首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目前,新加坡国内还没有任何植物生物技术投入商业化生产。截至2020年10月,新加坡共有43种转基因(genetically engineered,GE)植物产品获准用作食品或食品成分。新加坡遗传改良咨询委员会(Genetic Modification Advisory Committee,GMAC)最近修订了关于基因叠加事件的法规,采用“高覆盖低”的方法,对来源于先前GMAC认可的较低阶组合的高阶叠加事件组合豁免监管评估。  相似文献   

2.
This paper provides an overview of the U.S. regulatory framework governing genetic biocontrol efforts for invasive fish. Genetic biocontrol refers to the intentional release of genetically modified organisms (GMOs) into the environment to control a target population of a non-native species. The terms “genetically modified” and “genetically engineered” are often used interchangeably, despite the scientific distinctions. A GMO is an organism that has had its genetic material altered or modified by humans through any method, including conventional breeding. Genetic engineering, as defined by the Food and Drug Administration (FDA), is the use of recombinant DNA techniques to introduce new characteristics or traits into an organism. GE organisms are therefore a subset of GMOs. As this paper will discuss, existing laws focus on GE organisms raising significant questions as to whether organisms modified without utilizing rDNA techniques fall within the jurisdiction of any federal agency. Under the 1986 Coordinated Framework for Regulation of Biotechnology, three federal agencies have primary responsibility over biotechnology—the Environmental Protection Agency (EPA), the U.S. Department of Agriculture, and the FDA. Because the EPA has exempted biological control agents from regulation as pesticides and no fish species are currently considered plant pests, the FDA is the agency responsible for approving the use of genetically engineered fish for biocontrol. FDA regulates genetically engineered animals through its New Animal Drug Application (NADA) process. The NADA process presents several challenges to effective and transparent regulation of genetic biocontrol, including the FDA’s focus on drug safety, secrecy provisions potentially limiting disclosure of the results of environmental reviews, and the secondary role of the Fish and Wildlife Service, the federal agency with the most experience with invasive species management. In addition, relying on the NADA process creates a significant regulatory gap as NADA approval is only required for GE organisms. The regulatory framework for GMOs created for genetic biocontrol without rDNA technology is unclear and primary responsibility may fall to the states. Given its extensive experience with hatcheries, invasive fish species control, and environmental reviews, the Fish and Wildlife Service (FWS) is the more appropriate agency to review applications for genetic biocontrol. Efforts should be undertaken now, while genetic biocontrol is still in the theoretical stages, to increase the role of the FWS in the permitting process either through formal regulations or more informal mechanisms such as memorandum of understanding.  相似文献   

3.
棉花是巴基斯坦唯一批准种植和使用的转基因作物。监管的不明确阻碍了生命科学公司为其他转基因作物寻求获批,但国家生物安全委员会仍在制定转基因食品、饲料和加工品的进口准则。2020年,巴基斯坦进口了大约220万t大豆,其中美国占据了近50%的市场份额。  相似文献   

4.
Developments in genetic engineering technology have led to an increase in number of food products that contain genetically engineered crops in the global market. However, due to lack of scientific studies, the presence of genetically modified organisms (GMOs) in the Kuwaiti food market is currently ambiguous. Foods both for human and animal consumption are being imported from countries that are known to produce GM food. Therefore, an attempt has been made to screen foods sold in the Kuwaiti market to detect GMOs in the food. For this purpose, samples collected from various markets in Kuwait have been screened by SYBR green-based real time polymerase chain reaction (RT-PCR) method. Further confirmation and GMO quantification was performed by TaqMan-based RT-PCR. Results indicated that a significant number of food commodities sold in Kuwait were tested positive for the presence of GMO. Interestingly, certain processed foods were tested positive for more than one transgenic events showing complex nature of GMOs in food samples. Results of this study clearly indicate the need for well-defined legislations and regulations on the marketing of approved GM food and its labeling to protect consumer's rights.  相似文献   

5.
Maize is a major crop plant with essential agronomical interests and a model plant for genetic studies. With the development of plant genetic engineering technology, many transgenic strains of this monocotyledonous plant have been produced over the past decade. In particular, field-cultivated insect-resistant Bt-maize hybrids are at the centre of an intense debate between scientists and organizations recalcitrant to genetically modified organisms (GMOs). This debate, which addresses both safety and ethical aspects, has raised questions about the impact of genetically modified (GM) crops on the biodiversity of traditional landraces and on the environment. Here, we review some of the key points of maize genetic history as well as the methods used to stably transform this cereal. We describe the genetically engineered Bt-maizes available for field cultivation and we investigate the controversial reports on their impacts on non-target insects such as the monarch butterfly and on the flow of transgenes into Mexican maize landraces.  相似文献   

