首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Poly(ADP-ribose) polymerase activity was measured in a crude nuclear fraction isolated from HeLa cells. It was found that the addition of ammonium sulfate or other salts to the standard incubation medium inhibited the formation of poly(ADP-ribose). Through the use of alkaline sucrose density gradients it was also noted that this same increase in ionic strength inhibited the in vitro breakdown of the HeLa DNA. Additional experiments with alkaline sucrose density gradients and deoxyribonuclease I showed that the in vitro activity of poly(ADP-ribose) polymerase is largely dependent upon DNA fragmentation but that DNA fragmentation at least in vitro is not dependent upon the formation of poly(ADP-ribose). These observations imply that this nuclear enzyme is not extremely sensitive to changes in the ionic strength of the reaction media but is affected indirectly, supposedly through changes in the endonuclease activity of the HeLa nuclei. If this proves to be true, then the addition of salt to the incubation medium for poly(ADP-ribose) polymerase could prove to be a valuable tool for the study of ADP-ribosylation reactions.  相似文献   

3.
Treatment of L1210 cells with increasing concentrations of MNNG produces heterogeneous perturbations of cellular deoxynucleoside triphosphate pools, with the magnitude and direction of the shift depending on the deoxynucleotide and on the concentration and time of exposure of the DNA damaging agent. 5 microM MNNG stimulated an increase in dATP, dCTP and dTTP but dGTP pools remained constant. These increases were not affected by 3-aminobenzamide, indicating that the pool size increases were produced by poly(ADP-ribose) polymerase independent reactions. 30 microM MNNG caused a time dependent decrease in dATP, dGTP, dTTP and dCTP. The dGTP pool was most drastically affected, becoming totally depleted within 3 hours. The fall in all 4 dNTP pools was substantially prevented by 3-aminobenzamide, suggesting that the decrease in dNTPs following DNA damage is mediated by a poly(ADP-ribose) polymerase dependent reaction. Severe depression of dGTP pools consequent to NAD and ATP depletion may provide a metabolic pathway for rapidly stopping DNA synthesis as a consequence of DNA damage and the activation of poly(ADP-ribose) polymerase.  相似文献   

4.
Poly(ADP-ribose) polymerase is a chromosomal enzyme that is completely dependent on added DNA for activity. The ability of DNA molecules to activate the polymerase appears to be enhanced by the presence of DNA damage. In the present study, we used SV 40 DNA and SV 40 minichromosomes to determine whether different types of DNA damage and different chromosomal components affect stimulation of polymerase activity. Treatment of SV 40 minichromosomes with agents or conditions that induced single-strand breaks increased their ability to stimulate poly(ADP-ribose) synthesis. This stimulation was enhanced by addition of histone H1 at a ratio of 1 microgram of histone H1 to 1 microgram of DNA. Higher ratios of histone H1 to DNA suppressed the ability of SV 40 minichromosomes containing single-strand breaks to stimulate enzyme activity. Treatment of SV 40 minichromosomes or SV 40 DNA with HaeIII restriction endonuclease to produce double-strand breaks markedly stimulated poly(ADP-ribose) polymerase activity. The stimulation of poly(ADP-ribose) polymerase by double-strand breaks occurred in the absence of histone H1 and was further enhanced by adding histone H1 up to ratios of 2 to 1 relative to DNA. At higher ratios of histone H1 to DNA, the presence of the histone continued to enhance the poly(ADP-ribose) synthesis stimulated by double-strand breaks.  相似文献   

5.
Poly(U) is an effective inhibitor of the RNA-dependent DNA polymerase of oncornaviruses. This inhibition was found to be dependent on the chain length of the inhibitory polymer. The inhibitory effect drops sharply at chain lengths below approximately 200 nucleotide residues per poly(U) molecule. The results suggest that poly(U) exerts an inhibitory effect by competing for the template binding site on the viral DNA polymerase.  相似文献   

6.
Three DNA polymerases that use poly(rA).oligo(dT) were partially purified from cytoplasmic extracts of cultured mouse cells (after removal of mitochondria), and characterized. One is similar to, and may be the same as, the mitochondrial DNA polymerase gamma. The other two enzymes, one 7.5 S and the other 3.6 S, share some properties with DNA polymerases beta and gamma, e.g. their responses to certain inhibitors; however, they are not clearly identified with any previously well-characterized mammalian DNA polymerases. It is also demonstrated that the response of DNA polymerase gamma to N-ethylmaleimide is template dependent, and that DNA polymerase alpha has an authentic (albeit small) activity with poly(rA).oligo(dT).  相似文献   

