首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lettuce big-vein disease is caused by Mirafiori lettuce virus (MiLV), which is vectored by the soil-borne fungus Olpidium brassicae. A MiLV-resistant transgenic lettuce line was developed through introducing inverted repeats of the MiLV coat protein (CP) gene. Here, a detailed characterization study of this lettuce line was conducted by comparing it with the parental, non-transformed ‘Kaiser’ cultivar. There were no significant differences between transgenic and non-transgenic lettuce in terms of pollen fertility, pollen dispersal, seed production, seed dispersal, dormancy, germination, growth of seedlings under low or high temperature, chromatographic patterns of leaf extracts, or effects of lettuce on the growth of broccoli or soil microflora. A significant difference in pollen size was noted, but the difference was small. The length of the cotyledons of the transgenic lettuce was shorter than that of ‘Kaiser,’ but there were no differences in other morphological characteristics. Agrobacterium tumefaciens used for the production of transgenic lettuce was not detected in transgenic seeds. The transgenic T3, T4, and T5 generations showed higher resistance to MiLV and big-vein symptoms expression than the resistant ‘Pacific’ cultivar, indicating that high resistance to lettuce big-vein disease is stably inherited. PCR analysis showed that segregation of the CP gene was nearly 3:1 in the T1 and T2 generations, and that the transgenic T3 generation was homozygous for the CP gene. Segregation of the neomycin phosphotransferase II (npt II) gene was about 3:1 in the T1 generation, but the full length npt II gene was not detected in the T2 or T3 generation. The segregation pattern of the CP and npt II genes in the T1 generation showed the expected 9:3:3:1 ratio. These results suggest that the fragment including the CP gene and that including the npt II gene have been integrated into two unlinked loci, and that the T1 plant selected in our study did not have the npt II gene. DNA sequences flanking T-DNA insertions in the T2 generation were determined using inverse PCR, and showed that the right side of the T-DNA including the npt II gene had been truncated in the transgenic lettuce.  相似文献   

2.

Key message

Map-based cloning identified a candidate gene for resistance to the anthracnose fungal pathogen Colletotrichum orbiculare in cucumber, which reveals a novel function for the highly conserved STAYGREEN family genes for host disease resistance in plants.

Abstract

Colletotrichum orbiculare is a hemibiotrophic fungal pathogen that causes anthracnose disease in cucumber and other cucurbit crops. No host resistance genes against the anthracnose pathogens have been cloned in crop plants. Here, we reported fine mapping and cloning of a resistance gene to the race 1 anthracnose pathogen in cucumber inbred lines Gy14 and WI 2757. Phenotypic and QTL analysis in multiple populations revealed that a single recessive gene, cla, was underlying anthracnose resistance in both lines, but WI2757 carried an additional minor-effect QTL. Fine mapping using 150 Gy14?×?9930 recombinant inbred lines and 1043 F2 individuals delimited the cla locus into a 32 kb region in cucumber Chromosome 5 with three predicted genes. Multiple lines of evidence suggested that the cucumber STAYGREEN (CsSGR) gene is a candidate for the anthracnose resistance locus. A single nucleotide mutation in the third exon of CsSGR resulted in the substitution of Glutamine in 9930 to Arginine in Gy14 in CsSGR protein which seems responsible for the differential anthracnose inoculation responses between Gy14 and 9930. Quantitative real-time PCR analysis indicated that CsSGR was significantly upregulated upon anthracnose pathogen inoculation in the susceptible 9930, while its expression was much lower in the resistant Gy14. Investigation of allelic diversities in natural cucumber populations revealed that the resistance allele in almost all improved cultivars or breeding lines of the U.S. origin was derived from PI 197087. This work reveals an unknown function for the highly conserved STAYGREEN (SGR) family genes for host disease resistance in plants.
  相似文献   

3.

Key message

In the soybean cultivar Suweon 97, BCMV-resistance gene was fine-mapped to a 58.1-kb region co-localizing with the Soybean mosaic virus (SMV)-resistance gene, Rsv1-h raising a possibility that the same gene is utilized against both viral pathogens.