6.
Cisgenesis is a genetic modification of a recipient organism with genetic material from a crossable organism. Trying to free cisgenics from the regulatory guidelines of genetically modified organisms (GMOs), some scientists have suggested to classify the genetically modified products by the origin of transferred genes. Aiming at exploring how scientists frame cisgenics in relation to current legal frameworks, we have sent an extensive survey to the totality of researchers working on cisgenics. Trying to provide cisgenics with a new, uncontroversial identity, the respondents present cisgenics as a method of obtaining “natural,” environmentally friendly and economically sustainable crops. However, such strategy is challenged by GMO corporations opposing a segmentation of the sector, and by the opponents of GMOs, who fear that deregulation on cisgenics leads to the deregulation of GMOs. Drawing from the concepts of bio-objectification and bio-identification, we show how the status of this bio-object is likely to remain contested and contestable.  相似文献   

7.
It is commonly held that confined field trials (CFTs) used to evaluate the potential adverse environmental impacts of a genetically engineered (GE) plant should be conducted in each country where cultivation is intended, even when relevant and potentially sufficient data are already available from studies conducted elsewhere. The acceptance of data generated in CFTs “out of country” can only be realized in practice if the agro-climatic zone where a CFT is conducted is demonstrably representative of the agro-climatic zones in those geographies to which the data will be transported. In an attempt to elaborate this idea, a multi-disciplinary Working Group of scientists collaborated to develop a conceptual framework and associated process that can be used by the regulated and regulatory communities to support transportability of CFT data for environmental risk assessment (ERA). As proposed here, application of the conceptual framework provides a scientifically defensible process for evaluating if existing CFT data from remote sites are relevant and/or sufficient for local ERAs. Additionally, it promotes a strategic approach to identifying CFT site locations so that field data will be transportable from one regulatory jurisdiction to another. Application of the framework and process should be particularly beneficial to public sector product developers and small enterprises that develop innovative GE events but cannot afford to replicate redundant CFTs, and to regulatory authorities seeking to improve the deployment of limited institutional resources.  相似文献   

8.
Development of an effective regulatory system for genetically engineered animals and their products has been the subject of increasing discussion among researchers, industry and policy developers, as well as the public. Since transgenesis and cloning are relatively new scientific techniques, transgenic animals are 'novel' organisms for which there is limited information. The issues associated with the regulation of transgenic animals pertain to environmental impact, human food safety, animal health and welfare, trade and ethics. It is a challenge for the developers to prove the safety of the products of biotechnology-derived animals and also for regulators to regulate this increasingly powerful technology with limited background information. In principle, an effective regulatory sieve should permit safe products while forming a formidable barrier for those posing an unacceptable risk. Regulatory initiatives for biotechnology-derived animals and their products should be able to ensure high standards for human and animal health, a sound scientific basis for evaluation; transparency and public involvement, and maintenance of genetic diversity. This review proposes a regulatory regime that is based on scientific risk based assessment and approval of products or by-products of biotechnology-derived animals and its application in context to Canadian regulations.  相似文献   

9.
At the time of the first Transgenic Animal Research Conference, the lack of knowledge about promoter, enhancer and coding regions of genes of interest greatly hampered our efforts to create transgenes that would express appropriately in livestock. Additionally, we were limited to gene insertion by pronuclear microinjection. As predicted then, widespread genome sequencing efforts and technological advancements have profoundly altered what we can do. There have been many developments in technology to create transgenic animals since we first met at Granlibakken in 1997, including the advent of somatic cell nuclear transfer-based cloning and gene editing. We can now create new transgenes that will express when and where we want and can target precisely in the genome where we want to make a change or insert a transgene. With the large number of sequenced genomes, we have unprecedented access to sequence information including, control regions, coding regions, and known allelic variants. These technological developments have ushered in new and renewed enthusiasm for the production of transgenic animals among scientists and animal agriculturalists around the world, both for the production of more relevant biomedical research models as well as for agricultural applications. However, even though great advancements have been made in our ability to control gene expression and target genetic changes in our animals, there still are no genetically engineered animal products on the market for food. World-wide there has been a failure of the regulatory processes to effectively move forward. Estimates suggest the world will need to increase our current food production 70 % by 2050; that is we will have to produce the total amount of food each year that has been consumed by mankind over the past 500 years. The combination of transgenic animal technology and gene editing will become increasingly more important tools to help feed the world. However, to date the practical benefits of these technologies have not yet reached consumers in any country and in the absence of predictable, science-based regulatory programs it is unlikely that the benefits will be realized in the short to medium term.  相似文献   

