首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Acute administration of GABA transaminase inhibitors to rats results in a dose-dependent increase in both brain and blood GABA content and administration of isonicotinic acid hydrazide (INH), at a dose which decreases the amount of brain GABA, also lowers blood levels of this amino acid. Chronic treatment (10 days) with INH (20mg/kg), y-acetylenic-GABA (10 mg/kg) or aminooxyacetic acid (AOAA) (10 mg/kg) results in a significant elevation in both rat brain and blood GABA concentrations. At the doses studied, only AOAA caused a significant elevation in CSF GABA content. Co-administration of pyridoxal phosphate (2 mg/kg) blocks the chronic INH-induced rise in blood GABA but does not affect the increase in brain content of this amino acid. Chronic administration of di-n-propylacetate (20 mg/kg) did not significantly alter brain, blood or CSF GABA levels. The results suggest that, under the proper conditions, changes in blood GABA levels after administration of inhibitors of GABA synthesis or degradation may be an indirect indicator of changes in the brain content of this amino acid. Blood GABA determinations may be useful for studying the biochemical effectiveness of GABA transaminase inhibitors in man.  相似文献   

2.
Abstract— The contents of GABA, homocarnosine, and β-alanine can be raised in rat brain for long periods of time by the continued administration of phenelzine, aminooxyacetic acid (AOAA), or isonicotinic acid hydrazide (INH). These 3 compounds apparently act by preferential inhibition of the enzyme GABA aminotransferase (GABA-T). Oral administration of phenelzine (20 mg/kg per day) caused a 25–50 per cent increase in GABA levels in rat brain, but produced appreciable toxic side effects. A similar increase in GABA levels in brain resulted from oral administration to rats of INH in a dosage of 60 mg/kg per day, without production of any obvious toxic effects. Simultaneous administration of large doses of pyridoxine did not abolish the GABA-elevating effect of INH. Brain GABA levels in the rat were increased by approx. 50 per cent by daily injections of AOAA (2.5 mg/kg per day). At this low dosage, AOAA injections in rats could be continued for at least 6 weeks without producing evident toxic effects. Oral administration of large amounts of GABA, on the other hand, failed to increase the content of GABA in the brains of rats not treated with GABA-T inhibitors, and failed to produce any further increase of brain GABA levels in rats treated with AOAA.  相似文献   

3.
Abstract: We have studied the effect of isonicotinic acid hydrazide (INH), a convulsant agent, on the extracellular levels of amino acids in the hippocampus, and the effect of sodium valproate (VPA) administration in INH-treated rats. INH (250 mg/kg) caused a rapid and sustained decrease in basal levels of GABA, and during this period convulsions of increasing severity were observed. Basal levels of glutamine, taurine, aspartate, and glutamate were unchanged by INH. When VPA was coadministered with INH, basal GABA levels were increased and no convulsions were observed. When transmitter release was evoked using 100 m M K+, the increase in dialysate GABA observed in INH-treated animals was less than that seen in controls and convulsions increased in frequency. K+-evoked release of glutamate and aspartate tended to be higher following INH treatment, and in the case of aspartate, this increase was significant. VPA reversed the changes in evoked release of glutamate and aspartate, and release of GABA was considerably greater than that seen in control or INH-treated rats. No drug effect on evoked changes in taurine or glutamine level was seen. These are the first data to show decreased extracellular GABA in conjunction with convulsions in freely moving animals in vivo.  相似文献   

4.
Abstract— Brain amino acids were measured in rats given aminooxyacetic acid (AOAA) by mouth, and in rats given sodium dipropylacetate (DPA) both orally and by intraperitoneal injection. Brain GABA content was significantly elevated by AOAA doses of 10mg/kg/day, but not by 5mg/kg/day. Approximately 4 times as much AOAA is required by mouth as by parenteral injection to raise brain GABA content in the rat. DPA (400mg/kg) increased brain GABA and lowered brain aspartate content significantly 1 h after a single injection. However, DPA given orally (350 mg/kg/day) produced no alterations of any amino acids in rat brain.
Amino acids were measured in plasma and urine from patients treated orally with isonicotinic acid hydrazide (INH) or DPA, and from a volunteer who took AOAA. INH (10–21 mg/kg/day) increased concentrations of β -alanine and ornithine in plasma, as well as urinary excretion of β -alanine. DPA had no such effect. AOAA in oral doses ranging from 1.25 to 5.0 mg/kg/day increased plasma concentrations of β -alanine, ornithine, β -aminoisobutyric acid, proline and hydroxyproline, and produced massive urinary excretion of β -alanine, β -aminoisobutyric acid, and taurine.
Both INH and AOAA, given in doses practical for human use, inhibit the transamination of β -alanine and ornithine in liver, and may also inhibit the transamination of GABA in brain. In addition, AOAA interferes with the catabolism of β -aminoisobutyric acid, proline, and hydroxyproline. AOAA, in the lowest dose employed, appeared more effective than INH as an inhibitor of GABA aminotransferase in man, and might therefore be useful in the treatment of neurological diseases in which brain GABA is deficient.  相似文献   