Abstract

Certain soybean cultivars exhibit resistance against soybean mosaic virus (SMV) or bean common mosaic virus (BCMV). Although several SMV-resistance loci have been reported, the understanding of the mechanism underlying BCMV resistance in soybean is limited. Here, by crossing a resistant cultivar Suweon 97 with a susceptible cultivar Williams 82 and inoculating 220 F2 individuals with a BCMV strain (HZZB011), we observed a 3:1 (resistant/susceptible) segregation ratio, suggesting that Suweon 97 possesses a single dominant resistance gene against BCMV. By performing bulked segregant analysis with 186 polymorphic simple sequence repeat (SSR) markers across the genome, the resistance gene was determined to be linked with marker BARSOYSSR_13_1109. Examining the genotypes of nearby SSR markers on all 220 F2 individuals then narrowed down the gene between markers BARSOYSSR_13_1109 and BARSOYSSR_13_1122. Furthermore, 14 previously established F2:3 lines showing crossovers between the two markers were assayed for their phenotypes upon BCMV inoculation. By developing six more SNP (single nucleotide polymorphism) markers, the resistance gene was finally delimited to a 58.1-kb interval flanked by BARSOYSSR_13_1114 and SNP-49. Five genes were annotated in this interval of the Williams 82 genome, including a characteristic coiled-coil nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR, CNL)-type of resistance gene, Glyma13g184800. Coincidentally, the SMV-resistance allele Rsv1-h was previously mapped to almost the same region, thereby suggesting that soybean Suweon 97 likely relies on the same CNL-type R gene to resist both viral pathogens.
  相似文献   

4.
5.
6.

Key message

Using a combination of phenotypic screening, genetic and statistical analyses, and high-throughput genome-wide sequencing, we have finely mapped a dominant Phytophthora resistance gene in soybean cultivar Wayao.

Abstract

Phytophthora root rot (PRR) caused by Phytophthora sojae is one of the most important soil-borne diseases in many soybean-production regions in the world. Identification of resistant gene(s) and incorporating them into elite varieties are an effective way for breeding to prevent soybean from being harmed by this disease. Two soybean populations of 191 F2 individuals and 196 F7:8 recombinant inbred lines (RILs) were developed to map Rps gene by crossing a susceptible cultivar Huachun 2 with the resistant cultivar Wayao. Genetic analysis of the F2 population indicated that PRR resistance in Wayao was controlled by a single dominant gene, temporarily named RpsWY, which was mapped on chromosome 3. A high-density genetic linkage bin map was constructed using 3469 recombination bins of the RILs to explore the candidate genes by the high-throughput genome-wide sequencing. The results of genotypic analysis showed that the RpsWY gene was located in bin 401 between 4466230 and 4502773 bp on chromosome 3 through line 71 and 100 of the RILs. Four predicted genes (Glyma03g04350, Glyma03g04360, Glyma03g04370, and Glyma03g04380) were found at the narrowed region of 36.5 kb in bin 401. These results suggest that the high-throughput genome-wide resequencing is an effective method to fine map PRR candidate genes.
  相似文献   

7.
Genetic engineering provides new opportunities for improving economically important traits in sugarcane cultivars. In this study, an efficient Agrobacterium-mediated transformation system that uses the bar gene (a herbicide resistance gene that is used in conjunction with the herbicide Basta) as a selection marker was developed. Using this transformation selection system, all of the resistant plants after selection were nearly 100% polymerase chain reaction (PCR) detection positive and showed herbicide resistance. Each gram of sugarcane calli used for transformation produced approximately 12 transgenic lines. It took approximately 4 months to generate transgenic plants that measured 10 cm in height for greenhouse transplantation.  相似文献   

8.
An inverted repeat construct corresponding to a segment of the potato leaf roll virus coat protein gene was created under control of a constitutive promoter and transferred into a transformation vector with a heat inducible Cre-loxP system to excise the nptII antibiotic resistance marker gene. Fifty-eight transgenic events were evaluated for resistance to PLRV by greenhouse inoculations, which lead to the identification of 7 highly resistant events, of which 4 were extremely resistant. This resistance was also highly effective against accumulation in subsequent tuber generations from inoculated plants, which has not been reported before. Northern blot analysis showed correlation of PLRV specific siRNA accumulation with the level of PLRV resistance. Heat mediated excision of the nptII antibiotic resistance gene in PLRV resistant events was highly efficient in one event with full excision in 71 % of treated explants. On the other hand 8 out of 10 analyzed events showed truncated T-DNA insertions lacking one of the two loxP sites as determined by PCR and confirmed by sequencing flanking regions in 2 events, suggesting cryptic LB sites in the non-coding region between the nptII gene and the flanking loxP site. Accordingly, it is proposed to modify the Cre-loxP vector by reducing the 1 kb size of the region between nptII, loxP, and the LB.  相似文献   

9.

