首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The usefulness of adenovirus type 5 as a vector for homologous recombination was examined in CHO cells by using the adenine phosphoribosyltransferase (aprt) gene. Infection of a hemizygous CHO APRT- cell line containing a 3-bp deletion in exon 5 of the aprt gene with a recombinant adenovirus containing the wild-type gene resulted in restoration of the APRT+ phenotype at a frequency of 10(-5) to 10(-6) per infected cell. A relatively high frequency (approximately 6 to 20%) of the transductants appears to result from a homologous recombination event. The mutation on the chromosomal aprt gene is corrected in the homologous recombinants, and APRT expression is restored to a normal hemizygous level. Neither adenovirus nor exogenous promoter sequences are detected in the homologous recombinants. The remaining transductants result from random integration of the aprt gene with the adenovirus sequence. A number of adenovirus vectors containing different promoter sequences linked to the hamster aprt gene were constructed. A possible role for the promoter region in the homologous recombination event was indicated by the lack of homologous recombination in constructs lacking an active promoter.  相似文献   

2.
We present evidence for a two-step model for expression of the recessive phenotype at the diploid adenine phosphoribosyl transferase (aprt) locus in Chinese hamster ovary cells. This model proposes a high-frequency event leading to allelic inactivation and a low-frequency event leading to a structural alteration of the APRT protein. Either event can occur first, resulting in two types of heterozygous cells. The proposed model is based on analysis of Chinese hamster ovary presumptive aprt heterozygotes and APRT- mutants, derived by two different laboratories. The major class of heterozygotes (class 1) had approximately 50% parental APRT activity, 50% immunologically precipitable APRT protein, and only wild-type enzyme as based on two-dimensional gel electrophoresis and thermal inactivation studies. We propose that one allele at the aprt locus has been inactivated in these heterozygotes. APRT- mutants derived from any single class 1 heterozygote arose at a low frequency and contained either no immunologically detectable APRT protein or an APRT enzyme which was, in most cases, demonstrably altered. The second class of heterozygotes, consisting of two independent isolates, gave rise to APRT- cells at a high frequency (10(-3) to 10(-5). These heterozygous cell lines had 50% of parental APRT activity and only wild-type spot, or wild-type and an electrophoretic variant spot, on two-dimensional gels. These aprt heterozygotes appear to have arisen by mutation at one allele. APRT- mutants derived from either heterozygote of this class had all lost the wild-type activity, consistent with the proposed model.  相似文献   

3.
Two classes of cell lines heterozygous at the galactokinase (glk) locus have been isolated from Chinese hamster ovary cells. Class I, selected by plating nonmutagenized wild-type cells at low density in medium containing 2-deoxygalactose at a partially selective concentration, underwent subsequent mutation to the glk-/- genotype at a low frequency (approximately 10(-6) per cell), which was increased by mutagenesis. Class II heterozygotes, isolated by sib selection from mutagenized wild-type cells, had a higher spontaneous frequency of mutation to the homozygous state (approximately 10(-4) per cell), which was not affected by mutagenesis. About half of the glk-/- mutants derived from a class II heterozygote, but not the heterozygote itself, were functionally hemizygous at the syntenic thymidine kinase (tk) locus. Similarly, a tk+/- heterozygote with characteristics analogous to the class II glk+/- cell lines underwent high-frequency mutation to tk-/-, and most of these mutants, but not the tk+/- heterozygote, were functionally hemizygous at the glk locus. A model is proposed, similar to that for the mutational events at the adenine phosphoribosyl transferase locus (W. E. C. Bradley and D. Letovanec, Somatic Cell Genet. 8:51-66, 1982), of two different events, high and low frequency, being responsible for mutation at either of the linked loci tk and glk. The low-frequency event may be a point mutation, but the high-frequency event, in many instances, involves coordinated inactivation of a portion of a chromosome carrying the two linked alleles. Class II heterozygotes would be generated as a result of a low-frequency event at one allele, and class I heterozygotes would be generated by a high-frequency event. Supporting this model was the demonstration that all class I glk+/- lines examined were functionally hemizygous at tk.  相似文献   

