首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunohistochemical localization of cathepsins B, D and L in the osteoclasts of rat alveolar and femoral bones was investigated by using the avidin-biotin-peroxidase complex method for semithin, 1-m-thick cryosections. Extracellular immunoreactivity for cathepsins B and L was clearly demonstrated along the bone resorption lacunae; the intensity of the extracellular immunoreactivity of cathepsin L was stronger than that of cathepsin B. However, the intracellular immunoreactivity of both cathepsins was weak compared with that of cathepsin D. The intracellular immunoreactivity of cathespin D in the osteoclasts was clearly observed in the granules and/or vacuoles, but extracellular cathepsin D immunoreactivity was either negligible or not detected along the resorption lacunae. In the adjacent sections stained with anti-cathepsin L or D, extensive extracellular deposition of cathepsin L was found along the bone resorption lacunae, with or without osteoclasts, although the intracellular reactivity of cathepsin L was weak. This is the first morphological study in which cathepsins B and L have been demonstrated to be produced in the osteoclasts and extensively secreted into resorption lacunae, and in which cathepsin D was found to be present in the cells but scantily secreted into the lacunae. These findings suggest that cathepsins B and L directly and effectively participate in the degradation of the bone matrix.  相似文献   

2.
Lysosomal proteases are actively involved into pathogenesis of malignant tumors. Impairments in the interaction between proteases and their inhibitors are implicated in the processes of tumor invasion and metastasis. Among proteases associated with malignant growth, cysteine cathepsins B and L and aspartic cathepsin D are considered to play the major role in the tumor development. The present study was designed to investigate the activity of cathepsins B, L, and D during the development and treatment of murine experimental leukemias and to determine correlation between these proteases and course of pathological process as well as efficiency of the chemotherapeutic treatment. P-388 leukemia was characterized by a more aggressive development and unfavorable prognosis than L1210/1 leukemia. In mice with P-388 leukemia the activity of lysosomal cathepsins B, D, and L in the tumor tissue, liver and spleen, as well as the activity of cathepsins B and L in serum were lower than activities of these enzymes in mice with L1210/1 leukemia. Changes in the activity of cathepsins in liver and spleen of leukemic mice reflected a level of aggressiveness of the tumor development and invasion of these organs with tumor cells. Treatment of these experimental leukemias resulted in the increase of cathepsin B, L and D activity in the tumor tissue, liver, spleen and the increase in cathepsin B and L activity in serum. The highest protease activity was detected in the groups of mice characterized by the highest inhibition of the tumor growth. These data demonstrate that lysosomal proteases are involved in the progression of murine experimental leukemias and elimination of tumor cells in the result of treatment. Thus, determination of the activity of cysteine and aspartic proteases can be used for evaluation of cancer malignancy, tumor sensitivity for chemotherapy and efficiency of treatment.  相似文献   

3.
Summary Cathepsins B, H, and L are representative cysteine proteinases in lysosomes of a large variety of cells. Previous immunochemical studies indicated the presence of these enzymes also in the gastrointestinal wall. Using specific antisera, the cellular and subcellular distribution of cathepsins B, H, and L in rat gastric (oxyntic and pyloric part) and duodenal mucosa was investigated by light and electron microscopical immunocytochemistry. The subtypes of cathepsins were distributed differently in the cellular constituents of the epithelia: Cathepsin B was localized to lysosomes of all cells except goblet cells. Cathepsin H was found predominantly in gastric parietal cells (lysosomes) and in secretion granules of pyloric gastrin and duodenal cholecystokinin cells. Cathepsin L immunoreactivities were weak and restricted to a minority of cells (gastric mucous cells, enterocytes). Interstitial cells of the lamina propria immunoreactive for cathepsins H and L were identified as macrophages. The present findings suggest a dual function of cathepsins in the gastro-duodenal mucosa. They (1) cleave enzymatically proteins and peptides ingested in lysosomes, and (2) they may be involved in the processing of biologically active peptides (enteric hormones) from their precursor proteins.  相似文献   