5.
Urine collected during 24 h after treatment of rats with 90--550 mg/kg isonicotinic acid hydrazide (isoniazid, INH) was after lyophilization, mutagenic for Salmonella typhimurium TA1535. Urine collected directly from bladders of INH-treated rats was not mutagenic, and solutions of INH in water or urine became mutagenic only after lyophilization. In the absence of lyophilization, sterile urine from INH-treated rats became mutagenic after 8--14 days' storage at room temperature.  相似文献   

6.
We studied the transmission-blocking effect of isonicotinic acid hydrazide (INH), a widely used anti-tuberculosis drug, against Plasmodium gallinaceum and Plasmodium berghei. INH-treatment of infected animals did not inhibit parasite development in the blood of the vertebrate host, but did inhibit exflagellation, ookinete formation, and oocyst development in the mosquito. Oocyst development was inhibited in a dose-dependent manner. The ED(50) in the P. gallinaceum/chicken/Aedes aegypti model and P. berghei/mouse/Anopheles stephensi model was 72 and 109 mg/kg, respectively. In marked contrast, in vitro exflagellation and ookinete development were not directly affected by physiological concentrations of INH. We suggest that INH exerts its inhibitory effects on the mosquito stages of the malaria parasite by an indirect, and at present undefined mechanism. Further elucidation of the mechanism how INH inhibits parasite development specifically on mosquito stages may allow us to identify new targets for malaria control strategy.  相似文献   

7.
The authors have attempted to demonstrate the effect of bilateral adrenalectomy on carrageenin-induced oedema and on the antiphlogistic action of phenylbutazone in relation to the changes of blood 5-hydroxtryptamine (5-HT) in rats of different ages (21 days, 42 days, 3 months and 18 months old). It was found that the influence of adrenalectomy on the antiphlogistic action of phenylbutazone and on the blood 5-HT concentration is related to the age of rats. The lowest antiphlogistic action of phenylbutazone was found in 21-day-old rats and highest in the 18-month-old ones. In adrenalectomized 21- and 42-day-old rats the antiphlogistic action is decreased and fully suppressed in rats 3 and 18 months old. Adrenalectomy does not influenced basal values of blood 5-HT concentration. Blood 5-HT in adrenalectomized rats with inflammationadrenalectomized rats 42 days and 3 months old with inflammation after injection of phenylbutazone an increase of 5-HT was observed, but in 18-month-old animals in which antiphlogistic action is highest a decrease of 5-HT was observed.  相似文献   

8.
—The effect of intramuscularly administered INH on brain levels of GABA in chicks was dependent on the amount injected. A subconvulsant dose of INH (1·1 mmol/kg) produced a slow steady decline in the level of GABA, whereas a convulsant dose (2·19 mmol/kg) brought about a sequential fall and rise in GABA level. This sequence of events reflected changes in the relative activities of GAD and GABA-T brought about by the hydrazide. The administration of pyridoxine together with the INH (2·19 mmol/kg) prevented the onset of seizures and lessened the effect of the INH on GABA levels and GAD activity but not on GABA-T activity. The possibility that a deranged GABA metabolism is responsible for hydrazide-induced seizures is discussed.  相似文献   

9.
Abstract: We examined the effects of orally administered 5'-cytidinediphosphocholine (CDP-choline) on arterial plasma choline and cytidine levels and on brain phospholipid composition in rats. Animals receiving a single oral dose of 100, 250, or 500 mg/kg showed peak plasma choline levels 6–8 h after drug administration (from 12 ± 1 to 17 ± 2, 19 ± 2, and 24 ± 2 µ M , respectively). The area under the plasma choline curve at >14 µ M , i.e., at a concentration that induces a net influx of choline into the brain, was significantly correlated with CDP-choline dose. In rats receiving 500 mg/kg this area was 2.3 times that of animals consuming 250 mg/kg, which in turn was 1.8 times that of rats receiving 100 mg/kg. Plasma cytidine concentrations increased 5.4, 6.5, and 15.1 times baseline levels, respectively, 8 h after each of the three doses. When the oral CDP-choline treatment was prolonged for 42 and 90 days, brain phosphatidylcholine concentrations increased significantly (by 22–25%; p < 0.05) in rats consuming 500 mg/kg/day. Brain phosphatidylethanolamine and phosphatidylserine concentrations also increased significantly under some experimental conditions; levels of other phospholipids were unchanged.  相似文献   