4.
We have analyzed the adenine phosphoribosyltransferase (APRT) enzyme from Chinese hamster ovary cells through the study of mutants that are able to grow in the presence of the toxic adenine analogue 8-azaadenine. The distribution of the amino acid alterations was analyzed in terms of the binding regions for the purine and phosphoribosylpyrophosphate substrates and a comparison was made with mutants known in human APRT and human, mouse and hamster hypoxanthine-guanine phosphoribosyltransferase. A number of mutants were found to cluster in several regions of the amino acid sequence. Residual enzyme activity with adenine was determined and this was correlated with substrate binding regions. A model of the secondary structure features is proposed.  相似文献   

5.
As a first step in the development of a multiple-marker, mammalian cell mutagenesis assay system, we have isolated a Chinese hamster ovary (CHO) cell line that is heterozygous for both the adenine phosphoribosyltransferase (aprt) and thymidine kinase (tk) loci. Presumptive aprt+/? heterozygotes with intermediate levels of APRT activity were selected from unmutagenized CHO cell populations on the basis of resistance to low concentrations of the adenine analog, 8-azaadenine. A functional aprt+/? heterozygote with ~50% wild-type APRT activity was subsequently used to derive sublines that were also heterozygous for the tk locus. Biochemical and genetic characterization of one such subline, CHO-AT3-2, indicated that it was indeed heterozygous at both the aprt and tk loci. CHO-AT3-2 cells permitted single-step selection of mutants resistant to 8-azaadenine or 5-fluorodeoxyuridine, allowing quantitation and direct comparison of mutation induction at the autosomal aprt or tk loci, as well as in the gene involved in ouabain resistance or at the X-linked, hypoxanthine-guanine phosphoribosyltransferase (hgprt) locus. Significant dose-dependent increases in mutation frequency were observed for all 4 genetic markers after treatment of CHO-AT3-2 cells with ethyl methanesulfonate.  相似文献   

6.
Summary Under selective growth conditions a revertant of mouse cells, defective in hypoxanthine phosphoribosyltransferase activity (HPRT, EC-No. 2.4.2.8), was isolated, which contained an electrophoretically abnormal form of HPRT activity. The specific HPRT activity in crude extracts of the revertant cells is about 30% of the level determined in normal wild type cells. The variant HPRT reacts with antiserum against normal mouse HPRT but the rate of heat inactivation of the variant activity is different from the wild type form. By isozyme and karyotype analyses of somatic cell hybrids between the revertant mouse cells and Chinese hamster cells we found that the abnormal HPRT activity is coded for by the mouse X-chromosome as expected for a mutation in the structural HPRT gene.DNA has been purified from the abnormal HPRT revertant cells and incubated with mouse A9 cells (HPRT-). After growth in selective medium one clone was isolated which expressed the electrophoretically abnormal form of HPRT. Six clones showed the normal form of HPRT due to reversion of the defective HRRT locus in A9 cells. This result indicates DNA-mediated transfer of the mouse HPRT gene at a frequency of about 0.5×10-7. A similar frequency has been found for transfer of the variant HPRT locus via isolated metaphase chromosomes to A9 recipient cells. When placed in non-selective media the DNA-mediated transferent cells gradually lost their ability to express the HPRT transgenome at a rate of about 6% per average cell generation.  相似文献   

7.
Adenine phosphoribosyltransferase has been purified to apparent homogeneity from mouse mammary tumor FM3A cells. The purified enzyme, with a specific activity of 20.6 X 10(6) units/g protein at 30 degrees C, was homogeneous as judged by polyacrylamide gel electrophoresis and Ouchterlony double immunodiffusion analysis. The native enzyme had a molecular weight of 44,000 and a subunit composition of 23,000. Apparent Km values for adenine and 5-phosphoribosyl-1-pyrophosphate (PRib-PP) were 6.6 microM and 1.2 microM, respectively. Free Mg2+ was an essential activator with a half-maximal effect at 0.4 mM. AMP was an inhibitor, competitive with PRib-PP, and the Ki value was estimated to be 24 microM. The enzyme activity was not significantly affected by 2,6-diaminopurine, 4-carbamoylimidazolium 5-olate, 8-azaadenine, and 2-fluoro-6-aminopurine. An antibody against the purified mouse adenine phosphoribosyltransferase was raised in a rabbit. The enzyme derived from either mouse, Chinese hamster, or human cells was completely neutralized and precipitated by this antibody, indicating that these enzymes share a common antigenic determinant.  相似文献   

