首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The teratogenic effects of valproic acid and its 4-propyl-4-pentenoic acid (4-en) metabolite were investigated in three inbred mouse strains that were known to possess differing sensitivity to heat-induced neural tube defects. In the heat-resistant DBA/2J strain, administration of either valproic acid or the metabolite during the critical period of neural tube development failed to produce any abnormal offspring. Similar treatment in the moderately heat-sensitive LM/Bc strain resulted in up to 19.8% exencephalic fetuses. The highly heat-sensitive SWV strain was also very susceptible to the induction of neural tube defects by either valproic acid or its 4-en metabolite. When administered on gestational day 8 plus 12 hours, the parent compound produced 35% exencephalic fetuses, while the metabolite had a response frequency of 32.4%. Thus, the hierarchy of susceptibility for the induction of neural tube defects in these inbred mouse strains was exactly the same whether the teratogen was a physical agent such as hyperthermia or a chemical compound such as valproic acid. If such diverse agents as these should interact to produce malformations, then it is possible that a wide variety of other agents might interact in a similar manner to produce neural tube defects.  相似文献   

2.
Pitt JA  Carney EW 《Teratology》1999,59(2):102-109
In an effort to advance the use of whole-embryo culture (WEC) techniques in the rabbit, we recently developed a gestational-age-based quantitative morphologic evaluation system for rabbit embryos. In the current study, we applied this new morphological scoring system to assess the development of rabbit gestational day (gd) 9 embryos exposed for 48 hr in WEC to the teratogens ethanol (EtOH, 154 mM), 6-aminonicotinamide (6AN, 0.15 mM), and methoxyacetic acid (MAA, 5.0 mM), and the nonteratogen penicillin G (PG, 2.0 mM). Each teratogen at the concentration tested markedly inhibited morphological development, as indicated by significantly lower morphologic scores (10.1+/-0.05, EtOH; 10.2+/-0.05, 6AN; and 9.8, MAA) relative to controls (10.6+/-0.04), and resulted in an increased percentage of malformed embryos (53%, EtOH; 57%, 6AN; 90%, MAA; and 3%, control). Embryonic growth, as measured by head length, somite number, and total embryonic protein, was significantly decreased by each teratogen. The abnormalities produced by teratogen exposure, which included brain, somite, and facial defects, were often similar to those produced following in vivo exposure in rabbits and rodents, and/or in vitro exposure in rodents. In contrast to the teratogen exposure groups, PG had no effect on embryo growth parameters, or on malformation rate (6%), although a slight but statistically significant decrease in morphology score (10.5+/-0.03) was noted. Our preliminary studies demonstrate the usefulness of the morphology evaluation system by quantifying graded differences in development, and indicate that rabbit WEC may be a useful adjunct to rodent WEC in gaining insights regarding differential interspecies sensitivity.  相似文献   

3.
BACKGROUND: The anticonvulsant trimethadione is a potent inducer of ventricular septation defects, both clinically and in rodents. Teratogenicity requires its N‐demethylation to dimethadione, the proximate teratogen. It was previously demonstrated trimethadione only induced membranous ventricular septation defects in rat (Fleeman et al., 2004 ), and our present goal is to determine whether direct administration of dimethadione increases the incidence and severity of septation defects. METHODS: Pregnant Sprague‐Dawley rats were divided into five groups and administered either distilled water (control) or four different regimens of dimethadione. The core treatment was 300 mg/kg dimethadione b.i.d. on gestation day 9, 10 with additional groups given one additional dose of dimethadione 12 hr earlier, 12 hr later or two additional doses 12 hr earlier and later. Caesarian sections occurred on gestation day 21 and fetuses were examined for standard developmental toxicity endpoints. RESULTS: The broadest dosing regimen yielded the highest incidence and the most severe heart and axioskeletal findings with a decrease in mean fetal body weight. The overall incidence of ventricular septation defects was 74%, of which 68% were membranous and 9% muscular. Outflow tract anomalies (17%) were also observed, as were malformations of the axioskeleton (97%), but not of the long bones, and of particular interest was the high incidence of sternoschesis. CONCLUSIONS: Unlike trimethadione, dimethadione induces more serious muscular septation defects that are believed to be more clinically relevant. This, when taken together with the high incidence of total septation anomalies suggests dimethadione is useful for the study of chemically induced ventricular septation defects. Birth Defects Res (Part B) 92:206–215, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