7.
Modulation of chromatin structure by poly(ADP-ribosyl)ation   总被引:5,自引:0,他引:5  
Poly(ADP-ribose) polymerase is a nuclear enzyme that is highly conserved in eucaryotes. Its activity is totally dependent on the presence of DNA containing single or double stranded breaks. We have shown that this activation results in a decondensation of chromatin superstructure in vitro, which is caused mainly by hyper(ADP-ribosy)ation of histone H1. In core particles, the modification of histone H2B leads to a partial dissociation of DNA from core histones. The conformational change of native chromatin by poly(ADP-ribosyl)ation is reversible upon degradation of the histone H1-bound poly(ADP-ribose) by poly(ADP-ribose) glycohydrolase. We propose that cuts produced in vivo on DNA during DNA repair activate poly(ADP-ribose) polymerase, which then synthesizes poly(ADP-ribose) on histone H1, in particular, and contributes to the opening of the 25-nm chromatin fiber, resulting in the increased accessibility of DNA to excision repair enzymes. This mechanism is fast and reversible.  相似文献   

8.
The interaction of benzamide with the isolated components of calf thymus poly(ADP-ribose) polymerase and with liver nuclei has been investigated. A benzamide-agarose affinity gel matrix was prepared by coupling o-aminobenzoic acid with Affi-Gel 10, followed by amidation. The benzamide-agarose matrix bound the DNA that is coenzymic with poly(ADP-ribose) polymerase; the matrix, however, did not bind the purified poly(ADP-ribose) polymerase protein. A highly radioactive derivative of benzamide, the 125I-labelled adduct of o-aminobenzamide and the Bolton-Hunter reagent, was prepared and its binding to liver nuclear DNA, calf thymus DNA and specific coenzymic DNA of poly(ADP-ribose) polymerase was compared. The binding of labelled benzamide to coenzymic DNA was several-fold higher than its binding to unfractionated calf thymus DNA. A DNA-related enzyme inhibitory site of benzamide was demonstrated in a reconstructed poly(ADP-ribose) polymerase system, made up from purified enzyme protein and varying concentrations of a synthetic octadeoxynucleotide that serves as coenzyme. As a model for benzamide binding to DNA, a crystalline complex of 9-ethyladenine and benzamide was prepared and its X-ray crystallographic structure was determined; this indicated a specific hydrogen bond between an amide hydrogen atom and N-3 of adenine. The benzamide also formed a hydrogen bond to another benzamide molecule. The aromatic ring of benzamide does not intercalate between ethyladenine molecules, but lies nearly perpendicular to the planes of stacking ethyladenine molecules in a manner reminiscent of the binding of ethidium bromide to polynucleotides. Thus we have identified DNA as a site of binding of benzamide; this binding is critically dependent on the nature of the DNA and is high for coenzymic DNA that is isolated with the purified enzyme as a tightly associated species. A possible model for such binding has been suggested from the structural analysis of a benzamide-ethyladenine complex.  相似文献   

9.
DNA polymerase delta from calf thymus was purified under conditions that minimized proteolysis to a specific activity of 27,000 units/mg. The four step isolation procedure included phosphocellulose, hydroxyapatite, heparin-Sepharose and FPLC-MonoS. This enzyme consists of four polypeptides with Mr of 140, 125, 48 and 40 kilodaltons. Velocity gradient sedimentation in glycerol removed the 48 kDa polypeptide while the other three sedimented with the DNA polymerase activity. The biochemical properties of the three subunit enzyme and the copurification of 3'----5' exonuclease activity were typical for a bona fide DNA polymerase delta. Tryptic peptide analysis showed that the 140 kDa polypeptide was different from the catalytic 180 kDa polypeptide of calf thymus DNA polymerase alpha. Both high Mr polypeptides (140 and 125 kDa) were catalytically active as analysed in an activity gel. Four templates were used by DNA polymerase delta with different preferences, namely poly(dA)/oligo(dT)12-18 much much greater than activated DNA greater than poly(dA-dT) greater than primed single-stranded M13DNA. Calf thymus proliferating cell nuclear antigen (PCNA) could not stimulated this DNA polymerase delta in any step of the isolation procedure. If tested on poly(dA)/oligo(dT)12-18 (base ratio 10:1), PCNA had no stimulatory effect on DNA polymerase delta when tested with low enzyme DNA ratio nor did it change the kinetic behaviour of the enzyme. DNA polymerase delta itself did not contain PCNA. The enzyme had an intrinsic processivity of several thousand bases, when tested either on the homopolymer poly(dA)/oligo(dT)12-18 (base ratio 64:1) or on primed single-stranded M13DNA. Contrary to DNA polymerase alpha, no pausing sites were seen with DNA polymerase delta. Under optimal in vitro replication conditions the enzyme could convert primed single-stranded circular M13 DNA of 7,200 bases to its double-stranded form in less than 10 min. This supports that a PCNA independent DNA polymerase delta exists in calf thymus in addition to a PCNA dependent enzyme (Lee, M.Y.W.T. et al. (1984) Biochemistry 23, 1906-1913).  相似文献   