Key message

The RpsQ Phytophthora resistance locus was finely mapped to a 118-kb region on soybean chromosome 3. A best candidate gene was predicted and three co-segregating gene markers were developed.

Abstract

Phytophthora root rot (PRR), caused by Phytophthora sojae, is a major threat to sustainable soybean production. The use of genetically resistant cultivars is considered the most effective way to control this disease. The Chinese soybean cultivar Qichadou 1 exhibited a broad spectrum resistance, with a distinct resistance phenotype, following inoculation with 36 Chinese P. sojae isolates. Genetic analyses indicated that the disease resistance in Qichadou 1 is controlled by a single dominant gene. This gene locus was designated as RpsQ and mapped to a 118-kb region between BARCSOYSSR_03_0165 and InDel281 on soybean chromosome 3, and co-segregated with Insert11, Insert144 and SNP276. Within this region, there was only one gene Glyma.03g27200 encoding a protein with a typical serine/threonine protein kinase structure, and the expression pattern analysis showed that this gene induced by P. sojae infection, which was suggested as a best candidate gene of RpsQ. Candidate gene specific marker Insert144 was used to distinguish RpsQ from the other known Rps genes on chromosome 3. Identical polymerase chain reaction amplification products were produced for cultivars Qichadou 1 (RpsQ) and Ludou 4 (Rps9). All other cultivars carrying Rps genes on chromosome 3 produced different PCR products, which all lacked a 144-bp fragment present in Qichadou 1 and Ludou 4. The phenotypes of the analyzed cultivars combined with the physical position of the PRR resistance locus, candidate gene analyses, and the candidate gene marker test revealed RpsQ and Rps9 are likely the same gene, and confer resistance to P. sojae.
  相似文献   

10.
In the experiment reported here, effect of the nature of T-DNA integration region on the activity of the transgenes was studied by using a color marker gene in Arabidopsis thaliana. For this purpose, a pale homozygous ch-42 mutant was transformed with the wild-type copy of the gene (CH-42) using kanamycin resistance gene as a selectable marker. Two independent lines were identified in which CH-42 transgene was inactive. The T-DNA flanking sequences were recovered from these inactive and two active lines. These flanking sequences were used to examine copy number and DNA methylation of the T-DNA insertion site in active and inactive lines. Southern blots produced by using MspI/HpaII digested genomic DNA showed signs of methylation in both inactive lines. Furthermore, in one of the inactive line, the T-DNA flanking sequence probe hybridized to highly repetitive sequence. The results suggest some correlation between silencing of the transgene and methylation of its insertion region.  相似文献   

11.
Wheat Fusarium Head Blight (FHB), mainly caused by Fusarium graminearum (F.g), is a destructive fungal disease worldwide. FHB can not only cause considerable reduction in yield, but more seriously, can contaminate grain by trichothecene toxins released by the fungus. Here, we report new insights into the function and underlying mechanisms of a UDP-glycosyltransferase gene, Ta-UGT 3 , that is involved in FHB resistance in wheat. In our previous study, Ta-UGT 3 was found to enhance host tolerance against deoxynivalenol (DON) in Arabidopsis. In this study, four transgenic lines over-expressing Ta-UGT 3 in a FHB highly susceptible wheat variety, Alondra’s, were obtained and characterized. 3 years of assays using single floret inoculation with F.g indicated that all four transgenic lines exhibited significantly enhanced type II resistance to FHB and less DON accumulation in the grains compared to the untransformed control. Histological observation using GFP labelled F.g was in agreement with the above test results since over-expression of Ta-UGT 3 dramatically inhibited expansion of F.g. To explore the putative mechanism of resistance mediated by Ta-UGT 3 , microarray analysis, qRT-PCR and hormone measurements were performed. Microarray analysis showed that DON up-regulated genes, such as TaNPR1, in the susceptible control, and down-regulated genes in F.g inoculated transgenic lines, while qRT-PCR showed that some defence related genes were up-regulated in F.g inoculated transgenic lines. Ta-UGT 3 over-expression also changed the contents of the endogenous hormones SA and JA in the spikes. These data suggest that Ta-UGT 3 positively regulates the defence responses to F.g, perhaps by regulating defence-related and DON-induced downstream genes.  相似文献   