4.
Cathepsins B, H, and L are representative cysteine proteinases in lysosomes of a large variety of cells. Previous immunochemical studies indicated the presence of these enzymes also in the gastrointestinal wall. Using specific antisera, the cellular and subcellular distribution of cathepsins B, H, and L in rat gastric (oxyntic and pyloric part) and duodenal mucosa was investigated by light and electron microscopical immunocytochemistry. The subtypes of cathepsins were distributed differently in the cellular constituents of the epithelia: Cathepsin B was localized to lysosomes of all cells except goblet cells. Cathepsin H was found predominantly in gastric parietal cells (lysosomes) and in secretion granules of pyloric gastrin and duodenal cholecystokinin cells. Cathepsin L immunoreactivities were weak and restricted to a minority of cells (gastric mucous cells, enterocytes). Interstitial cells of the lamina propria immunoreactive for cathepsins H and L were identified as macrophages. The present findings suggest a dual function of cathepsins in the gastro-duodenal mucosa. They (1) cleave enzymatically proteins and peptides ingested in lysosomes, and (2) they may be involved in the processing of biologically active peptides (enteric hormones) from their precursor proteins.  相似文献   

5.
Selective cleavage of peptide bonds by cathepsins L and B from rat liver   总被引:1,自引:0,他引:1  
The selective cleavage of peptide bonds by cathepsin L from rat liver was examined with a hexapeptide, luteinizing hormone releasing hormone, neurotensin and oxidized insulin A chain as model substrates. The specificity of cathepsin L was compared with that of cathepsin B. Cathepsin L cleaved peptide bonds that have a hydrophobic amino acid, such as Phe, Leu, Val, and Trp or Tyr, in position P2. A polar amino acid, such as Tyr, Ser, Gly, Glu, Asp, Gln, or Asn, in position P1. enhanced the susceptibility of the peptide bond to cathepsin L, though the importance of the amino acid residue in position P1' was not as great as that of the amino acid in position P2 for the action of cathepsin L. These results suggest that, in contrast to cathepsin B, cathepsin L shows very clear specificity.  相似文献   

6.
The normal provision of thyroid hormones to the body requires their release from the prohormone, thyroglobulin (Tg). Previous work established the importance of cathepsins B, D, and L (formerly designated cysteine proteinase I) to this process but had not defined the points of proteolytic attack for each enzyme. In the present study we labeled rabbit Tg in vivo with sodium 125I and performed limited digestions with cathepsins B, D, and L, purified from human thyroids. The resultant peptide fragments were analyzed by amino-terminal sequencing and located within the Tg molecule by comparison with the cDNA-derived sequences from human Tg. We identified three cleavage points for cathepsin B, corresponding to P'1 residues 532, 795, and 2487; four cleavage points for cathepsin L, corresponding to P'1 residues 2389, 2452, 2490, and 2657; and four cleavage points for cathepsin D, corresponding to P'1 residues 551, 1835, 2468, and 2643. None of the cleavage points was near Tgs known hormonogenic sites, but these peptide fragments contained three of the four major hormonogenic sites in rabbit Tg, suggesting some preference for their early proteolytic processing. Cathespin B alone among the three endopeptidases had some exopeptidase activity toward Tg. The cleavage specificities for each of the endopeptidases resembled those described with other protein substrates. Thus, cathepsin D preferentially cleaved bonds between hydrophobic residues, and cathespin L cleaved bonds with hydrophobic residues at P2 and P3. Although cathepsin Bs specificity was less obvious, it produced a major cleavage between 2 leucine residues. The existence of three endopeptidases cleaving at different sites shows that Tg proteolysis is a complex process, suggests synergism among their enzyme activities, and provides a physiological mechanism for selective hormone release, including its regulation by TSH.  相似文献   

7.
Conversion of proinsulin and intermediate forms of proinsulin into insulin were studied with rat liver cell fractions and purified lysosomal proteinases by using the technique of polyacrylamide disc-electrophoresis. Both substrates were degraded very rapidly by homogenates and crude lysosomal fractions to split products not detectable on disc-electropherograms. Neither breakdown nor conversion were detected with the cytosol and the microsomal fraction. With partially purified lysosomal fractions (mol. wt. approx. 25 000) or with highly purified cathepsin L or cathepsin B (B1) proinsulin was converted into products migrating like the intermediate forms and insulin, and the intermediates were converted into products migrating like insulin and deoctapeptide-insulin in disc-electropherograms. The mechanism of conversion seems to be different for both enzymes. The results force us to conclude that lysosomal cathepsins, especially cathepsins L and B might be involved in the process of conversion of proinsulin into insulin and perhaps also of other precursors into biologically active proteins in vivo.  相似文献   