4.
5.
The glycol ethers 2-methoxyethanol (2-ME) and 2-ethoxyethanol (2-EE) prolong gestation in rodents. Because gap junctions in the myometrium likely facilitate parturition, the present study examined inhibition of gap junctional communication by 2-ME and 2-EE in myometrial smooth-muscle cell cultures. To measure gap junctional communication, the fluorescent dye Lucifer yellow was injected into cultured cells and the transfer of the dye to adjacent cells was scored with epifluorescence microscopy. The data are presented as the percentage of cells adjacent to the microinjected cell that exhibited dye following microinjection. A 30 min treatment with 32 or 63 mmol/L 2-ME decreased dye transfer to 71% and 63%, respectively (p0.05; control 90%). Similarly, 2-EE inhibited dye transfer, although myometrial cells were less sensitive to 2-EE compared to 2-ME. Dye transfer returned to control levels after 2 h in the continued presence of 2-ME. The primary metabolite of 2-ME, methoxyacetic acid (MAA), had no effect on dye transfer at concentrations equimolar to 2-ME. Because 2-ME and 2-EE inhibited gap junctional communication only at high concentrations and because the inhibition reversed in the continued presence of the compounds, it is suggested that glycol ethers delay parturition by a mechanism independent of a direct action on myometrial gap junctions.  相似文献   

6.
Most anticancer drugs are teratogens, merely because they target vital cellular functions. Conversely, some plants produce agents that intentionally target embryonic signaling pathways, precisely to cause birth defects if pregnant animals eat such plants. Cyclopamine, a teratogen produced by a flowering plant, inhibits the Hh/Gli pathway, causing developmental defects such as cyclopia (one eye in the middle of the face). In theory, selective teratogens may suppress cancer cells that re-activate embryonic pathways, while sparing most normal cells. I discuss the potential (and limits) of teratogens in cancer therapy, linking diverse topics from morning sickness of pregnancy, embryonic pathways and poisonous plants to the mechanism of action of anticancer teratogens and their combinations with less selective cytotoxic agents.  相似文献   

7.
Efficient energy utilization is essential for cell growth; in an attempt to improve the growth conditions of the rat T-lymphocyte culture model for potential use in studying the mutagenic activity of carcinogens in vitro, we have investigated the effects of phytohemagglutinin (PHA), interleukin-2 (IL-2) and 2-mercaptoethanol (2-ME) on the activities of intermediary metabolism enzymes and cell proliferation. Isolated lymphocytes were cultured in the presence and absence of PHA, IL-2, or 2-ME. The intermediary metabolism enzymes investigated were glutamate dehydrogenase, glutamate-pyruvate transaminase, malate dehydrogenase, isocitrate dehydrogenase, lactate dehydrogenase, pyruvate kinase, and fatty acid synthetase (FAS). Measurable activity of all enzymes investigated, except for FAS, was detected in PHA-stimulated cells cultured with IL-2 or 2-ME. The unstimulated lymphocytes had significantly lower enzyme activity than stimulated cells. The combination of all three agents showed increased enzyme activity. This increase in activity brought about by the combination of the three agents was not reproduced by either agent acting alone. In general, the increase in enzyme activity correlated with cell proliferation as measured by [3H]thymidine uptake in PHA-stimulated cultures containing IL-2 and/or 2-ME. The results suggest that the addition of exogenous IL-2 and 2-ME enhances metabolic function and may be beneficial in in vitro culture of rat lymphocytes.Abbreviations PHA phytohemagglutinin - IL-2 interleukin-2 - 2-ME 2-mercaptoethanol - GDH glutamate dehydrogenase - GPT glutamate-pyruvate transaminase - MDH malate dehydrogenase - ICD isocitrate dehydrogenase - LDM lactate dehydrogenase - PK pyruvate kinase - FAS fatty acid synthetase  相似文献   