12.
The chickweed (Stellaria media L.) pro-SmAMP2 gene encodes the hevein-like peptides that have in vitro antimicrobial activity against certain harmful microorganisms. These peptides play an important role in protecting the chickweed plants from infection, and the pro-SmAMP2 gene was previously used to protect transgenic tobacco and Arabidopsis plants from phytopathogens. In this study, the pro-SmAMP2 gene under control of viral CaMV35S promoter or under control of its own pro-SmAMP2 promoter was transformed into cultivated potato plants of two cultivars, differing in the resistance to Alternaria: Yubiley Zhukova (resistant) and Skoroplodny (susceptible). With the help of quantitative real-time PCR, it was demonstrated that transgenic potato plants expressed the pro-SmAMP2 gene under control of both promoters at the level comparable to or exceeding the level of the potato actin gene. Assessment of the immune status of the transformants demonstrated that expression of antimicrobial peptide pro-SmAMP2 gene was able to increase the resistance to a complex of Alternaria sp. and Fusarium sp. phytopathogens only in potato plants of the Yubiley Zhukova cultivar. The possible role of the pro-SmAMP2 products in protecting potatoes from Alternaria sp. and Fusarium sp. is discussed.  相似文献   

13.

Key message

The method of graphical genotyping is applied to a panel of tetraploid potato cultivars to visualize haplotype sharing. The method allowed to map genes involved in virus and nematode resistance. The physical coordinates of the amount of linkage drag surrounding these genes are easily interpretable.

Abstract

Graphical genotyping is a visually attractive and easily interpretable method to represent genetic marker data. In this paper, the method is extended from diploids to a panel of tetraploid potato cultivars. Application of filters to select a subset of SNPs allows one to visualize haplotype sharing between individuals that also share a specific locus. The method is illustrated with cultivars resistant to Potato virus Y (PVY), while simultaneously selecting for the absence of the SNPs in susceptible clones. SNP data will then merge into an image which displays the coordinates of a distal genomic region on the northern arm of chromosome 11 where a specific haplotype is introgressed from the wild potato species S. stoloniferum (CPC 2093) carrying a gene (Ny (o,n)sto ) conferring resistance to two PVY strains, PVYO and PVYNTN. Graphical genotyping was also successful in showing the haplotypes on chromosome 12 carrying Ry-f sto , another resistance gene derived from S. stoloniferum conferring broad-spectrum resistance to PVY, as well as chromosome 5 haplotypes from S. vernei, with the Gpa5 locus involved in resistance against Globodera pallida cyst nematodes. The image also shows shortening of linkage drag by meiotic recombination of the introgression segment in more recent breeding material. Identity-by-descent was found to be a requirement for using graphical genotyping, which is proposed as a non-statistical alternative method for gene discovery, as compared with genome-wide association studies. The potential and limitations of the method are discussed.
  相似文献   

14.
Root-knot nematodes (RKNs) can severely damage crops, including peppers, worldwide. The application of resistance genes identified in the Capsicum annuum genome may represent a safe and economically relevant strategy for controlling RKNs. Among the Me genes (Me1, Me3, Me7, and N) that have been mapped to a cluster on chromosome P9, Me1 confers a heat-stable and broad-spectrum resistance that is difficult for virulent RKNs to overcome. In this study, we developed several closely linked kompetitive allele-specific PCR (KASPar) markers, simple sequence repeat (SSR) markers, sequence characterized amplified region (SCAR) markers, and high-resolution melting (HRM) markers for the mapping of RKN-resistance genes. Analyses of 948 individuals (BC1 and F2 progenies) revealed that Me1 was located between SCAR marker 16880-1-V2 and HRM marker 16830-H-V2, with 13 and 0 recombination events with Me1, respectively. These markers were localized to a 132-kb interval, which included six genes. The development of several PCR-based markers closely linked to Me1 will be useful for the marker-assisted selection of RKN resistance in pepper cultivars. Among these markers, 16830-H-V2 and 16830-CAPS are present in the CA09g16830 gene, which is predicted to be a putative late blight resistance protein homolog R1A-3 gene. This gene appears to be a suitable Me1 candidate gene.  相似文献   

15.

Key message

A novel powdery mildew-resistance gene, designated Pm58, was introgressed directly from Aegilops tauschii to hexaploid wheat, mapped to chromosome 2DS, and confirmed to be effective under field conditions. Selectable KASP? markers were developed for MAS.

