首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Protein Synthesis and Axonal Transport During Nerve Regeneration   总被引:11,自引:10,他引:1  
Abstract— Protein synthesis and axonal transport have been studied in regenerating peripheral nerves. Sciatic nerves of bullfrogs were unilaterally crushed or cut. The animals were killed 1, 2, or 4 weeks later, and 8th and 9th dorsal root ganglia removed together with sciatic nerves and dorsal roots. The ganglia were selectively labeled in vitro with [35S]-methionine. Labeled proteins, in dorsal root ganglia and rapidly transported to ligatures placed on the sciatic nerves and dorsal roots, were analyzed by two-dimensional polyacryl-amide gel electrophoresis. Qualitative analysis of protein patterns revealed no totally new proteins synthesized or rapidly transported in regenerating nerves. However, quantitative comparison of regenerating and contralateral control nerves revealed significant differences in abundance for some of the proteins synthesized in dorsal root ganglia, and for a few of the rapidly transported proteins. Quantitative analysis of rapidly transported proteins in both the peripheral processes (spinal nerves) and central processes (dorsal roots) revealed similar changes despite the fact that the roots were undamaged. The overall lack of drastic changes seen in protein synthesis and transport suggests that the neuron in its program of normal maintenance synthesizes and supplies most of the materials required for axon regrowth.  相似文献   

2.
Soluble protein fractions obtained from bovine lumbar spinal motoneuron cell bodies, ventral gray matter, and ventral and dorsal roots were analyzed by two-dimensional gel electrophoresis. Each extract was separated into Coomassie blue-stained patterns of up to 350 polypeptides ranging in isoelectric point from pH 4 to 8 and in molecular weight from 10,000 to 200,000. Visual inspection of the protein pattern of the isolated cell bodies showed it to be substantially different from those of ventral gray matter and the spinal roots, while the patterns obtained from ventral and dorsal roots were indistinguishable. Computer-assisted densitometry of the major soluble proteins from spinal roots showed no quantitative difference between the predominant proteins in ventral and dorsal root extracts. Differences of 10-fold or more were common when the major proteins of the isolated perikarya were compared with those of the other fractions. Since most of the soluble proteins extracted from ventral and dorsal roots were probably derived from the axoplasm of motor and sensory nerves, respectively, these results are interpreted to mean that large differences exist in the distribution of individual soluble proteins between the cell body and axon of spinal motoneurons, while the major soluble proteins of spinal motor and sensory axons are highly similar.  相似文献   

3.
On the basis of the specific [3H]quinuclidinyl-benzilate binding, the transport of muscarinic cholinergic receptors has been demonstrated in the ventral horn, sciatic nerve and in the 3 mm segments proximal and distal to the ligature of rat sciatic nerves ligated for 24 h (a) without electrolytic lesion, (b) six days after lesion of the spinal ganglia, (c) six days after lesion of the motoric axons, and (d) six days after transection of the sciatic nerve. The distribution of these receptors was also studied in the ventral spinal horn, dorsal root sensory axons, spinal ganglia and sciatic nerve of rabbit.Our results suggest that the receptors are transported in the sciatic nerve of rat. This transport consists of a large anterograde, and a discrete retrograde flow of muscarinic cholinergic receptors. Most of the receptors are possibly synthesized in the motoneuron cell bodies and migrate in the motoric axons; to a lesser extent they may also be synthesized in the cell bodies of the dorsal root ganglia and migrate in the sensory axons of the sciatic nerve.  相似文献   

4.
Damage to the sciatic nerve produces significant changes in the relative synthesis rates of some proteins in dorsal root ganglia and in the amounts of some fast axonally transported proteins in both the sciatic nerve and dorsal roots. We have now analyzed protein synthesis and axonal transport after cutting the other branch of dorsal root ganglia neurons, the dorsal roots. Two to three weeks after cutting the dorsal roots, [35S]methionine was used to label proteins in the dorsal root ganglia in vitro. Proteins synthesized in the dorsal root ganglia and transported along the sciatic nerve were analyzed on two-dimensional gels. All of the proteins previously observed to change after sciatic nerve damage were included in this study. No significant changes in proteins synthesized in dorsal root ganglia or rapidly transported along the sciatic nerve were detected. Axon regrowth from cut dorsal roots was observed by light and electron microscopy. Either the response to dorsal root damage is too small to be detected by our methods or changes in protein synthesis and fast axonal transport are not necessary for axon regrowth. When such changes do occur they may still aid in regrowth or be necessary for later stages in regeneration.  相似文献   