8.
Degradation of myofibrillar proteins by cathepsins B and D   总被引:4,自引:0,他引:4       下载免费PDF全文
1. The procedure of Barrett [(1973) Biochem. J.131, 809-822] for isolating cathepsins B and D from human liver was modified for use with rat liver and skeletal muscle. The purified enzymes appeared to be similar to those reported in other species. 2. Sephadex G-75 chromatography of concentrated muscle extract resolved two peaks of cathepsin B inhibitory activity, corresponding to molecular weights of 12500 and 62000. 3. The degradation of purified myofibrillar proteins by cathepsins B and D was clearly demonstrated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. After incubation with enzyme, the polypeptide bands representing the substrates decreased in intensity and lower molecular weight products appeared. 4. Cathepsins B and D, purified from either rat liver or skeletal muscle, were shown to degrade myosin, purified from either rabbit or rat muscle. Soluble denatured myosin was degraded more extensively than insoluble native myosin. Degradation by cathepsin B was inhibited by lack of reducing agent, or by myoglobin, iodoacetic acid and leupeptin, but not by pepstatin. The same potential modifiers were applied to cathepsin D, and only pepstatin produced inhibition. 5. Rat liver cathepsin B had a pH optimum of 5.2 on native rabbit myosin. The pH optimum of cathepsin D was 4.0, with a shoulder of activity about 1pH unit above the optimum. 6. Rat liver cathepsins B and D were demonstrated to degrade rabbit F-actin at pH5.0, and were inhibited by leupeptin and pepstain, respectively. 7. The degradation of myosin and actin by cathepsin D was more extensive than that by cathepsin B.  相似文献   

9.
10.
Cathepsins B and L belong to the papain superfamily of cysteine proteases and play important roles in various physiological and pathological processes. In the course of studies on their inhibitors, we examined the inhibitory effects of the peptide aldehyde benzyloxycarbonyl-leucyl-leucyl-leucinal (ZLLLal) and its analogues. As a result, rat liver cathepsins B and L were shown to be strongly inhibited by them. The concentration required for 50% inhibition (IC(50)) by ZLLLal was 88 nM for cathepsin B and 163 nM for cathepsin L. Moreover, various analogues of ZLLLal, including 2-furancarbonyl-, nicotinyl-, isonicotinyl- and 4-morpholinylsuccinyl-LLLals, and some acetyl-Pro (AcP)-containing analogues, AcPLLLal and AcPPLLLal, were shown to inhibit both enzymes more strongly than ZLLLal. Among them, isonicotinyl-LLLal was most inhibitory against both cathepsins B (IC(50), 12 nM) and L (IC(50), 20 nM). Several of these inhibitors were indicated to be somewhat more soluble in aqueous media than ZLLLal.  相似文献   

11.
Cathepsins B and L belong to the papain superfamily of cysteine proteases and play important roles in various physiological and pathological processes. In the course of studies on their inhibitors, we examined the inhibitory effects of the peptide aldehyde benzyloxycarbonyl-leucyl-leucyl-leucinal (ZLLLal) and its analogues. As a result, rat liver cathepsins B and L were shown to be strongly inhibited by them. The concentration required for 50% inhibition (IC50) by ZLLLal was 88 nM for cathepsin B and 163 nM for cathepsin L. Moreover, various analogues of ZLLLal, including 2-furancarbonyl-, nicotinyl-, isonicotinyl- and 4-morpholinylsuccinyl-LLLals, and some acetyl-Pro (AcP)-containing analogues, AcPLLLal and AcPPLLLal, were shown to inhibit both enzymes more strongly than ZLLLal. Among them, isonicotinyl-LLLal was most inhibitory against both cathepsins B (IC50, 12 nM) and L (IC50, 20 nM). Several of these inhibitors were indicated to be somewhat more soluble in aqueous media than ZLLLal.  相似文献   