10.
Three ribonucleotidyl transferase types have been described in the sea urchin: riboadenylate trnasferase, the DNA dependent RNA polymerases, and a DNA polymerase associated ribonucleotidyl transferase (Biochemistry 15:3106-3113, 1976). In the present work this latter ribonucleotidyl transferase was found to purify with DNA polymerase alpha through phosphocellulose, DEAE-Sephadex and DNA cellulose and to cosediment at 6.5 S. This ribonucleotidyl transferase was active with Mn+2, but not Mg+2, on calf thymus DNA and poly(dC). Other synthetic templates elicited DNA polymerase alpha but no ribonucleotidyl transferase activity. From alkaline hydrolysates of the poly(dC) directed GTP polymerization, we found Goh and Gp in a ratio of 1:16 indicating an average chain length of 17 residues after a 20 min reaction. Co-polymerization of GTP (5 micrometer) and dGTP (10 micrometer) yielded a non-random distribution of the ribonucleotide in the deoxyribonucleotide. The properties of this urchin ribonucleotidyl transferase are unlike any previously described eukaryotic transferase and the data is discussed with reference to the known properties of E. coli DNA polymerase I and the primase.  相似文献   

11.
DNA polymerase alpha, delta and epsilon can be isolated simultaneously from calf thymus. DNA polymerase delta was purified to apparent homogeneity by a four-column procedure including DEAE-Sephacel, phenyl-Sepharose, phosphocellulose, and hydroxylapatite, yielding two polypeptides of 125 and 48 kDa, respectively. On hydroxylapatite DNA polymerase delta can completely be separated from DNA polymerase epsilon. By KCl DNA polymerase delta is eluted first, while addition of potassium phosphate elutes DNA polymerase epsilon. DNA polymerases delta and epsilon could be distinguished from DNA polymerase alpha by their (i) resistance to the monoclonal antibody SJK 132-20, (ii) relative resistance to N2-[p-(n-butyl)phenyl]-2-deoxyguanosine triphosphate and 2-[p-(n-butyl)anilino]-2-deoxyadenosine triphosphate, (iii) presence of a 3'----5' exonuclease, (iv) polypeptide composition, (v) template requirements, (vi) processivities on the homopolymer poly(dA)/oligo(dT12-18), and (vii) lack of primase. The following differences of DNA polymerase delta to DNA polymerase epsilon were evident: (i) the independence of DNA polymerase epsilon to proliferating cell nuclear antigen for processivity, (ii) utilization of deoxy- and ribonucleotide primers, (iii) template requirements in the absence of proliferating cell nuclear antigen, (iv) mode of elution from hydroxylapatite, and (v) sensitivity to d2TTP and to dimethyl sulfoxide. Both enzymes contain a 3'----5' exonuclease, but are devoid of endonuclease, RNase H, DNA helicase, DNA dependent ATPase, DNA primase, and poly(ADP-ribose) polymerase. DNA polymerase delta is 100-150 fold dependent on proliferating cell nuclear antigen for activity and processivity on poly(dA)/oligo(dT12-18) at base ratios between 1:1 to 100:1. The activity of DNA polymerase delta requires an acidic pH of 6.5 and is also found on poly(dT)/oligo(dA12-18) and on poly(dT)/oligo(A12-18) but not on 10 other templates tested. All three DNA polymerases can be classified according to the revised nomenclature for eukaryotic DNA polymerases (Burgers, P.M. J., Bambara, R. A., Campbell, J. L., Chang, L. M. S., Downey, K. M., Hübscher, U., Lee, M. Y. W. T., Linn, S. M., So, A. G., and Spadari, S. (1990) Eur. J. Biochem. 191, 617-618).  相似文献   