5.
Summary Morphological changes in the motor and sensory neurons in the lumbar spinal cord and the dorsal root ganglia were investigated at different survival times following the injection of the B subunit of cholera toxin (CTB) into the medial gastrocnemius muscle. Unconjugated CTB, visualized immunohistochemically, was found to be retrogradely transported through ventral and dorsal roots to motor neurons in the anterior horn, each lamina in the posterior horn, and ganglion cells in the dorsal root ganglia at L3–L6. The largest numbers of labeled motor neurons and ganglion cells were observed 72 h after the injection of CTB. Thereafter, labeled ganglion cells were significantly decreased in number, whereas the amount of labeled motor neurons showed a slight reduction. Motor neurons had extensive dendritic trees filled with CTB, reaching lamina VII and even the pia mater of the lateral funiculus. Labeling was also seen in the posterior horn, but the central and medial parts of laminae II and III had the most extensively labeled varicose fibers, the origin of which was the dorsal root ganglion cells. The results indicate that CTB is taken up by nerve terminals and can serve as a sensitive retrogradely transported marker for identifying neurons that innervate a specific muscle.  相似文献   

6.
The character of dorsal horn motoneurons and interneurons evoked by stimulation of the dorsal root, and activity of Renshaw cells in response to stimulation of the ventral root were studied in albino rats in the lower lumbar segments of the spinal cord 5 days after sciatic nerve division. A significant increase in the mean amplitude of excitatory postsynaptic potentials of motoneurons was observed on the side of division of the nerve. No significant change in membrane potential and in the threshold of appearance of the action potential of these motoneurons took place. The mean number of action potentials and the duration of discharge of the Renshaw cells and dorsal horn interneurons likewise were not significantly changed.Dnepropetrovsk Medical Institute, Ukrainian Ministry of Health. Translated from Neirofiziologiya, Vol. 24, No. 3, pp. 306–314, May–June, 1992.  相似文献   

7.
Dorsal root ganglion neurons project axons to specific target layers in the gray matter of the spinal cord, according to their sensory modality. Using an in vivo approach, we demonstrate an involvement of the two immunoglobulin superfamily cell adhesion molecules axonin-1/TAG-1 and F11/F3/contactin in subpopulation-specific sensory axon guidance. Proprioceptive neurons, which establish connections with motoneurons in the ventral horn, depend on F11 interactions. Nociceptive fibers, which target to layers in the dorsal horn, require axonin-1 for pathfinding. In vitro NgCAM and NrCAM were shown to bind to both axonin-1 and F11. However, despite this fact and despite their ubiquitous expression in the spinal cord, NgCAM and NrCAM are selective binding partners for axonin-1 and F11 in sensory axon guidance. Whereas nociceptive pathfinding depends on NgCAM and axonin-1, proprioceptive fibers require NrCAM and F11.  相似文献   

8.
The primary divisions of the spinal nerve in the brown caiman characteristically show the following features: (1) the medial ramus was lies in the thoraco-lumbar and caudal regions, and (2) the first cervical and hypoglossal nerves form a single nerve complex from which the ventral and dorsal rami extend. Intramuscular injections of horseradish peroxidase (HRP) established the positions of motoneurons whose axons followed the primary rami. In the ventral horn of the thoracic and caudal spinal cord, the motoneurons of the medial ramus lie ventrally. These motoneurons lie between the epaxial and hypaxial motoneurons. At the spinomedullary junction, the pools of motoneurons innervating the infrahyoid, lingual, and dorsal muscles have a somatotopic organization similar to that observed in the thoraco-lumbar and caudal regions. Thus clear somatotopic organization of the motoneurons that innervate the axial musculature exists at all spinal levels. © 1994 Wiley-Liss, Inc.  相似文献   

9.
Abstract: Calcium is required to sustain fast axonal transport in sensory neurons of frog and cat. We studied the Ca2+ dependence of fast axonal transport in the motoneurons of the lower spinal cord from frog. The accumulation of acetylcholinesterase at a crush on the ventral roots was used to follow axonal transport. Two types of experiments were performed: modification of the medium bathing the ventral roots, alone, and modification of the medium bathing the spinal cord and ventral roots. Incubation (17-18 h) of the ventral roots in Ca2+-free medium markedly inhibited acetylcholinesterase transport, a finding that demonstrates a Ca2+ requirement for fast axonal transport in motoneurons; when 4 m M MgCl2 was added to the Ca2+-free medium, transport was also greatly reduced. During incubation of the ventral roots in normal medium supplemented with 0.18 m M CoCl2 transport proceeded normally; but when the Co2+ concentration was raised to 1.8 m M , transport was diminished as drastically as in the Ca2+-free medium. Incubation of the spinal cord and ventral roots in medium containing 0.18 m M CoCl2 did not reduce the accumulation of acetylcholinesterase at the crush. Similarly, accumulation of acetylcholinesterase at a crush on the dorsal root was not significantly reduced by exposure of the dorsal root ganglion and root to 0.18 m M Co2+. Exposure of sensory cell bodies to 0.18 m M Co2+ thus produces differential effects on transport of acetylcholinesterase and on transport of newly synthesized radiolabeled protein.  相似文献   