8.
DNA crosslinking, sister-chromatid exchange and specific-locus mutations   总被引:2,自引:0,他引:2  
Chinese hamster ovary cells were treated with the DNA-crosslinking chemicals, mitomycin C (MMC) and porfiromycin (POR), and their monofunctional derivative decarbamoyl mitomycin C (DCMMC). After exposure, the cells were studied for the induction of sister-chromatid exchanges (SCEs) and mutations at the hypoxanthine phosphoribosyltransferase and adenine phosphoribosyltransferase loci. The frequency of SCEs varied significantly in successive sampling intervals, requiring the weighting of each interval by the percentage of second-division mitosis in that interval to obtain the mean SCE frequency for each dose. All 3 compounds were potent inducers of SCEs but weakly mutagenic. All 3 chemicals by concentration were approximately equally effective in inducing SCEs or mutations. When the induced SCEs and mutations were compared at equal levels of survival, DCMMC was slightly more effective than MMC or POR in inducing SCEs and somewhat less mutagenic. These results indicate that the DNA interstrand crosslink is not the major lesion responsible for the induction of SCE or mutation by these compounds.  相似文献   

9.
Immunochemical methods were used to identify the genetic origin of hypoxanthine phosphoribosyltransferase (HPRT) expressed in heteroploid, HPRT-deficient mouse (A9) cells and Chinese hamster ovary (K627) cells, after these cells were fused with chick embryo erythrocytes and selected for resistance to hypoxanthine-aminopterin-thymidine (HAT) medium. All of the HAT-selected clones produced HPRT activity which was immunoprecipitable by an antiserum specific for chick HPRT, but not by an antiserum specific for mouse and hamster HPRT. Furthermore, the HPRT activity in these clones was electrophoretically indistinguishable from chick liver HPRT and clearly different from mouse liver HPRT. These data provide evidence that the HPRT activity expressed in cell hybrids produced by the fusion of HPRT-negative mammalian cells and chick erythrocytes containing genetically inactive nuclei is indeed coded by the chick HPRT gene and that an avian gene can be stably incorporated and correctly expressed in a mammalian cells.  相似文献   

10.
Transfection of mammalian cells with genomic DNA and cloned genes is now relatively routine. However, the vast majority of studies have used rodent cells as recipients. Here we describe efficient transfection of two human cell lines, the hypoxanthine guanine phosphoribosyltransferase (HPRT)-deficient HeLa line, D98/AH-2, and the adenine phosphoribosyltransferase (APRT)-deficient HT1080 line, HTD114. D98/AH-2 cells were transfected with the pSV2-gpt plasmid of Mulligan and Berg, which contains the E. coli xanthine-guanine phosphoribosyltransferase (gpt) gene, and Gpt + transfectants were selected in HAT medium. HTD114 cells were transfected with (1) genomic hamster DNA, and ouabain resistant transfectants were selected in 5 X 10(-7)M ouabain; (2) with hamster and mouse genomic DNA, and Aprt + cells were selected in AAA medium; (3) with plasmids containing either the cloned hamster or mouse APRT genes, and Aprt + cells were selected; and (4) with phage particles containing a cloned mouse APRT gene, and Aprt + cells were selected. Transfection efficiencies ranged from 0.25 to 1.5 X 10(3) transfectants per microgram DNA, and in certain cases secondary transfections were done. Foreign DNA in recipients was detected by blot hybridization, and the expression of foreign genes was detected by cell growth in selective media and the expression of enzymes characteristic of the species of the donor DNA. The majority of transfectants showed stable expression of the transgenome.  相似文献   

11.
To determine the types of alterations in gene structure induced by DNA-alkylating agents, we analyzed the restriction enzyme cleavage patterns of adenine phosphoribosyltransferase gene sequences in mutant strains of Chinese hamster ovary cells deficient in this enzyme. Base pair changes as detected by loss of restriction enzyme sites were found, but no major internal gene rearrangements could be detected.  相似文献   