10.
By means of electron microscopical morphometry and populational analysis it has been stated that hydrocortisone acetate, injected subcutaneously twice a week in dose 5 mg/kg of the body mass, produces decrease in number of intensively collagen-producing fibroblasts and increase in the part of fibroblasts and destroying cells in population of fibroblasts only in young (2-week-old) animals. The dose 10 mg/kg produces similar changes both in young and in mature (2-month-old) animals. In the young animals given hydrocortisone in dose 5 mg/kg of the body mass, the mean summational area and extension of the granular endoplasmic reticulum membranes in the fibroblast section diminishes, the summational area of the mitochondrial section decreases in the section of one cell, and the derm with less thickness, in comparison with the derm of intact animals, is formed, while in mature animals, given hydrocortisone in a small dose, all the parameters mentioned do not significantly differ from the control. Hydrocortisone in dose 20 mg/kg decreases all quantitative parameters of dermal fibroblasts both in young and mature animals. The data of the correlative analysis give evidence on the presence of a strong positive connection between inhibition of the synthetic apparatus of fibroblast development under hydrocortisone effect and decrease of the derm thickness, forming during the postnatal period of ontogenesis.  相似文献   

11.
Cholinesterase activities in rat forebrain, erythrocytes, and plasma were assessed after a single oral administration of metrifonate or dichlorvos. In 3-month-old rats, the dichlorvos (10 mg/kg p.o.)-induced inhibition of cholinesterase reached its peak in brain after 15–45 min and after 10–30 min in erythrocytes and plasma. Cholinesterase activity recovered rapidly after the peak of inhibition, but did not reach control values in brain and erythrocytes within 24 h after drug administration. The recovery of plasma cholinesterase activity, in contrast, was already complete 12 h after dichlorvos treatment. Metrifonate (100 mg/kg p.o.) had qualitatively similar inhibition kinetics as dichlorvos, albeit with a slightly delayed onset. Peak values were attained 45–60 min (brain) and 20–45 min (blood), after drug administration. Apparently complete recovery of cholinesterase activity was noted in both tissues 24 h after treatment. The dose-dependence of drug-induced inhibition of cholinesterase in rat blood and brain was determined at the time of maximal inhibition, i.e., 30 min after dichlorvos treatment and 45 min after metrifonate treatment. The oral ED50 values obtained for dichlorvos were 8 mg/kg for brain and 6 mg/kg for both erythrocyte and plasma cholinesterase. The corresponding oral ED50 values for metrifonate were 10 to 15 times higher, i.e., 90 mg/kg in brain and 80 mg/kg in erythrocytes and plasma. In rats deprived of food for 18 h before drug treatment, the corresponding ED50 values for metrifonate were 60 and 45 mg/kg, respectively, indicating an about two-fold higher sensitivity of fasted rats to metrifonate-induced cholinesterase inhibition compared to non-fasted rats. Compared to 3-month-old rats, 19-month-old rats showed a higher sensitivity towards metrifonate and dichlorvos. At the time of maximal inhibition, there was a strong correlation between the degree of cholinesterase inhibition in brain and blood. These results demonstrate that single oral administration of metrifonate and dichlorvos induces an inhibition of blood and brain cholinesterase in the conscious rat in a dose-dependent and apparently fully reversible manner. While the efficiency of a given dose of inhibitor may vary with the satiety status or age of the animal, the extent of brain ChE inhibition can be estimated from the level of blood ChE activity.  相似文献   

12.
The effect of ethosuximide, dipropylacetate and clonazepam on metrazol convulsions induced by a dose of 80 mg/kg was studied in 314 male albino rats aged from 5 days to adult. In a standard dose of 125 mg/kg, ethosuximide reliably protected only adult and 25-day-old rats, i.e. the age groups in which a mature minimal seizure was the only type of convulsion induced; in younger animals, not even a much higher dose (tested in 12-day-old rats) afforded reliable protection. Dipropylacetate and clonazepam had a manifest protective effect in all age groups, irrespective of the type of seizure. Isolated myoclonic jerks were less sensitive to antiepileptics and only dipropylacetate blocked them in the youngest age groups. In 21-day-old and older animals dipropylacetate induced stereotype head movement reminiscent of the serotonergic stereotypy described in the literature.  相似文献   