12.
The Saccharomyces cerevisiae Trf4 and Trf5 proteins are members of a distinct family of eukaryotic DNA polymerase beta-like nucleotidyltransferases, and a template-dependent DNA polymerase activity has been reported for Trf4. To define the nucleotidyltransferase activities associated with Trf4 and Tr5, we purified these proteins from yeast cells and show that whereas both proteins exhibit a robust poly(A) polymerase activity, neither of them shows any evidence of a DNA polymerase activity. The poly(A) polymerase activity, as determined for Trf4, is strictly Mn2+ dependent and highly ATP specific, incorporating AMP onto the free 3'-hydroxyl end of an RNA primer. Unlike the related poly(A) polymerases from other eukaryotes, which are located in the cytoplasm and regulate the stability and translation efficiency of specific mRNAs, the Trf4 and Trf5 proteins are nuclear, and a multiprotein complex associated with Trf4 has been recently shown to polyadenylate a variety of misfolded or inappropriately expressed RNAs which activate their degradation by the exosome. To account for the effects of Trf4/Trf5 proteins on the various aspects of DNA metabolism, including chromosome condensation, DNA replication, and sister chromatid cohesion, we suggest an additional and essential role for the Trf4 and Trf5 protein complexes in generating functional mRNA poly(A) tails in the nucleus.  相似文献   

13.
A primase activity associated to DNA polymerase alpha from rat liver is described. Both activities were absent in normal adult rat liver but were concomitantly induced after partial hepatectomy. As previously shown for polymerase alpha and DNA topoisomerase II, primase activity reached a maximum value 40-43 h after the partial removal of the liver. Primase activity was shown to catalyze dNMP incorporation on unprimed single-stranded DNA template (M13 DNA) in the presence of rNTP. The activity was not detectable on poly(dA) or poly(dG) but was efficient on poly(dT) or poly(dC). However, the reliability of the primase assay in the presence of poly(dC) was dependent upon the degree of purification of the enzyme. The ribo primers were about 10 nucleotides long, and the reaction was completely independent of alpha-amanitin, a strong inhibitor of RNA polymerases II and III. Primase and polymerase were found tightly associated. A cosedimentation on a 5-20% sucrose gradient was always obtained, independent of the ionic strength. There was also a close coincidence between alpha-polymerase and primase activities during phosphocellulose, hydroxylapatite, and single-stranded DNA Ultrogel chromatography. It has been previously demonstrated by us and others that primase and alpha-polymerase are on separated polypeptides. The association of two activities in the replication complex and the conditions allowing their separation are discussed.  相似文献   

14.
Evidence for template-specific sites in DNA polymerases   总被引:3,自引:0,他引:3  
Using rabbit hemoglobin messenger RNA as template, E. coli polymerase I produces poly (dT), poly (dA)·(dT) and antimessenger DNA products. Mild heating of the enzyme causes a differential loss in activity as indicated by three rates of inactivation for the three types of synthesis. Heat inactivation studies have also been carried out with DNA polymerases from oncogenic RNA viruses and mammalian sources using various homopolymer-oligomer pairs as primertemplates. In general, for any given enzyme these synthetic primer-templates reveal different extents of inactivation of the polymerase. These findings may be interpreted to suggest a) that the binding of DNA polymerase to various primer-templates produces conformational changes in the enzyme which are dependent on the type of template bound, or b) that many, if not all, DNA polymerases have different subsites for different templates.  相似文献   

15.
We have investigated the possible role of the bis-(3' to 5')-cyclic dinucleotides UpUp and ApUp as kinetic inhibitors of the DNA dependent RNA polymerase enzyme of E. coli, using T7 delta D111 deletion mutant DNA and several synthetic DNA polymers as templates. We have established that UpUp is a linear competitive inhibitor of the initiation phase of the polymerization (Ki = 28 microM using T7 delta D111 DNA as a template), but that it has no effect when added during the elongation phase. The compound ApUp is an inhibitor of the reaction only when poly(dA-T).poly(dA-T) is used as a template, and UpUp is an inhibitor of the reaction when poly(dA).poly(dT) was employed as the DNA template.  相似文献   

16.
Characterization of human poly(ADP-ribose) polymerase with autoantibodies   总被引:7,自引:0,他引:7  
The addition of poly(ADP-ribose) chains to nuclear proteins has been reported to affect DNA repair and DNA synthesis in mammalian cells. The enzyme that mediates this reaction, poly(ADP-ribose) polymerase, requires DNA for catalytic activity and is activated by DNA with strand breaks. Because the catalytic activity of poly(ADP-ribose) polymerase does not necessarily reflect enzyme quantity, little is known about the total cellular poly(ADP-ribose) polymerase content and the rate of its synthesis and degradation. In the present experiments, specific human autoantibodies to poly(ADP-ribose) polymerase and a sensitive immunoblotting technique were used to determine the cellular content of poly(ADP-ribose) polymerase in human lymphocytes. Resting peripheral blood lymphocytes contained 0.5 X 10(6) enzyme copies per cell. After stimulation of the cells by phytohemagglutinin, the poly(ADP-ribose) polymerase content increased before DNA synthesis. During balanced growth, the T lymphoblastoid cell line CEM contained approximately 2 X 10(6) poly(ADP-ribose) polymerase molecules per cell. This value did not vary by more than 2-fold during the cell growth cycle. Similarly, mRNA encoding poly(ADP-ribose) polymerase was detectable throughout S phase. Poly(ADP-ribose) polymerase turned over at a rate equivalent to the average of total cellular proteins. Neither the cellular content nor the turnover rate of poly(ADP-ribose) polymerase changed after the introduction of DNA strand breaks by gamma irradiation. These results show that in lymphoblasts poly(ADP-ribose) polymerase is an abundant nuclear protein that turns over relatively slowly and suggest that most of the enzyme may exist in a catalytically inactive state.  相似文献   

