoreceptor development and function are associated with a suite of inherited retinal dystrophies, often as part of complex multi-organ syndromic conditions. In this review, we focus on the role of the photoreceptor outer segment, a highly modified and specialized primary cilium, in retinal health and disease. We discuss the many defects in the structure and function of the photoreceptor primary cilium that can cause a class of inherited conditions known as ciliopathies, often characterized by retinal dystrophy and degeneration, and highlight the recent insights into disease mechanisms.  相似文献   

16.
Alberio T  Lopiano L  Fasano M 《The FEBS journal》2012,279(7):1146-1155
Cellular models are instrumental in dissecting a complex pathological process into simpler molecular events. Parkinson's disease is multifactorial and clinically heterogeneous; the aetiology of the sporadic (and most common) form is still unclear and only a few molecular mechanisms have been clarified so far in the neurodegenerative cascade. In such a multifaceted picture, it is particularly important to identify experimental models that simplify the study of the different networks of proteins/genes involved. Cellular models that reproduce some of the features of the neurons that degenerate in Parkinson's disease have contributed to many advances in our comprehension of the pathogenic flow of the disease. In particular, the pivotal biochemical pathways (i.e. apoptosis and oxidative stress, mitochondrial impairment and dysfunctional mitophagy, unfolded protein stress and improper removal of misfolded proteins) have been widely explored in cell lines, challenged with toxic insults or genetically modified. The central role of α-synuclein has generated many models aiming to elucidate its contribution to the dysregulation of various cellular processes. In conclusion, classical cellular models appear to be the correct choice for preliminary studies on the molecular action of new drugs or potential toxins and for understanding the role of single genetic factors. Moreover, the availability of novel cellular systems, such as cybrids or induced pluripotent stem cells, offers the chance to exploit the advantages of an in vitro investigation, although mirroring more closely the cell population being affected.  相似文献   

17.
Lavara-Culebras E  Paricio N 《Gene》2007,400(1-2):158-165
Parkinson's disease (PD) is a progressive movement disorder caused by the selective and massive loss of dopaminergic neurons (DA) in the substantia nigra pars compacta (SNc). DJ-1 loss-of-function mutations are involved in inherited early-onset PD forms and result in dysfunction of the oxidative stress response. In mice models, DJ-1 loss provokes sensitivity to oxidative insults but does not produce neurodegeneration. Similar results have been found when analyzing Drosophila mutants for the DJ-1 orthologous genes, DJ-1 and DJ-1β. Here, we report the analysis of two new mutations for the Drosophila DJ-1 genes. Both ubiquitous induction of DJ-1 knockdown by RNAi and loss of function of DJ-1β caused by an insertional mutation result in increased sensitivity to paraquat insults, reduced lifespan and motor impairments. However these mutations do not lead to DA neuron loss. Besides, we find that targeted inhibition of DJ-1 function in DA neuron results in certain DA neurodegeneration. Our results, together with findings in other Drosophila DJ-1 mutants, indicate that both Drosophila DJ-1 genes are implicated in the protection against the chemical induced oxidative stress response, but also in fly survival. The differences observed in DA neurodegeneration suggest that the motor impairments exhibited by the mutants could be caused by different pathways.  相似文献   

18.
Mitochondria and dopamine: new insights into recessive parkinsonism   总被引:14,自引:0,他引:14  
Shen J  Cookson MR 《Neuron》2004,43(3):301-304
Recessively inherited mutations in parkin, DJ-1, and PINK1 have recently been linked to familial forms of parkinsonism. These syndromes are often clinically indistinguishable from Parkinson's disease, as similar neuronal groups, notably dopaminergic neurons, are selectively affected. Studies of the functions of these gene products may provide insights into the pathogenic mechanisms underlying the selective degeneration of dopaminergic neurons. Emerging evidence that one or several of these genes play important roles in mitochondrial function and the dopaminergic system suggests that these events may be early steps of the pathophysiological changes of the disease. This review will summarize recent advances in our understanding of these gene products, with emphasis on the surprising convergence of their functions.  相似文献   

19.
Until recently, the nature of the molecules involved in inherited cystic disease of the kidney remained unknown. These diseases are characterized by the development of multiple abnormal fluid-filled sacs or dilations in the kidney parenchyma, often leading to significant renal failure. The recent characterization of the PKD1 gene product and of other genes involved in murine polycystic models underscores the complexity of the pathways that lead to renal cystic disease.  相似文献   

20.
Much has been learned in recent years about the genetics of familial Parkinson's disease. However, far less is known about those malfunctioning genes which contribute to the emergence and/or progression of the vast majority of cases, the 'sporadic Parkinson's disease', which is the focus of our current review. Drastic differences in the reported prevalence of Parkinson's disease in different continents and countries suggest ethnic and/or environmental-associated multigenic contributions to this disease. Numerous association studies showing variable involvement of multiple tested genes in these distinct locations support this notion. Also, variable increases in the risk of Parkinson's disease due to exposure to agricultural insecticides indicate complex gene-environment interactions, especially when genes involved in protection from oxidative stress are explored. Further consideration of the brain regions damaged in Parkinson's disease points at the age-vulnerable cholinergic-dopaminergic balance as being involved in the emergence of sporadic Parkinson's disease in general and in the exposure-induced risks in particular. More specifically, the chromosome 7 ACHE/PON1 locus emerges as a key region controlling this sensitive balance, and animal model experiments are compatible with this concept. Future progress in the understanding of the genetics of sporadic Parkinson's disease depends on globally coordinated, multileveled studies of gene-environment interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号