8.
Exposure to ethylene glycol monomethyl ether (EGME), a glycol ether compound found in numerous industrial products, or to its active metabolite, 2‐methoxyacetic acid (2‐MAA), increases the incidence of developmental defects. Using an in vitro limb bud culture system, we tested the hypothesis that the effects of EGME on limb development are mediated by 2‐MAA‐induced alterations in acetylation programming. Murine gestation day 12 embryonic forelimbs were exposed to 3, 10, or 30 mM EGME or 2‐MAA in culture for 6 days to examine effects on limb morphology; limbs were cultured for 1 to 24 hr to monitor effects on the acetylation of histones (H3K9 and H4K12), a nonhistone protein, p53 (p53K379), and markers for cell cycle arrest (p21) and apoptosis (cleaved caspase‐3). EGME had little effect on limb morphology and no significant effects on the acetylation of histones or p53 or on biomarkers for cell cycle arrest or apoptosis. In contrast, 2‐MAA exposure resulted in a significant concentration‐dependent increase in limb abnormalities. 2‐MAA induced the hyperacetylation of histones H3K9Ac and H4K12Ac at all concentrations tested (3, 10, and 30 mM). Exposure to 10 or 30 mM 2‐MAA significantly increased acetylation of p53 at K379, p21 expression, and caspase‐3 cleavage. Thus, 2‐MAA, the proximate metabolite of EGME, disrupts limb development in vitro, modifies acetylation programming, and induces biomarkers of cell cycle arrest and apoptosis  相似文献   

9.
The level of intracellular glutathione (GSH) in mitogen-stimulated mouse lymphocytes is increased in the presence of 2-mercaptoethanol (2-ME), an enhancer of lymphocyte activation and proliferation. Since proliferation of lymphocytes in response to mitogens involves direct activation by a mitogen followed by continued proliferation in response to interleukin-2 (IL-2), we have investigated the effect of 2-ME and exogenous IL-2 on the GSH content and cell proliferation of rat lymphocytes stimulated with phytohemagglutinin (PHA). PHA stimulation increased both GSH content and the magnitude of the proliferative response, as measured by thymidine incorporation into cellular DNA. However, incubation of stimulated lymphocytes with 2-ME or IL-2 for 72 hr produced a significant further elevation of GSH levels and thymidine incorporation. 2-ME also increased the GSH content in unstimulated cultures, but it had little effect on thymidine incorporation. IL-2 increased GSH content and decreased thymidine incorporation in unstimulated lymphocytes. Exposure of cells to DL-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of GSH biosynthesis, significantly depleted GSH and lowered the proliferative response, suggesting a crucial role of de novo GSH synthesis for lymphocyte activation. The data suggest that both 2-ME and IL-2 promote lymphocyte proliferation, although the mechanisms by which intracellular GSH levels are increased by the agents are apparently different.Copies of articles are available through ISI Document Delivery Services c/o The Genuine Article, 3501 Market Street, Philadelphia, PA 19104.  相似文献   

10.
Glycol ethers such as 2-methoxyethanol (2-ME) are reproductive toxins. The genotoxicity of 2-ME, especially its metabolites: methoxyacetaldehyde (MALD) and methoxyacetic acid (MAA), is not adequately investigated yet. We have shown previously that MALD induced mutation in the bacterial gpt gene which is inserted in an autosome of CHO-AS52 cell line but not in the hprt gene on the X chromosome of CHO-K1-BH4 cell line. These data suggest that MALD induces major deletion-type mutation. If this prediction is correct we would expect to observe that MALD is an efficient inducer of chromosome aberrations in both CHO cell lines. We have conducted a cytogenetic study using both CHO cell lines and human lymphocytes to investigate this phenomenon. Our results show that human lymphocytes treated with 10–30 mM MALD for 1 h or 0.05–0.5 mM MALD for 24 h induced significant dose-dependent increase of sister-chromatid exchanges (SCE) (p < 0.05). It also induced significant dose-dependent increase (p < 0.05) of chromosome aberrations in human lymphocytes (10–40 mM treated for 1 h, or 0.05–2.5 mM for 24 h) and in both CHO cell lines (1.25–20 mM for 3 h). Treatment of these cells with the parent compound, 2-ME did not induce chromosome aberrations nor SCE unless very high doses of the chemical were used. In conclusion, these results indicate that MALD is clastogenic to different cell types therefore it is potentially carcinogenic. The genotoxic effects of 2-ME in humans will be dependent upon the metabolic capability of individuals to bioactivate 2-ME to MALD.  相似文献   