17.
18.
Repair of abasic sites in DNA   总被引:12,自引:0,他引:12  
Repair of both normal and reduced AP sites is activated by AP endonuclease, which recognizes and cleaves a phosphodiester bond 5' to the AP site. For a short period of time an incised AP site is occupied by poly(ADP-ribose) polymerase and then DNA polymerase beta adds one nucleotide into the repair gap and simultaneously removes the 5'-sugar phosphate. Finally, the DNA ligase III/XRCC1 complex accomplishes repair by sealing disrupted DNA ends. However, long-patch BER pathway, which is involved in the removal of reduced abasic sites, requires further DNA synthesis resulting in strand displacement and the generation of a damage-containing flap that is later removed by the flap endonuclease. Strand-displacement DNA synthesis is accomplished by DNA polymerase delta/epsilon and DNA ligase I restores DNA integrity. DNA synthesis by DNA polymerase delta/epsilon is dependent on proliferating cell nuclear antigen, which also stimulates the DNA ligase I and flap endonuclease. These repair events are supported by multiple protein-protein interactions.  相似文献   

19.
Incubation of DNA polymerase alpha, DNA polymerase beta, terminal deoxynucleotidyl transferase, or DNA ligase II in a reconstituted poly(ADP-ribosyl)ating enzyme system markedly suppressed the activity of these enzymes. Components required for poly(ADP-ribose) synthesis including poly(ADP-ribose) polymerase, NAD+, DNA, and Mg2+ were all essential for the observed suppression. Purified poly(ADP-ribose) itself, however, was slightly inhibitory to all of these enzymes. Furthermore, the suppressed activities of DNA polymerase alpha, DNA polymerase beta, and terminal deoxynucleotidyl transferase were largely restored (3 to 4-fold stimulation was observed) by a mild alkaline treatment, a procedure known to hydrolyze alkaline-labile ester linkage between poly(ADP-ribose) and an acceptor protein. All of these results strongly suggest that the four nuclear enzymes were inhibited as a result of poly(ADP-ribosyl)ation of either the enzyme molecule itself or some regulatory proteins of these enzymes.  相似文献   

20.
A new method for the analysis and purification of the RNA-directed DNA polymerase of RNA tumor viruses has been developed. This nucleic acid affinity chromatography system utilizes an immobilized oligo (dT) moiety annealed with poly (A). The alpha and alphabeta DNA polymerases of avain myeloblastosis virus bound effectively to poly (A) oligo (dT)-cellulose. Alpha DNA polymerase did not bind effectively to poly (A) oligo (dT)-cellulose, poly (A)-cellulose, or to cellulose. Alphabeta bound to oligo (dT)-cellulose and cellulose at the same extent (approximately 30%), indicating that this enzyme did not bind specifically to the oligo (DT) moiety only. However, alphabeta bound to poly (A)-cellulose two to three times better than to cellulose itself, showing that alphabeta could bind to poly (A) without a primer. Alphabeta DNA polymerase also bound to poly (C)-cellulose, whereas alpha did not. These data show that the alpha DNA polymerase is defective in binding to nucleic acids if the beta subunit is not present. Data is presented which demonstrates that the alphabeta DNA polymerase bound tighter to poly (A). oligo (DT)-cellulose and to calf thymus DNA-cellulose than the alpha DNA polymerase, suggesting that the beta subunit or, at least part of it is responsible for this tighter binding. In addition, alphabeta DNA polymerase is able to reversibly transcribe avian myeloblastosis virus 70S RNA approximately fivefold faster than alpha DNA polymerase in the presence of Mg2+ and equally efficient in the presence of Mn2+. alpha DNA polymerase transcribed 9S globin m RNA slightly better than alphabeta with either metal ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号