Abstract

Powdery mildew caused by Blumeria graminis (DC.) f. sp. tritici (Bgt) remains a significant threat to wheat (Triticum aestivum L.) production. The rapid breakdown of race-specific resistance to Bgt reinforces the need to identify novel sources of resistance. The d-genome species, Aegilops tauschii, is an excellent source of disease resistance that is transferrable to T. aestivum. The powdery mildew-resistant Ae. tauschii accession TA1662 (2n?=?2x?=?DD) was crossed directly with the susceptible hard white wheat line KS05HW14 (2n?=?6x?=?AABBDD) followed by backcrossing to develop a population of 96 BC2F4 introgression lines (ILs). Genotyping-by-sequencing was used to develop a genome-wide genetic map that was anchored to the Ae. tauschii reference genome. A detached-leaf Bgt assay was used to screen BC2F4:6 ILs, and resistance was found to segregate as a single locus (χ?=?2.0, P value?=?0.157). The resistance gene, referred to as Pm58, mapped to chromosome 2DS. Pm58 was evaluated under field conditions in replicated trials in 2015 and 2016. In both years, a single QTL spanning the Pm58 locus was identified that reduced powdery mildew severity and explained 21% of field variation (P value?<?0.01). KASP? assays were developed from closely linked GBS-SNP markers, a refined genetic map was developed, and four markers that cosegregate with Pm58 were identified. This novel source of powdery mildew-resistance and closely linked genetic markers will support efforts to develop wheat varieties with powdery mildew resistance.
  相似文献   

16.
In order to evaluate the effect of inoculation and co-cultivation media elements on transformation frequency in Petunia hybrida, modified MS media with different elements were tested on Alvan and Large Flower Alvan (LF Alvan), two local cultivars. Leaf explants of both cultivars were inoculated with Agrobacterium tumefaciens strain LBA4404 (pBI121) containing neomycin phosphotransferase (nptII) and an intron-containing β-glucuronidase (gus) genes. When medium lacking KH2PO4, NH4NO3, KNO3, and CaCl2 was used as inoculation and co-cultivation medium, a higher frequency of transformation for Alvan (22%) and LF Alvan (16%) was obtained. Kanamycin resistant plantlets were stained blue by GUS assay. Furthermore, polymerase chain reaction (PCR) analysis revealed the presence of both gus and nptII genes in all putative transformants. Finally, southern blot hybridization confirmed insertion of 1–4 copies of gus gene in transgenic plants.  相似文献   

17.
The major quantitative trait locus qBR9.1 confers broad-spectrum resistance to rice blast, and was mapped to a ~69.1 kb region on chromosome 9 that was inherited from resistant variety Sanhuangzhan No 2 (SHZ-2). Within this region, only one predicted disease resistance gene with nucleotide binding site and leucine-rich repeat (NBS-LRR) domains was found. Specific markers corresponding to this gene cosegregated with blast resistance in F2 and F3 populations derived from crosses of susceptible variety Texianzhan 13 (TXZ-13) to SHZ-2 and the resistant backcross line BC-10. We tentatively designate the gene as Pi56(t). Sequence analysis revealed that Pi56(t) encodes an NBS-LRR protein composed of 743 amino acids. Pi56(t) was highly induced by blast infection in resistant lines SHZ-2 and BC-10. The corresponding allele of Pi56(t) in the susceptible line TXZ-13 encodes a protein with an NBS domain but without LRR domain, and it was not induced by Magnaporthe oryzae infection. Three new cosegregating gene-specific markers, CRG4-1, CRG4-2 and CRG4-3, were developed. In addition, we evaluated polymorphism of the gene-based markers among popular varieties from national breeding programs in Asia and Africa. The presence of the CRG4-2 SHZ-2 allele cosegregated with a blast-resistant phenotype in two BC2F1 families of SHZ-2 crossed to recurrent parents IR64-Sub1 and Swarna-Sub1. CRG4-1 and CRG4-3 showed clear polymorphism among 19 varieties, suggesting that they can be used in marker-assisted breeding to combine Pi56(t) with other target genes in breeding lines.  相似文献   

18.

Key message

Genotypes with recombination events in the Triticum ventricosum introgression on chromosome 7D allowed to fine-map resistance gene Pch1, the main source of eyespot resistance in European winter wheat cultivars.