12.
Human α- and β-protryptase zymogens are abundantly and selectively produced by mast cells, but the mechanism(s) by which they are processed is uncertain. β-Protryptase is sequentially processed in vitro by autocatalysis at R(-3) followed by cathepsin (CTS) C proteolysis to the mature enzyme. However, mast cells from CTSC-deficient mice successfully convert protryptase (pro-murine mast cell protease-6) to mature murine mast cell protease-6. α-Protryptase processing cannot occur by trypsin-like enzymes due to an R(-3)Q substitution. Thus, biological mechanisms for processing these zymogens are uncertain. β-Tryptase processing activity(ies) distinct from CTSC were partially purified from human HMC-1 cells and identified by mass spectroscopy to include CTSB and CTSL. Importantly, CTSB and CTSL also directly process α-protryptase (Q(-3)) and mutated β-protryptase (R(-3)Q) as well as wild-type β-protryptase to maturity, indicating no need for autocatalysis, unlike the CTSC pathway. Heparin promoted tryptase tetramer formation and protected tryptase from degradation by CTSB and CTSL. Thus, CTSL and CTSB are capable of directly processing both α- and β-protryptases from human mast cells to their mature enzymatically active products.  相似文献   

13.
C57BL/6J na?ve and immunized mice were intracorneally infected with Pseudomonas aeruginosa. Semi-quantitative RT-PCR was performed to detect cathepsin gene expression and the results were further confirmed by immunoblot analysis. The enzymatic activities of cathepsins B, D and L were measured by peptidase assays. Immunohistochemical staining was carried out to localize the expression of the cathepsins. Cathepsins B, D and L were detected in the normal cornea by RT-PCR. A peptidase assay revealed activities of all three cathepsins under normal physiological conditions. In na?ve mice, enzymatic activities of cathepsins B, D and L were all significantly enhanced when the corneas were infected with P. aeruginosa and the peak of the induction appeared around day 6 postinfection. Immunoblot analysis showed increased expression of cathepsins B, D and L. The infected corneal samples from immunized mice exhibited much lower induction of enzymatic activities compared to those from na?ve mice. Immunohistochemistry showed that the expression of cathepsins in the normal cornea was restricted to the epithelial tissue while the induced expression of cathepsins was predominantly in the substantia propria. Our data revealed up-regulated enzymatic activities of cathepsins B, D and L in the na?ve corneas infected with P. aeruginosa, which correlated well with the inflammatory response. Immunization of mice against P. aeruginosa attenuated the inducing effect on cathepsin expression caused by infection. The time sequence for induction of cathepsin proteins and enzymatic activities suggests a mechanism of host proteolytic degradation of the extracellular matrix resulting in corneal destruction after P. aeruginosa infection.  相似文献   

14.
Different immunolocalizations of cathepsins B, H, and L in the liver   总被引:1,自引:0,他引:1  
Different localizations of cathepsin B, H, and L in normal rat liver were revealed immunohistochemically with anticathepsin Fab'-horseradish peroxidase conjugates. Staining of cathepsin B was strong in the periportal sinusoids, possibly in Kupffer cells; and weaker in panlobular hepatocytes. Staining of cathepsin H was strong in panlobular hepatocytes, especially in the periphery of the cytoplasm, possibly representing the peribiliary dense bodies; and weaker in periportal sinusoidal cells, possibly Kupffer cells. Staining of cathepsin L was strongest in centrilobular hepatocytes and weaker in periportal sinusoidal cells, possibly Kupffer cells. These findings, revealed for the first time in the present study, show that the histologic and intracellular localizations of the three cathepsins are different, suggesting that they have different roles in degradation of exogenous and endogenous proteins.  相似文献   

15.
  • 1.1. The degradation of the bone matrix proteins osteocalcin, osteonectin and α2HS-glycoprotein by human cathepsins B and L and human osteoclastoma cathepsins has been investigated.
  • 2.2. Intermediate degradation products (Mr > 12kDa) were not observed during the digestion of α2HS-glycoprotein and osteonectin by cathepsins B and L although they were observed with some of the osteoclastoma cathepsins. Most of the osteoclastoma cathepsins were capable of degrading these two proteins to small peptides at comparable rates.
  • 3.3. Each cathepsin produced a different pattern of osteocalcin degradation products.
  • 4.4. The extensive range of non-collagenous proteins in bone matrix may necessitate the production by osteoclasts of cathepsins with different specificities during bone resorption.
  相似文献   

