首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzyme-induced aggregation and gelation of proteins   总被引:2,自引:0,他引:2  
This paper provides a brief overview of the effects of protein hydrolysis on aggregation and gel forming properties of protein systems. Among the food globular proteins, whey proteins and soy proteins are the most extensively studied for their ability to form different textures upon proteolysis. Recent studies were focused on identifying aggregating peptides and on mechanisms of aggregation and gelation.  相似文献   

2.
3.
Disulphide bonds in human recombinant tissue inhibitor of metalloproteinases (TIMP) were assigned by resolving proteolytic digests of TIMP on reverse-phase h.p.l.c. and sequencing those peaks judged to contain disulphide bonds by virtue of a change in retention time on reduction. This procedure allowed the direct assignment of Cys-145-Cys-166 and the isolation of two other peptides containing two disulphide bonds each. Further peptide cleavage in conjunction with fast-atom-bombardment m.s. analysis permitted the assignments Cys-1-Cys-70, Cys-3-Cys-99, Cys-13-Cys-124 and Cys-127-Cys-174 from these peptides. The sixth bond Cys-132-Cys-137 was assigned by inference, as the native protein has no detectable free thiol groups.  相似文献   

4.
5.
6.
The assembly of reduced pro-alpha chains of type I and type II procollagen into the native triple-helical molecule was examined in vitro in the presence and absence of pure protein disulfide isomerase. The data clearly indicates that protein disulfide isomerase is able to accelerate the formation of native interchain disulfide bonds in these procollagens. It takes about 6 min after disulfide bonding before triple-helical molecules exist, while the time required to produce triple-helical type I procollagen in the presence of protein disulfide isomerase is 9.4 min and that for type II procollagen 17.2 min. These values agree with those obtained for type I and II procollagen in vivo suggesting that protein disulfide isomerase is also an enzyme catalyzing interchain disulfide bond formation in procollagen in vivo. The formation of native disulfide bonds can proceed without any enzyme catalysis but then requires the presence of reduced and oxidized glutathione. Bonding is rather slow in such a case, however, resulting in a delay in the formation of the triple helix.  相似文献   

7.
We previously demonstrated that a heterotypic complex of the two rat asialoglycoprotein receptor subunits was assembled during cell-free translation (Sawyer, J. T., and D. Doyle. 1990. Proc. Natl. Acad. Sci. USA. 87:4854-4858). We have characterized this system further by analyzing polypeptide interactions under both reducing and oxidizing translation conditions. This report shows that the complex represents a heterogeneous interaction between reduced membrane proteins rather than a specific oligomeric structure. In the reduced state membrane proteins interact in this system to form aggregates of diverse size and composition. The aggregated nascent polypeptides interact with the immunoglobulin heavy chain binding protein but this protein is not an integral component of the aggregate. Aggregation occurs via the exoplasmic domain, rather than the transmembrane domain, and the folding of this domain by the formation of intramolecular disulfides, prevents the interaction from occurring. Additionally, the folded molecules containing intramolecular disulfides lack high affinity binding activity and thus appear to resemble the earliest folding intermediates seen in vivo (Olson, J. T., and M. D. Lane. 198. FASEB (Fed. Am. Soc. Exp. Biol.) J. 3:1618-1624). These results lead us to suggest that the formation of intramolecular disulfides during early biogenesis serves to prevent nonspecific associations between nascent polypeptides.  相似文献   

8.
9.
I Braakman  J Helenius    A Helenius 《The EMBO journal》1992,11(5):1717-1722
Addition of the reducing agent dithiothreitol (DTT) to the medium of living cells prevented disulfide bond formation in newly synthesized influenza hemagglutinin (HA0) and induced the reduction of already oxidized HA0 inside the ER. The reduced HA0 did not trimerize or leave the ER. When DTT was washed out, HA0 was rapidly oxidized, correctly folded, trimerized and transported to the Golgi complex. We concluded that protein folding and the redox conditions in the ER can be readily manipulated by addition of DTT without affecting most other cellular functions, that the reduced influenza HA0 remains largely unfolded, and that folding events that normally take place on the nascent HA0 chains can be delayed and induced post-translationally without loss in efficiency.  相似文献   