11.
Inherited cardiomyopathies may arise from mutations in genes that are normally expressed in both heart and skeletal muscle and therefore may be accompanied by skeletal muscle weakness. Phenotypically, patients with familial dilated cardiomyopathy (FDC) show enlargement of all four chambers of the heart and develop symptoms of congestive heart failure. Inherited cardiomyopathies may also be accompanied by cardiac conduction-system defects that affect the atrioventricular node, resulting in bradycardia. Several different chromosomal regions have been linked with the development of autosomal dominant FDC, but the gene defects in these disorders remain unknown. We now characterize an autosomal dominant disorder involving dilated cardiomyopathy, cardiac conduction-system disease, and adult-onset limb-girdle muscular dystrophy (FDC, conduction disease, and myopathy [FDC-CDM]). Genetic linkage was used to exclude regions of the genome known to be linked to dilated cardiomyopathy and muscular dystrophy phenotypes and to confirm genetic heterogeneity of these disorders. A genomewide scan identified a region on the long arm of chromosome 6 that is significantly associated with the presence of myopathy (D6S262; maximum LOD score [Z(max)] 4.99 at maximum recombination fraction [theta(max)] .00), identifying FDC-CDM as a genetically distinct disease. Haplotype analysis refined the interval containing the genetic defect, to a 3-cM interval between D6S1705 and D6S1656. This haplotype analysis excludes a number of striated muscle-expressed genes present in this region, including laminin alpha2, laminin alpha4, triadin, and phospholamban.  相似文献   

12.
This article addresses the issue of hyperthermia‐induced birth defects with an accompanying additional teratogen, be it a chemical or a physical agent (i.e., a simultaneous “combinational” exposure to two teratogens, one of which is hyperthermia). Hyperthermia per se is a recognized human and animal teratogen. An excellent example of such combinational exposures is an epileptic woman who becomes pregnant while taking valproic acid (VPA) to control seizures. VPA is a recognized chemical teratogen, and fever (hyperthermia) is not an uncommon event during pregnancy. While VPA also may occasionally induce fever as a side effect, we are concerned here with fevers arising from other, unrelated causes. There is a small but internally consistent literature on these combinational‐teratogen exposures involving hyperthermia plus a chemical teratogen; in each instance, the effect level has been observed to be synergistically elevated above levels induced by the separate teratogenic components. The data were empirical. The observed synergy is, however, consistent with Arrhenius thermodynamics, a well‐known chemical rate equation. The need for information about combinational teratogen exposures is acute; fever is a common occurrence during pregnancy; and there are many instances whereby there is also the simultaneous presence of some other teratogen(s). Given that the rate of autism spectrum disorders in the United States was recently presented as 1 in 88 births, it seems reasonable to suspect that such combinational regimens are much more prevalent than previously thought. Our hypothesis is that synergistic birth defect levels from combinational regimens are consistent with Arrhenius thermodynamics. Birth Defects Research (Part C) 99:50–60, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
14.
The Na,K-ATPase function appears impaired in human heart failure with dilation; however little is known in animal model with idiopathic dilated cardiomyopathy. We studied Na,K-ATPase isoform composition and activity from cardiomyopathic hamsters of the MS 200 strain with pure dilated cardiomyopathy and compared them with those of healthy Syrian hamsters. 150-day-old male MS 200 Syrian hamsters (n = 16) and sex- and age-matched healthy Syrian hamsters (n = 15) were used. Antibodies specific for the three alpha-isoforms and against the beta1-isoform were used to study Na,K-ATPase isoform expression in ventricular myocardium. Na,K-ATPase activity was quantified in homogenate and membrane fractions. There was no significant change in left ventricular mass. Morphological examination revealed a decreased septum thickness in the dilated cardiomyopathy compared with control hamster. Idiopathic dilated cardiomyopathy in hamsters presented significantly reduced membrane alpha1 and beta1 abundances and reduced Na,K-ATPase activity (-35% vs. healthy control, p<0.05). Chronic heart failure had no effect on the Na,K-ATPase alpha2-subunit protein. We have demonstrated for the first time that dilated cardiomyopathy induces a specific reduction of both membrane alpha1- and beta1-isoform abundance and Na,K-ATPase activity in hamsters similar to those previously reported in human dilated heart failure.  相似文献   