10.
Distribution of dipeptidyl peptidase II (Dpp II) in rat spinal cord   总被引:1,自引:0,他引:1  
The histochemical localization of dipeptidyl peptidase II (Dpp II; E.C. 3.4.14.2) activity was demonstrated at the light microscope level in the rat spinal cord. Prominent staining was observed in motoneurons of the ventral horn and in medium to large neurons in the deep laminae of the dorsal horn, the intermediate gray, and in lamina X surrounding the spinal canal. Within neurons, Dpp II was localized largely in cell perikarya and large primary dendrites with no staining observed in cell nuclei. Neurons in the superficial dorsal horn lack Dpp II enzyme activity. Nonneuronal elements which also stained prominently were pericytes associated with blood vessels and ependymal cells lining the lumen of the spinal canal. A few oligodendrocytes and astrocytes were also stained, but they represented a minor component of the total amount of Dpp II activity. Following ventral root injury, Dpp-II-containing motoneurons degenerate; some glial cells in the region of degenerating neurons become Dpp II positive. The localized distribution of Dpp II in spinal cord neurons suggests that this proteolytic enzyme may play a role in the metabolism of an unidentified neuropeptide.  相似文献   

11.
HPLC analysis of rat spinal cord revealed a uniform distribution of N-acetyl-aspartate (NAA) across both longitudinal and dorsoventral axes. In contrast, ventral cord N-acetyl-aspartylglutamate (NAAG) levels were significantly higher than those measured in dorsal halves of cervical, thoracic, and lumbar segments. Immunocytochemical studies using an affinity-purified antiserum raised against NAAG-bovine serum albumin revealed an intense staining of motoneurons within rat spinal cord. Along with the considerable NAAG content in ventral roots, these results suggest that NAAG may be concentrated in motoneurons and play a role in motor pathways. NAAG was also present in other peripheral neural tissues, including dorsal roots, dorsal root ganglia, superior cervical ganglia, and sciatic nerve. It is interesting that NAA levels in peripheral nervous tissues were lower than those in CNS structures and that NAA levels in ventral roots and sciatic nerve were lower than NAAG levels. These findings further document a lack of correlation between NAAG and NAA levels in both central and peripheral nervous tissues. Taken together, these data demonstrate the presence of NAAG in nonglutamatergic neuronal systems and suggest a more complex role of NAAG in neuronal physiology than previously postulated.  相似文献   

12.
13.

Aim

In multiple cervical root transection injuries, motor and sensory recovery has been demonstrated after repairing both dorsal and ventral roots with autologous grafts applied to the dorsal and ventral aspects, respectively. However, in clinical situations, autologous grafts may not be sufficient to repair both roots in this situation. In this study, the authors evaluated whether repairing ventral root alone is sufficient for simultaneous sensory and motor function recovery.

Main methods

In the transected group, the left 6th–8th cervical roots were pulled and transected at the spinal cord junction. In the repair group, the transected root was anastomosed to a single autologous nerve graft, which was inserted into the ventral horn through a pial incision. Acidic fibroblast growth factor mixed with fibrin glue was applied to the surgical area. Motor function, sensory function, cortical somatosensory evoked potentials (SSEPs), axon tracing, and CGRP+ fibers were evaluated.

Key findings

The repaired rats exhibited simultaneous sensory and motor function recovery. At the 16th weeks, SSEPs reappeared in all animals of the repair group, but not in the transected group. Retrograde axon tracing demonstrated an increased number of sensory neurons in the dorsal root ganglia and regenerating nerve fibers in the dorsal horn. CGRP+ fibers were significantly increased in the repair group and restricted to laminae I and II.