13.
In rats, late prenatal and/or early postnatal zinc deficiency results in behavioural anomalies in adult animals, but not in overt dysmorphogenesis of the central nervous system. Cerebellar and hippocampal development occurs mainly in the first three weeks postnatally and zinc accumulates specifically in the mossy fibres of the hippocampus during this period.In the present investigation, rat pups were suckled by dams fed a zinc-deficient (<0.5 mg/kg) diet either from day 19 of pregnancy or from parturition. Control animals were restricted-fed the same diet supplemented with 100 mg zinc/kg. Studies were performed on pups either on day 18 postpartum in the case of animals fed the experimental diets from parturition, or on day 20 for pups which received treatment from day 19 of gestation.Cerebellar and hippocampal weights were lower in pups suckling from zinc-deficient dams but zinc levels were not affected in either organ, although histological evidence suggested less zinc in the hippocampal mossy fibres. Incorporation of H-thymidine into cerebellar and hippocampal DNA was not affected by maternal zinc status, nor was the activity of the zinc metalloenzyme alkaline phosphatase.The activity of the myelin-marker enzyme 2′, 3′-cyclic nucleotide 3′-phosphohydrolase was substantially lower in both regions of the brain in zinc deprived pups, especially in the hippocampus. Activity of the zinc metalloenzyme L-glutamic acid dehydrogenase was also diminished in both tissues from 20-day-old pups and in the hippocampi of 18-day-old animals.The data suggest that cerebellar and hippocampal DNA synthesis is not seriously affected by late prenatal and/or early postnatal zinc depletion, but that the activities of two enzymes associated with neural function are. The possibility is raised that these defects may be associated with the behavioural changes observed in rats subjected to zinc impoverishment during the period of maximal cerebellar and the hippocampal development.  相似文献   

14.
Trazodone was tested for its ability to elevate serum prolactin levels in mature female rats. When the drug was administered acutely to female rats at doses up to 80 mg/kg ip, it induced a clear rise in serum prolactin levels, with a minimum effective dose of 20 mg/kg; blood trazodone levels at these doses were between 1.6–2.4 μg/ml. However, trazodone could not be considered to be a potent stimulator of prolactin secretion, since the injection of haloperidol at 2 mg/kg elevated serum prolactin to values twice those seen in animals receiving the 80 mg/kg dose of trazodone. When trazodone was administered chronically in the diet for two or four weeks, at an average daily dose of 80 mg/kg, serum trazodone levels were found to be 100–200 ng/ml when measured at each stage of the estrous cycle. Serum prolactin levels in trazodone-treated animals, however, did not differ from those in control rats. Moreover, drug-treated animals showed normal proestrus surges in serum prolactin. The results of these studies thus indicate that acutely, at very high doses, trazodone probably can stimulate prolactin secretion modestly in female rats. However, when consumed chronically at 80 mg/kg/day, the drug has no effects on serum prolactin levels. Therefore, if trazodone stimulates prolactin secretion by altering neurotransmission across dopamine and/or serotonin synapses in brain, it is probably not potent in these actions, at least as concerns those dopamine and serotonin neurons that influence the secretion of prolactin.  相似文献   

15.
Effects of age and sex on hexachloro-1,3-butadiene (HCBD) nephrotoxicity were determined 24 hours after a single dose (0, 25, 50, 100 or 200 mg/kg) in 28- and 63-day-old Fischer 344 rats. HCBD treatment significantly increased the kidney to body weight ratio but had little effect on the liver to body weight ratio. The 28-day-old rats were more susceptible to HCBD nephrotoxicity judged by elevated blood urea nitrogen, decreased renal cortical accumulation of p-aminohippurate tetraethylammonium. Adult female rats (63-day-old) appeared to be more susceptible to HCBD nephrotoxicity than males at the low dose (50 mg/kg).  相似文献   

16.
Fibroblasts have been investigated in 18-day-old embryos, in newborns, in 2-week-old and in 2-month-old rats of postnatal development. Comparison of fibroblasts population is specific for each stage. Average section area of the fibroblasts nucleus is progressively decreasing during ontogenesis. Average section area of cytoplasm reaches its maximum by the end of the second week of the life and then decreases sharply, and therefore the nucleus/cytoplasm ratio in the fibroblasts is minimal at the age of two weeks. The Golgi complex section area decreases significantly in mature animals as compared to the young ones. Summational extent of the granular endoplasmic reticulum membranes in the fibroblast section in the 2-week-old animals is 2.5 times as great as the corresponding parameters in the fetuses, newborns and mature animals. This parameter is greatly informative for determining the fibroblast type in accordance with its synthetic activity.  相似文献   