10.
It has been argued that the application of metabolomics to gene‐edited crops would present value in three areas: (i) the detection of gene‐edited crops; (ii) the characterization of unexpected changes that might affect safety; and (iii) building on the track record of rigorous government regulation in supporting consumer acceptance of genetically modified organisms (GMOs). Here, we offer a different perspective, relative to each of these areas: (i) metabolomics is unable to differentiate whether a mutation has resulted from gene editing or from traditional breeding techniques; (ii) it is risk‐disproportionate to apply metabolomics for regulatory purposes to search for possible compositional differences within crops developed using the least likely technique to generate unexpected compositional changes; and (iii) onerous regulations for genetically engineered crops have only contributed to unwarranted public fears, and repeating this approach for gene‐edited crops is unlikely to result in a different outcome. It is also suggested that article proposing the utility of specific analytical techniques to support risk assessment would benefit from the input of scientists with subject matter expertise in risk assessment.  相似文献   

11.
Summary Recombinant DNA technology has great potential to enhance and extend the advantages of conventional plant breeding, and increase the production and productivity of crops to meet the increasing demand for food and food products in the future. Judicious application of this technology provides opportunities for alleviating some of the major constraints to crop productivity under subsistence farming conditions in the developing countries. Considerable progress has been made in developing strategies for the production and deployment of transgenic crops. However, biosafety concerns have been raised regarding the deployment and release of genetically engineered plants. This debate has divided the farming and consumer communities over acceptability of genetically modified foods. There is a need for a thorough investigation regarding the fate of transgenic plants in the environment, and their interaction with wild relatives and non-target organisms. The production and release of transgenic plants should be based on experience and sound scientific reasoning. The regulatory requirements for deployment of transgenic crops should be streamlined and harmonized, in order to achieve sustainable food production, poverty reduction, and environmental protection in resource-poor countries in the semi-arid tropics.  相似文献   

12.
An international initiative is developing a scientifically rigorous approach to evaluate the potential risks to nontarget arthropods (NTAs) posed by insect-resistant, genetically modified (IRGM) crops. It adapts the tiered approach to risk assessment that is used internationally within regulatory toxicology and environmental sciences. The approach focuses on the formulation and testing of clearly stated risk hypotheses, making maximum use of available data and using formal decision guidelines to progress between testing stages (or tiers). It is intended to provide guidance to regulatory agencies that are currently developing their own NTA risk assessment guidelines for IRGM crops and to help harmonize regulatory requirements between different countries and different regions of the world.  相似文献   

13.
14.
In recent years, there has been an increase in research with biological agents, particularly those that pose a potential for use by terrorists. In this environment, laws have been enacted and regulations developed to ensure the appropriate use of specified "select agents and toxins" for legitimate research. Within this regulatory environment, it has been necessary for institutions and investigators to adapt to an entirely new set of requirements to begin or continue to work with these pathogens. Registration and approval for use of select agents and toxins, security and safety requirements, and daunting record-keeping requirements are only some of the regulatory challenges that researchers face in working with these agents. A brief overview of recent regulations is presented, as well as where to obtain additional information on regulations, standards, and guidelines related to work with select agents and toxins.  相似文献   

15.

In India, genetically modified organisms and products thereof are regulated under the “Rules for the manufacture, use, import, export and storage of hazardous microorganisms, genetically engineered organisms or cells, 1989” (referred to as Rules, 1989) notified under the Environment (Protection) Act, 1986. These Rules are implemented by the Ministry of Environment, Forest and Climate Change, Department of Biotechnology and State Governments though six competent authorities. The Rules, 1989 are supported by series of guidelines on contained research, biologics, confined field trials, food safety assessment, environmental risk assessment etc. The definition of genetic engineering in the Rules, 1989 implies that new genome engineering technologies including gene editing technologies like CRISPR/Cas9 and gene drives may be covered under the rules. The regulatory authorities if required, may also review the experiences of other countries in dealing with such new and emerging technologies.