16.
To determine the involvement of cathepsins G and L in the mechanism of spontaneous resorption of herniated intervertebral discs, localization of these cathepsins in this process was examined immunohistochemically using a rat model of autologous transplantation of coccygeal discs. Rat coccygeal discs were resected and autotransplanted into the subcutaneous space of the skin of the back. Paraffin-embedded sections of intervertebral disc tissue, harvested at various post-transplantational periods, were immunohistochemically stained with antibodies for cathepsin G, cathepsin L, MMP-1, MMP-3 and ED-2. The number of positive cells was counted in each part of the transplanted discs. Immunolocalization of cathepsins G and L in various types of disc cells was first observed early in the post-transplantation period. From two days after the operation, histology showed invasion by granulation tissue, with many macrophages, in all sections. Subsequently, the number of macrophages in granulation tissue was observed to increase, along with a gradual increase in the percentage of cells positive for MMP-1 and MMP-3. In addition to the ability of cathepsins G and L to degrade major extracellular matrix components of intervertebral discs, cathepsin G is capable of activating latent pro-MMPs. The up-regulation of cathepsins G and L in the intervertebral disc tissue in this spontaneous resorption model suggests that these proteinases may be involved in degradation of extracellular matrix, leading to the natural resorption of herniated discs.  相似文献   

17.
18.
1. Activities of cathepsins, lysosomal hydrolytic enzymes and cysteine protease inhibitor in both the white and red muscles of chum salmon (Oncorhynchus keta) caught during spawning and feeding migrations were compared. 2. In the white muscle, cathepsins B, D, H and L activities were 3-7 times higher in the fish in spawning migration than those in feeding migration. However, in the red muscle, no such marked differences were observed between them. 3. Cysteine protease inhibitory activity and extractable protein content in the white muscle of the fish in spawning migration were about 40% lower than those in feeding migration. 4. The present study supports the conception that the cathepsins are related to protein catabolism of the fish during spawning migration.  相似文献   

19.
To examine the correlation of localization of prorenin, renin, and cathepsins B, H, and L, immunocytochemistry was applied to rat renal tissue, using a sequence-specific anti-body (anti-prorenin) that recognizes the COOH terminus of the rat renin prosegment. In serial semi-thin sections, immunodeposits for prorenin, renin, and cathepsins B, H, and L were localized in the same juxtaglomerular (JG) cells. Immunodeposits for renin were detected throughout the cytoplasm of the cells, whereas those for prorenin were detected in the perinuclear region. Immunoreactivity for cathepsin B was stronger than that for cathepsins H and L. By electron microscopy, prorenin was localized in small (immature) granules but not in large mature granules, whereas renin was localized mainly in mature granules. In serial thin sections, prorenin, renin, and cathepsin B were colocalized in the same immature granules containing heterogeneously dense material (intermediate granules). By double immunostaining, co-localization of renin with cathepsins B, H, or L was demonstrated in mature granules. The results suggest the possibility that processing of prorenin to renin occurs in immature granules of rat JG cells, and cathepsin B detected in JG cells may be a major candidate for the maturation of renin.  相似文献   

20.
To localize cathepsins B, H, and L in follicular cells of rat thyroid gland, we applied immunocytochemistry to the thyroid tissue using their respective monospecific antibodies. On serial semi-thin sections, cathepsins B, H, and L were localized in granules of various sizes located throughout the cytoplasm, whereas T4 was detected in larger granules located in the apical and supranuclear regions. By electron microscopy, cathepsins B, H, and L were localized in large less-dense granules (so-called colloid droplets) and in dense bodies of various sizes, whereas T4 was localized more intensely in large less-dense granules than in smaller dense bodies. By double immunostaining using an immunogold method, cathepsins H and B or L were co-localized in the same cytoplasmic granules. Moreover, immunoblotting demonstrated that proteins similar to cathepsins B, H, and L in the liver are present in the thyroid gland. These results suggest that cathepsins B, H, and L participate not only in degradation of thyroglobulin but in maturation of thyroid hormones, although it remains unknown whether all of them participate in the maturation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号