17.
1. The offspring (F1) of a parent generation (P) were mated on a brother-to-sister system to produce a second generation (F2), which was then mated in the same way to produce a third generation (F3). 2. Each of these generations were divided into two groups, controls and treated. 3. A single dose of 100 mg/kg of semicarbazide was administered to the treated Wistar rats on the 10th day of their pregnancy. 4. DNA, RNA and protein hepatic levels were measured in the livers of either 21-day-old foetuses or 1, 7, 15 or 30-day-old offspring. 5. These levels were also studied in the pregnant rats on day 21 of gestation. 6. Semicarbazide produced a significant decrease of these levels not only in the foetuses, offspring and pregnant rats but also in the controls, F2 and F3, from treated P and F1 respectively.  相似文献   

18.
The presence of gamma-aminobutyric acid (GABA) as well as glutamic acid decarboxylase (GAD) and GABA-transaminase (GABA-T) enzymes was demonstrated in the cockroach (Periplaneta americana) brain. Isonicotinic acid hydrazide (INH) in vivo (2.19 mumol/g) inhibited brain GAD activity, the inhibition lasted for about 2 hours and the normal activity levels reappeared at 4 h after INH administration. Brain GABA levels increased initially but then declined and were restored to normal levels at 4 h after INH administration. GABA-T activity was strongly inhibited by INH and a total 100% inhibition was observed at 2-3 h following INH treatment. The GABA-T activity, however, began to recover after 3 h but only 37% of the total enzyme activity was released from inhibition. Mercaptopropionic acid (MPA) in vivo (32 micrograms/g) inhibited brain GAD activity and depleted GABA level also. Results indicate that INH response of the cockroach brain GABA system is similar to that reported for the chick brain but differs from that of the mammalian brain.  相似文献   

19.
The anticonvulsant action of two neuroactive steroids, 3alpha-hydroxy-5beta-pregnan-20-one (pregnanolone) and triethylammonium 3 alpha-hydroxy-20-oxo-5 alpha-pregnan-21-yl hydrogensuccinate (THDOC-conjugate), was tested against motor seizures induced by pentetrazol in immature rats. Five age groups (7, 12, 18 and 25 days old and adult rats) were pretreated with the steroids in doses from 2.5 to 40 mg/kg i.p. Twenty minutes later pentetrazol (100 mg/kg s.c.) was administered. Minimal seizures (clonic seizures of head and forelimb muscles with preserved righting ability) could be induced in the three older age groups. They were suppressed by pregnanolone in all these tested groups (this effect was best expressed in 18-day-old rats and decreased with age), whereas significant changes in THDOC-conjugate-pretreated animals appeared only in 18-day-old rats. Generalized tonic-clonic seizures were suppressed by both neuroactive steroids in all age groups, this effect being more marked with pregnanolone and again decreased with age. The 7- and 12-day-old rats exhibited higher sensitivity of the tonic phase so that generalized clonic seizures were observed. Duration of the effect was studied in 12- and 25-day-old animals; it was substantially shorter in the older rats than in 12-day-old animals. Both drugs exhibited an anticonvulsant action in developing rats but, unfortunately, their effect was only shortlasting.  相似文献   

20.
Methamphetamine (METH) produces dopaminergic neurotoxicity by the production of reactive oxygen (ROS) and nitrogen (RNS) species. The role of free radicals has also been implicated in the process of aging. The present study was designed to evaluate whether METH-induced dopaminergic neurotoxicity and hyperthermia is a result of peroxynitrite production and if these effects correlate with age. One-, six- and 12-month-old male rats (n = 8) were administered a single dose of METH (0, 5, 10, 20, and 40 mg/kg, intraperitoneally). The formation of 3-nitrotyrosine (3-NT) as a marker of peroxynitrite production as well as dopamine and its metabolites DOPAC and HVA were measured in the striatum 4-h after METH-administration. Rectal temperature was monitored every 30 min after METH administration until 4 h. At 40 mg/kg METH, a 100% mortality in 12-month-old animals was observed, whereas no deaths occurred in 1- or 6-month-old rats. An age-dependent increase in hyperthermia was observed after METH-administration. A similar pattern of dose-dependent increase in the formation of 3-NT and in the depletion of dopamine and its metabolites with age was observed in the striatum. Furthermore, no effect was observed at 5 mg/kg METH in 1-month-old animals, whereas the effect was significant in 6- and 12-month-old animals. These data suggest that aging increases the susceptibility of the animals toward METH-induced peroxynitrite generation and striatal dopaminergic neurotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号