10.
Identification of a protein required for disulfide bond formation in vivo   总被引:89,自引:0,他引:89  
J C Bardwell  K McGovern  J Beckwith 《Cell》1991,67(3):581-589
We describe a mutation (dsbA) that renders Escherichia coli severely defective in disulfide bond formation. In dsbA mutant cells, pulse-labeled beta-lactamase, alkaline phosphatase, and OmpA are secreted but largely lack disulfide bonds. These disulfideless proteins may represent in vivo folding intermediates, since they are protease sensitive and chase slowly into stable oxidized forms. The dsbA gene codes for a 21,000 Mr periplasmic protein containing the sequence cys-pro-his-cys, which resembles the active sites of certain disulfide oxidoreductases. The purified DsbA protein is capable of reducing the disulfide bonds of insulin, an activity that it shares with these disulfide oxidoreductases. Our results suggest that disulfide bond formation is facilitated by DsbA in vivo.  相似文献   

11.
To study disulphide bridge formation by Streptomyces lividans TK 24 in secreted single chain precursors of insulin a fusion protein (PTF 1) was investigated consisting of monkey proinsulin and the aminoterminal sequence Asp1 to Gly43 of the alpha-amylase inhibitor tendamistat from Streptomyces tendae. The purified soluble protein PTF 1 has a molecular mass of 14.4 kDa. The primary structure was elucidated after digestion with lysyl endopeptidase and fragment analysis. In this system, disulphide bond formation occurs in a way that the first cysteine in proinsulin is linked to the next following cysteine in the amino-acid chain resulting in a non-natural folding of the insulin part of the fusion protein. Re-folding of PTF 1 by reduction and re-oxidation followed by proteolytic digestions led to insulins which are identical to authentic material. The ease of correct disulphide bond formation in solution and incorrect processing during secretion suggests involvement of yet unknown factors leading to an unfavourable folding of proinsulin.  相似文献   

12.
13.
Here we investigate the role of backbone-backbone hydrogen bonding interactions in stabilizing the protein folding transition states of two model protein systems, the B1 domain of protein L (ProtL) and the P22 Arc repressor. A backbone modified analogue of ProtL containing an amide-to-ester bond substitution between residues 105 and 106 was prepared by total chemical synthesis, and the thermodynamic and kinetic parameters associated with its folding reaction were evaluated. Ultimately, these parameters were used in a Phi-value analysis to determine if the native backbone-backbone hydrogen bonding interaction perturbed in this analogue (i.e. a hydrogen bond in the first beta-turn of ProtL's beta-beta-alpha-beta-beta fold) was formed in the transition state of ProtL's folding reaction. Also determined were the kinetic parameters associated with the folding reactions of two Arc repressor analogues, each containing an amide-to-ester bond substitution in the backbone of their polypeptide chains. These parameters were used together with previously established thermodynamic parameters for the folding of these analogues in Phi-value analyses to determine if the native backbone-backbone hydrogen bonding interactions perturbed in these analogues (i.e. a hydrogen bond at the end of the intersubunit beta-sheet interface and hydrogen bonds at the beginning of the second alpha-helix in Arc repressor's beta-alpha-alpha structure) were formed in the transition state of Arc repressor's folding reaction. Our results reveal that backbone-backbone hydrogen bonding interactions are formed in the beta-turn and alpha-helical transition state structures of ProtL and Arc repressor, respectively; and they were not formed in the intersubunit beta-sheet interface of Arc repressor, a region of Arc repressor's polypeptide chain previously shown to have other non-native-like conformations in Arc's protein folding transition state.  相似文献   

14.
The Shigella outer membrane protein IcsA belongs to the family of type V secreted (autotransported) virulence factors. Members of this family mediate their own translocation across the bacterial outer membrane: the carboxy-terminal beta domain forms a beta barrel channel in the outer membrane through which the amino-terminal alpha domain passes. IcsA, which is localized at one pole of the bacterium, mediates actin assembly by Shigella, which is essential for bacterial intracellular movement and intercellular dissemination. Here, we characterize the transit of IcsA across the periplasm during its secretion. We show that an insertion in the dsbB gene, whose gene product mediates disulfide bond formation of many periplasmic intermediates, does not affect the surface expression or unipolar targeting of IcsA. However, IcsA forms one disulfide bond in the periplasm in a DsbA/DsbB-dependent fashion. Furthermore, cellular fractionation studies reveal that IcsA has a transient soluble periplasmic intermediate. Our data also suggest that IcsA is folded in a proteinase K-resistant state in the periplasm. From these data, we propose a novel model for the secretion of IcsA that may be applicable to other autotransported proteins.  相似文献   