Significance

This is the first report that in multiple root avulsions with insufficient grafts, repairing ventral roots alone leads to both sensory recovery and motor recovery. This finding may help patients with multiple cervical root avulsions.  相似文献   

14.
Abstract— Utilizing an in vitro labeling procedure, the proteins carried by rapid axoplasmic transport in normal and regenerating sensory fibers of the rat sciatic nerve were compared. No statistically significant differences were found when the total amount of transported protein was compared in control and sectioned nerves at times from 2 to 76 days following axotomy. Fractionation of labeled proteins on polyacrylamide slab gels enabled the identification of some 25 individual transported proteins. By this criterion, no differences were detectable in the composition of proteins synthesized in the dorsal root ganglia from which sectioned vs control sciatic nerves project. When the electrophoretic distributions of transported proteins from control and sectioned nerves were compared, significant' differences were observed. The appearance and disappearance of two proteins were temporally related to chromatolytic changes in the nerve cell body. In addition, the composition of transported proteins in undamaged control nerves contralateral to the sectioned nerves exhibited changes which were not observed in either normal control nerves or sectioned nerves. Changes in the composition of transported proteins as a function of time following the onset of chromatolysis may be involved in controlling nerve regeneration in sensory nerve fibers.  相似文献   

15.
A series of proteins putatively involved in the generation of axonal diversity was identified. Neurons from ventral spinal cord and dorsal root ganglia were grown in a compartmented cell-culture system which offers separate access to cell somas and axons. The proteins synthesized in the neuronal cell somas and subsequently transported into the axons were selectively analyzed by 2-dimensional gel electrophoresis. The patterns of axonal proteins were substantially less complex than those derived from the proteins of neuronal cell bodies. The structural and functional similarity of axons from different neurons was reflected in a high degree of similarity of the gel pattern of the axonal proteins from sensory ganglia and spinal cord neurons. Each axonal type, however, had several proteins that were markedly less abundant or absent in the other. These neuron-population enriched proteins may be involved in the implementation of neuronal diversity. One of the proteins enriched in dorsal root ganglia axons had previously been found to be expressed with decreased abundance when dorsal root ganglia axons were co-cultured with ventral spinal cord cells under conditions in which synapse formation occurs (P. Sonderegger, M. C. Fishman, M. Bokoum, H. C. Bauer, and P.G. Nelson, 1983, Science [Wash. DC], 221:1294-1297). This protein may be a candidate for a role in growth cone functions, specific for neuronal subsets, such as pathfinding and selective axon fasciculation or the initiation of specific synapses. The methodology presented is thus capable of demonstrating patterns of protein synthesis that distinguish different neuronal subsets. The accessibility of these proteins for structural and functional studies may contribute to the elucidation of neuron-specific functions at the molecular level.  相似文献   

16.
Elevation of intracellular heat shock protein (Hsp)70 increases resistance of cells to many physical and metabolic insults. We tested the hypothesis that treatment with Hsc70 can also produce that effect, using the model of axotomy-induced neuronal death in the neonatal mouse. The sciatic nerve was sectioned and in some animals purified bovine brain Hsc70 was applied to the proximal end of the nerve immediately thereafter and again 3 days later. Seven days postaxotomy, the surviving sensory neurons of the lumbar dorsal root ganglion (DRG) and motoneurons of the lumbar ventral spinal cord were counted to assess cell death. Axotomy induced the death of approximately 33% of DRG neurons and 50% of motoneurons, when examined 7 days postinjury. Application of exogenous Hsc70 prevented axotomy-induced death of virtually all sensory neurons, but did not singificantly alter motoneuron death. Thus, Hsc70 may prove to be useful in the repair of peripheral sensory nerve damage.  相似文献   

17.
The motor, sensory, and postganglionic sympathetic neurons forming the left ulnar and right radial nerves of long-tailed macaques (Macaca fascicularis) and pigtailed macaques (Macaca nemestrina) were localized by the horseradish peroxidase method of tracing neuronal connections. The ulnar and radial motoneurons formed a longitudinal column of variable extent in the lateral part of the ventral horn. In most animals, the ulnar motoneurons extended between the caudal ends of the C7 and T1 segments; the radial motoneurons extended between the rostral level of the C4 and the middle part of T1 segments. Although there were areas of overlap in the spinal distribution of ulnar and radial motoneurons, the ulnar motoneurons were located more dorsally and dorsolaterally than were the radial motoneurons. In most animals, labelled sensory neurons whose axons run with the ulnar nerve occurred in the C8–T4 dorsal root ganglia, and those whose axons run with the radial nerve occurred in the C5–T3 ganglia. The radial sympathetic neurons were distributed in stellate through T7 paravertebral sympathetic ganglia, and the ulnar sympathetic neurons were distributed in stellate through T4 paravertebral sympathetic ganglia. Though the motor, sensory, and sympathetic neurons forming the ulnar and radial nerves had wide segmental distributions, all showed peak frequencies in two segments. The cross-sectional areas of the motor, sensory, and postganglionic sympathetic neurons forming the radial and ulnar nerves were measured in the animal that showed the greatest amount of labelling for each nerve. The ulnar and radial motoneurons had a similar range of sizes, with cross-sectional areas between 120 and 2,160 μm2. Most were smaller than 900 μm2. The sensory neurons forming the ulnar and radial nerves also displayed a similar range of sizes, measuring between 120 and 3,360 μm2 in cross-sectional area. Most neurons measured between 201 and 800 μm2. The ulnar sympathetic neurons measured between 120 and 840 μm2, and the radial neurons between 120 and 2,120 μm2. In both cases, most neurons measured between 120 and 600 μm2. The mean cross-sectional area for the radial sympathetic neurons was, however, larger than that for the ulnar sympathetic neurons.  相似文献   