15.
In a series of animal studies performed over a career spanning 40 years at the University of Sydney, Professor Marshall J. Edwards investigated the hypothesis that maternal hyperthermia during gestation can be teratogenic to the developing fetus. He is one of few investigators to have discovered a known human teratogen primarily through animal studies. In 1970 he earned his Ph.D. from the University of Sydney, writing a doctoral thesis entitled "A Study of Some Factors Affecting Fertility of Animals with Particular Reference to the Effects of Hyperthermia on Gestation and Prenatal Development of the Guinea-Pig." He went on to prove that hyperthermia-induced malformations in animals involve many organs and structures, particularly the central nervous system. Other defects include craniofacial anomalies, heart defects and hypodactyly, cataracts and coloboma, kyphoscoliosis, renal anomalies, dental agenesis, and abdominal wall defects. In a series of carefully planned and executed experiments, he demonstrated that the type of defect is related to the timing of the hyperthermic insult, and analyzed the underlying mechanisms. Cell death, membrane disruption, vascular disruption, and placental infarction were all implicated in causing embryonic damage. This special article reviews the scientific discoveries and personal philosophy of Marshall J. Edwards, the discoverer of maternal hyperthermia as a human teratogen.  相似文献   

16.
2-Methoxyestradiol (2-ME), a naturally occurring metabolite of 17beta-estradiol, is highly cytotoxic to a wide range of tumor cells but is harmless to most normal cells. However, 2-ME prevented bone loss in ovariectomized rats, suggesting it inhibits bone resorption. These studies were performed to determine the direct effects of 2-ME on cultured osteoclasts. 2-ME (2 microM) reduced osteoclast number by more than 95% and induced apoptosis in three cultured osteoclast model systems (RAW 264.7 cells cultured with RANKL, marrow cells co-cultured with stromal support cells, and spleen cells cultured without support cells in media supplemented with RANKL and macrophage colony stimulating factor (M-CSF)). The 2-ME-mediated effect was ligand specific; 2-hydroxyestradiol (2-OHE), the immediate precursor to 2-ME, exhibited less cytotoxicity; and 2-methoxyestrone (2-MEOE1) the estrone analog of 2-ME, was not cytotoxic. Co-treatment with ICI 182,780 did not antagonize 2-ME, suggesting that the cytotoxicity was not estrogen receptor-dependent. 2-ME-induced cell death in RAW 264.7 cells coincided with an increase in gene expression of cytokines implicated in inhibition of differentiation and induction of apoptosis. In addition, the 2-ME-mediated decrease in cell survival was partially inhibited by anti-lymphotoxin(LT)beta antibodies, suggesting that 2-ME-dependent effects involve LTbeta. These results suggest that 2-ME could be useful for treating skeletal diseases in which bone resorption is increased, such as postmenopausal osteoporosis and cancer metastasis to bone.  相似文献   