15.
Members of the Quiescin-sulfhydryl oxidase (QSOX) family utilize a thioredoxin domain and a small FAD-binding domain homologous to the yeast ERV1p protein to oxidize sulfhydryl groups to disulfides with the reduction of oxygen to hydrogen peroxide. QSOX enzymes are found in all multicellular organisms for which complete genomes exist and in Trypanosoma brucei, but are not found in yeast. The avian QSOX is the best understood enzymatically: its preferred substrates are peptides and proteins, not monothiols such as glutathione. Mixtures of avian QSOX and protein disulfide isomerase catalyze the rapid insertion of the correct disulfide pairings in reduced RNase. Immunohistochemical studies of human tissues show a marked and highly localized concentration of QSOX in cell types associated with heavy secretory loads. Consistent with this role in the formation of disulfide bonds, QSOX is typically found in the cell in the endoplasmic reticulum and Golgi and outside the cell. In sum, this review suggests that QSOX enzymes play a significant role in oxidative folding of a large variety of proteins in a wide range of multicellular organisms.  相似文献   

16.
Macromolecular crowding is expected to have several significant effects on protein aggregation; the major effects will be those due to excluded volume and increased viscosity. In this report we summarize data demonstrating that macromolecular crowding may lead to a dramatic acceleration in the rate of protein aggregation and formation of amyloid fibrils, using the protein alpha-synuclein. The aggregation of alpha-synuclein has been implicated as a critical factor in development of Parkinson's disease. Various types of polymers, from neutral polyethylene glycols and polysaccharides (Ficolls, dextrans) to inert proteins, are shown to accelerate alpha-synuclein fibrillation. The stimulation of fibrillation increases with increasing length of polymer, as well as increasing polymer concentration. At lower polymer concentrations (typically up to approximately 100 mg/ml) the major effect is ascribed to excluded volume, whereas at higher polymer concentrations evidence of opposing viscosity effects become apparent. Pesticides and metals, which are linked to increased risk of Parkinson's disease by epidemiological studies, are shown to accelerate alpha-synuclein fibrillation under conditions of molecular crowding.  相似文献   

17.
18.
Misfolded protein aggregation causes disease and aging; autophagy counteracts this by eliminating damaged components, enabling cells to survive starvation. The cytoplasm-to-vacuole targeting pathway in yeast encompasses the aggregation of the premature form of aminopeptidase 1 (prApe1) in cytosol and its sequestration by autophagic proteins into a vesicle for vacuolar transport. We show that the propeptide of Ape1 is important for aggregation and vesicle formation and that it is sufficient for binding to prApe1 and Atg19. Defective aggregation disrupts vacuolar transport, suggesting that aggregate shape is important in vesicle formation, whereas Atg19 binding is not sufficient for vacuolar transport. Aggregation involves hydrophobicity, whereas Atg19 binding requires additional electrostatic interactions. Ape1 dodecamerization may cluster propeptides into trimeric structures, with sufficient affinity to form propeptide hexamers by binding to other dodecamers, causing aggregation. We show that Ape1 aggregates bind Atg19 and Atg8 in vitro; this could be used as a scaffold for an in vitro assay of autophagosome formation to elucidate the mechanisms of autophagy.  相似文献   

19.
Myoglobin is an alpha-helical globular protein that contains two highly conserved tryptophan residues located at positions 7 and 14 in the N-terminal region of the protein. Replacement of both indole residues with phenylalanine residues, i.e. W7F/W14F, results in the expression of an unstable, not correctly folded protein that does not bind the prosthetic group. Here we report data (Congo red and thioflavine T binding assay, birefringence, and electron microscopy) showing that the double Trp/Phe replacements render apomyoglobin molecules highly susceptible to aggregation and amyloid-like fibril formation under physiological conditions in which most of the wild-type protein is in the native state. In refolding experiments, like the wild-type protein, the W7F/W14F apomyoglobin mutant formed a soluble, partially folded helical state between pH 2.0 and pH 4.0. A pH increase from 4.0 to 7.0 restored the native structure only in the case of the wild-type protein and determined aggregation of W7F/W14F. The circular dichroism spectrum recorded immediately after neutralization showed that the polypeptide consists mainly of beta-structures. In conclusion, under physiological pH conditions, some mutations that affect folding may cause protein aggregation and the formation of amyloid-like fibrils.  相似文献   

20.
Substitution of alanine for cysteine residues of the human immunodeficiency virus type 1 LAI (BRU) and ELI Nef proteins was used to determine pairing of the cysteine residues present in each protein. The results show that under nonreducing conditions, alternative pairing of the cysteines occurs. The preferred pairing of cysteine residues of the LAI and ELI proteins differs. In the experimental system used, viruses carrying the ELI nef allele are found to express Nef proteins which accelerate virus replication. Mutation in critical cysteine residues of the protein reduce the rate of virus replication. In the same system, viruses harboring the LAI nef allele fail to replicate. These observations raise the possibility that differences in the observed biological activity of nef alleles may be attributed, at least in part, to differences in the secondary structure of the proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号