Abstract

Eyespot (also called Strawbreaker) is a common and serious fungal disease of winter wheat caused by the necrotrophic fungi Oculimacula yallundae and Oculimacula acuformis (former name Pseudocercosporella herpotrichoides). A genome-wide association study (GWAS) for eyespot was performed with 732 microsatellite markers (SSR) and 7761 mapped SNP markers derived from the 90 K iSELECT wheat array using a panel of 168 European winter wheat varieties as well as three spring wheat varieties and phenotypic evaluation of eyespot in field tests in three environments. Best linear unbiased estimations (BLUEs) were calculated across all trials and ranged from 1.20 (most resistant) to 5.73 (most susceptible) with an average value of 4.24 and a heritability of H 2 = 0.91. A total of 108 SSR and 235 SNP marker–trait associations (MTAs) were identified by considering associations with a ?log10 (P value) ≥3.0. Significant MTAs for eyespot-score BLUEs were found on chromosomes 1D, 2A, 2D, 3D, 5A, 5D, 6A, 7A and 7D for the SSR markers and chromosomes 1B, 2A, 2B, 2D, 3B and 7D for the SNP markers. For 18 varieties (10.5%), a highly resistant phenotype was detected that was linked to the presence of the resistance gene Pch1 on chromosome 7D. The identification of genotypes with recombination events in the introgressed genomic segment from Triticum ventricosum harboring the Pch1 resistance gene on chromosome 7DL allowed the fine-mapping of this gene using additional SNP markers and a potential candidate gene Traes_7DL_973A33763 coding for a CC-NBS-LRR class protein was identified.
  相似文献   

19.
Cereal cyst nematodes (CCN) are a global economic problem for cereal production. Heterodera filipjevi is one of the most commonly identified and widespread CCN species found in many wheat production regions of the world. Transferring novel genes for resistance to H. filipjevi from wild relatives of wheat is a promising strategy for protection of wheat crops. A set of wheat–Dasypyrum villosum chromosome addition lines, T6V#4S·6AL translocation lines and their donor parental lines were tested for their response to the nematode. D. villosum and wheat–D. villosum disomic addition line DA6V#4 were resistant. As T6V#4S·6AL translocation lines were susceptible, resistance was presumed to be located on chromosome 6V#4L. The objective of this study was to produce and characterize wheat–6V#4L translocations and confirm the chromosome location of the resistance. Introgression lines T6V#4L·6AS, T6V#4L-4BL·4BS and DT6V#4L were developed and subjected to molecular cytogenetic analysis. These and four additional wheat–6V#4 introgression lines were tested for response to H. filipjevi in the greenhouse. The results indicated that introgression lines DA6V#4, T6V#4L·6AS, T6V#4L-4BL·4BS, T6V#4L·6V#4S-7BS and DT6VL#4 had higher levels of H. filipjevi resistance than their recurrent parent. However, Del6V#4L-1 and translocation line T6V#4S·6AL were equally susceptible to wheat cv. Chinese Spring. The CCN resistance gene, temporarily named CreV, was therefore physically mapped to chromosome arm 6V#4L FL 0.80–1.00. Translocation chromosomes T6V#4L·6AS transferred to a modern wheat cv. Aikang 58 with its co-dominant molecular markers could be utilized as a novel germplasm for CCN resistance breeding in wheat.  相似文献   

20.
Head blight caused by Fusarium graminearum (F. graminearum) is one of the major threats to wheat and barley around the world. The importance of this disease is due to a reduction in both grain yield and quality in infected plants. Currently, there is limited knowledge about the physiological mechanisms involved in plant resistance against this pathogen. To reveal the physiological mechanisms underlying the resistance to F. graminearum, spikes of resistant (Sumai3) and susceptible (Falat) wheat cultivars were analyzed 4 days after inoculation, as the first symptoms of pathogen infection appeared. F. graminearum inoculation resulted in a greater induction level and activity of salicylic acid (SA), callose, phenolic compounds, peroxidase, phenylalanine ammonia lyase (PAL), and polyphenol oxidase in resistant versus susceptible cultivars. Soil drench application to spikes of SA, 24 h before inoculation with F. graminearum alleviated Fusarium head blight symptoms in both resistant and susceptible cultivars. SA treated plants showed a significant increment in hydrogen peroxide (H2O2) production, lipid peroxidation, SA, and callose content. SA-induced H2O2 level seems to be related to increased superoxide dismutase and decreased catalase activities. In addition, real-time quantitative PCR analysis showed that SA pretreatment induced expression of PAL genes in both infected and non-infected head tissues of the susceptible and resistant cultivars. Our data showed that soil drench application of SA activates antioxidant defense responses and may subsequently induce systemic acquired resistance, which may contribute to the resistance against F. graminearum. These results provide novel insights about the physiological and molecular role of SA in plant resistance against hemi-biotrophic pathogen infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号