  相似文献   

16.

Standard food safety assessments of genetically modified crops require a thorough molecular characterization of the novel DNA as inserted into the plant that is intended for commercialization, as well as a comparison of agronomic and nutritional characteristics of the genetically modified to the non-modified counterpart. These characterization data are used to identify any unintended changes in the inserted DNA or in the modified plant that would require assessment for safety in addition to the assessment of the intended modification. An unusual case of an unintended effect discovered from the molecular characterization of a genetically modified late blight resistant potato developed for growing in Bangladesh and Indonesia is presented here. Not only was a significant portion of the plasmid vector backbone DNA inserted into the plant along with the intended insertion of an R-gene for late blight resistance, but the inserted DNA was split into two separate fragments and inserted into two separate chromosomes. One fragment carries the R-gene and the other fragment carries the NPTII selectable marker gene and the plasmid backbone DNA. The implications of this for the food safety assessment of this late blight resistant potato are considered.

  相似文献   

17.
Gene targeting,genome editing: from Dolly to editors   总被引:2,自引:0,他引:2  
One of the most powerful strategies to investigate biology we have as scientists, is the ability to transfer genetic material in a controlled and deliberate manner between organisms. When applied to livestock, applications worthy of commercial venture can be devised. Although initial methods used to generate transgenic livestock resulted in random transgene insertion, the development of SCNT technology enabled homologous recombination gene targeting strategies to be used in livestock. Much has been accomplished using this approach. However, now we have the ability to change a specific base in the genome without leaving any other DNA mark, with no need for a transgene. With the advent of the genome editors this is now possible and like other significant technological leaps, the result is an even greater diversity of possible applications. Indeed, in merely 5 years, these ‘molecular scissors’ have enabled the production of more than 300 differently edited pigs, cattle, sheep and goats. The advent of genome editors has brought genetic engineering of livestock to a position where industry, the public and politicians are all eager to see real use of genetically engineered livestock to address societal needs. Since the first transgenic livestock reported just over three decades ago the field of livestock biotechnology has come a long way—but the most exciting period is just starting.  相似文献   

18.
国际转基因食品安全评价政策及启示   总被引:1,自引:0,他引:1  
转基因技术作为现代生物技术的核心之一,在保障粮食安全、保护生态安全、拓展农业功能等方面发挥了重要作用,但同时,也带来了潜在的安全性问题。为此,世界上主要国家和国际组织都制定了与转基因生物安全管理相关的法律法规,加强管理。通过对国际食品法典委员会(Codex Alimentarius Commission, CAC)、经济合作与发展组织(Organization for Economic Co-operation and Development, OECD)的转基因食品安全评价体系与评价政策进行介绍分析,总结其现实积极作用及价值,指出其缺陷或不足,以期为健全我国转基因食品安全评价体系、完善监管措施,提供理论政策及法律规范方面的参考性建议。  相似文献   

19.
Since the first two successful transformation events in banana were reported in 1995, considerable effort has been invested to develop new cultivars with improved tolerance to biotic and abiotic stresses and with enhanced nutrient levels, primarily using Agrobacterium‐mediated transformation and particle bombardment. In addition to many promising laboratory‐based studies, several genetically engineered banana cultivars have been trialled in the field. However, the deployment of genetically engineered varieties of bananas lags behind that of other major crops and there has been no commercial plantation. This article provides a review of advances in the genetic engineering of banana with an overview of noteworthy developments in several programmes that are being conducted worldwide. We identify the main challenges to translating the full potential of genetically engineered bananas for human consumption as the intellectual property issues surrounding the technology, public perceptions towards the adoption of the transformed bananas as well as various regulatory hurdles that hold the technology development from moving forward.  相似文献   

20.
The advent of genetically modified crops in the late 1980s triggered a regulatory response to the relatively new field of plant genetic engineering. Over a 7-year period, a new regulatory framework was created, based on scientific principles that focused on risk mitigation. The process was transparent and deliberately sought the input of those involved in crop development from non-governmental organizations, industry, academia and federal research laboratories. The resulting regulations have now been in place for over a decade, and the resilience of the risk-mitigating regulations is evident as there has been no documented case of damage to either environment or human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号