18.
Adult spinal cord motor and dorsal root ganglion (DRG) sensory neurons express multiple neuregulin-1 (NRG-1) isoforms that act as axon-associated factors promoting neuromuscular junction formation and Schwann cell proliferation and differentiation. NRG-1 isoforms are also expressed by muscle and Schwann cells, suggesting that motor and sensory neurons are themselves acted on by NRG-1 isoforms produced by their peripheral targets. To test this hypothesis, we examined the expression of the NRG-1 receptor subunits erbB2, erbB3, and erbB4 in rat lumbar DRG and spinal cord. All three erbB receptors are expressed in these tissues. Sciatic nerve transection, an injury that induces Schwann cell expression of NRG-1, alters erbB expression in DRG and cord. Virtually all DRG neurons are erbB2- and erbB3-immunoreactive, with erbB4 also detectable in many neurons. In spinal cord white matter, erbB2 and erbB4 antibodies produce dense punctate staining, whereas the erbB3 antibody primarily labels glial cell bodies. Spinal cord dorsal and ventral horn neurons, including alpha-motor neurons, exhibit erbB2, erbB3, and erbB4 immunoreactivity. Spinal cord ventral horn also contains a population of small erbB3+/S100beta+/GFAP- cells (GFAP-negative astrocytes or oligodendrocytes). We conclude that sensory and motor neurons projecting into sciatic nerve express multiple erbB receptors and are potentially NRG-1 responsive.  相似文献   

19.
Abstract: Dorsal root ganglion (DRG) neurons from rat and frog were labeled in vitro with [35S]methionine, and the newly synthesized, rapidly transported proteins were collected at ligatures on the sciatic nerves. The proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis. Exposure of x-ray film to dried gels allowed comparison of the labeled, rapidly transported proteins from frog and rat. The gel staining patterns of abundant proteins in the sciatic nerves were also compared. Triolets of gels were examined: one gel from frog, one from rat, and one from frog plus rat combined. Among the transported proteins, some (including A2, A17 and/or A18, B6, B14a-i, C1, C22, and some members of Ala-i and B3a-g) co-migrated on the gels, suggesting that these proteins have been well conserved during evolution. The gel staining patterns of abundant proteins in the sciatic nerves also show some similarities: two forms of actin, serum albumin, and α- and β-tubulin are each in identical positions on the frog and rat gels. Other sciatic nerve and rapidly transported proteins had similar, but not identical, positions on the gels. A number of the rat and frog proteins had no obvious counterpart. We have calculated the magnitude of expected changes in charge and molecular weight of proteins due to accumulation of point mutations during evolution. We conclude that many of the differences between rat and frog protein patterns on the two-dimensional gels could be the result of such point mutations, but we cannot rule out radical changes in polypeptide sequence or abundance between frog and rat for some of these proteins.  相似文献   

20.
Hiroi S  Tsukamoto Y  Sasaki F  Miki N  Taira E 《FEBS letters》2003,554(3):311-314
We have examined the role of gicerin, an immunoglobulin superfamily cell adhesion molecule, in chick sciatic nerves during development and regeneration. Gicerin was expressed in the spinal cord, dorsal root ganglion (DRG) and sciatic nerves in embryos, but declined after hatching. Neurite extensions from explant cultures of the DRG were promoted on gicerin's ligands, which were inhibited by an anti-gicerin antibody. Furthermore, gicerin expression was upregulated in the regenerating sciatic nerves, DRG and dorsal horn of the spinal cord after injury to the sciatic nerve. These results indicate that gicerin might participate in the development and regeneration of sciatic nerves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号