17.
Sodium dodecyl sulfate (SDS) and 2-mercaptoethanol (2-ME) activated proteolytic enzymes present in extracts of Entamoeba histolytica and E. invadens; SDS (0.5%) and 2-ME (1.4 and 715 mM) doubled the enzymatic activity when assayed on a stained insoluble substrate. Urea (4 M) did not reduce this activity, suggesting that amebic proteases are stable in the above denaturant conditions. Specific reagents for sulfhydryl (-SH) groups completely inhibited proteolytic activity regardless of pH. Inhibition with alkylating agents, such as N-ethylmaleimide and iodoacetamide, was reversed with 715 mM 2-ME as was also observed with papain. We conclude from these results that the main proteolytic enzymes contained in extracts of E. histolytica and E. invadens are dependent on free thiol groups.  相似文献   

18.
19.
Isotretinoin (13-cis-RA) is known to be teratogenic in humans and laboratory animals. The relatively low potency of 13-cis-RA in NRMI mice in comparison to the all-trans isomer has been proposed to be due to minimal transfer across the placenta (Creech-Kraft et al., '87). To further delineate the teratogenic potential of 13-cis-RA, a dose-response, temporal study was conducted in vivo and in vitro using submerged limb culture and image analysis evaluation of development. Dose-dependent embryotoxicity was produced by treatment on GD 7, while later treatments produced inconsistent effects on resorption rate and fetal weight. Treatment on either GD 7 or GD 8 produced a number of malformations in dose-dependent manner. Most common were tail and cleft palate defects, which were produced by 13-cis-RA on each of the days tested (GD 7-GD 11), with peak malformations occurring on GD 9 and GD 10 for tail and cleft palate, respectively. Most limb defects were produced after GD 10 and GD 11 exposure. The observed frequency of defects confirmed that in ICR mice 13-cis-RA is about 10-fold less potent than all-trans-RA as a limb teratogen (Kwasigroch and Kochhar, '80; Kochhar and Penner, '87). Effects observed via image analysis following maintenance of limbs in serum-free culture medium were dose dependent. Low dose treatment produced occasional polydactyly. The intermediate dose caused somewhat variable region-dependent increases in cartilaginous bone anlagen area. The high dose of 13-cis-RA produced irregular limb outlines, a reduction in bone anlagen area, and an inhibition of alcian blue staining of cartilage without affecting morphogenesis of bone anlagen. These results confirm that, when the effects of the administered doses are evaluated, 13-cis-RA is a much less potent teratogen in comparison to the all-trans isomer. More importantly, the results show that retinoids can enhance (at low and intermediate doses), depress (at high doses), or eliminate (high dose) chondrogenenic expression during limb morphogenesis in vitro. This indicates that retinoids such as 13-cis-RA can manipulate events in development in a variety of ways (i.e., produce malformations, interfere with chondrogenic expression without affecting morphogenesis, and stimulate growth) in a dose- and time-dependent manner. Although the ability of RA to act as a true morphogen has recently been questioned (Wanek et al., '91; Noji et al., '91), the results presented here support the position that RA can modulate the development of the limb (and probably other organ systems) in several vertebrate species.  相似文献   

20.
Thirty-five day old ovariectomised rats were given daily subcutaneous injections (0.05-5.0 micrograms/100 gm body weight) of estradiol (E2) 2-methoxyestradiol (2-ME2) or 4-methoxyestradiol (4-ME2) for six days. At the end of the last injection, the animals were sacrificed and serum lipoproteins were analysed. It was observed that cholesterol decreased significantly in normal fed animals who received E2 and 4-ME2, while no effect was seen in cholesterol fed animals. In the E2 treated group there was a decrease in esterified and free cholesterol, while in the 4-ME2 group only esterified cholesterol decreased. High density lipoproteins were significantly elevated in the E2 treated group. However, there was an increase in very low density lipoproteins and a decrease in low density lipoproteins in 2-ME2 and 4-ME2 treated groups. These results suggest that catechol estrogens may play an important role in the lipoprotein metabolism and atherosclerotic diseases, and the mechanism of action may differ from that of estradiol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号