12.
The frequency of sister-chromatid exchange (SCE) was studied in Chinese hamster ovary (CHO) cell lines with stable insertions of the vector pIII-14gpt which contains 2 truncated neomycin resistance (neo) gene fragments. Recombination between regions of homology in the 2 fragments can restore a functional neo gene and make the cell resistant to the antibiotic G418, a neomycin analogue. Unequal SCE would be one of several possible mechanisms for this event. The observed spontaneous rate of formation of G418-resistant subclones was approximately 6.4 x 10(-6) per cell per generation, as compared to the estimated spontaneous frequency of 3 SCE per cell per generation. Given this SCE frequency, the probability of an SCE occurring in a target site of about 1600 bp (the distance separating the homologous regions in the neo fragments) would be about 8 x 10(-7) per cell per generation, or approximately one tenth of the estimated rate of recombination. Treatment of the cells with methyl methanesulfonate (MMS, 50 x 10(-6) M) induced about 80-90 SCE per cell, corresponding to a probability of 2 x 10(-5) SCE per 1600-bp target per cell. In the same cell culture, MMS treatment induced 4-8 x 10(-4) recombination events per cell giving rise to G418 resistance. Cells treated with HN2 (up to 4 x 10(-6) M) showed a significant increase in SCEs, but no change in the frequency of G418-resistant revertants. These results suggest that the 2 pathways leading to SCE and recombination respectively are uncoupled, and only a small fraction of the recombination events, if any, are due to unequal SCE in this system.  相似文献   

13.
Clones of cells resistant to 2,6-diaminopurine were detected in skin fibroblast cultures derived from 13 of 21 normal humans of both sexes from 17 unrelated families. Almost all of the cultures that yielded mutants were chosen for further study from among a total of 83 surveyed because they displayed a slight resistance to low concentrations of diaminopurine. The incidences of mutant colonies ranged between about 10(-5) and 10(-4) per cell surviving prior mutagenic treatment with MNNG. The incidences of spontaneous mutants were about 10(-7) to 10(-5) in three unrelated cultures. Most independent mutants had distinctly reduced activity of adenine phosphoribosyltransferase but some had apparently normal amounts of activity. Two mutants from unrelated boys had little or no detectable enzyme activity and were unable to effectively use exogenous adenine for growth when purine biosynthesis was blocked with azaserine. Most mutants could utilize exogenous adenine, just as most azaguanine-resistant fibroblast mutants can utilize exogenous hypoxanthine, even when their hypoxanthine-guanine phosphoribosyltransferase activity is reduced. Diverse genetic changes conferred diaminopurine resistance but their specific natures are still undefined. Gross numerical or structural chromosome abnormalities were not observed in the mutants examined so far. Since at least one gene responsible for adenine phosphoribosyltransferase activity is on autosome No. 16 our results suggest that at least some of the cultures yielding mutants were heterozygous and that alleles conferring diaminopurine resistance may be frequent enough to comprise a polymorphism.  相似文献   

14.
A Chinese hamster ovary cell line hemizygous for a defective adenine phosphoribosyltransferase (aprt) gene was transfected with a plasmid, pAG100, capable of correcting the endogenous aprt mutation by targeted homologous recombination. In some experiments, pAG100 was transfected in combination with one of two 'competitor' plasmids. Competitor pCOMP-A was identical to pAG100 except that the aprt sequence on pCOMP-A had the same mutation as the endogenous aprt gene. Competitor pCOMP-B was identical to pAG100 except for a 763 bp deletion in the aprt sequence encompassing the site of mutation in the endogenous gene. Neither pCOMP-A nor pCOMP-B was capable of correcting the defect in the endogenous aprt gene via gene targeting. We asked whether cotransfection of a 4-fold excess of either competitor DNA molecule with pAG100 would reduce the efficiency of targeted correction of the endogenous aprt gene. We report that while plasmid pCOMP-B did not influence the efficiency of gene targeting by pAG100, plasmid pCOMP-A reduced the number of gene targeting events about 5-fold. These observations indicate that the initial homologous interaction between transfected DNA and a genomic target sequence occurs rapidly and that targeting efficiency is limited by a step subsequent to homologous pairing.  相似文献   

15.
Variants of Chinese hamster ovary and Novikoff rat hepatoma cells resistant to tubercidin and 2,5-diaminopurine, or to both drugs, were isolated, and their ability to convert adenosine and various adenosine analogs to nucleotides was compared to that of wild-type cells, both in intact cells and cell-free extracts. Adenosine deamination, and thus its conversion to nucleotides via inosine-hypoxanthine-inosine monophosphate, was inhibited by pretreatment of the cells or cell extracts with 2-deoxycoformycin. Cell-free extracts of the tubercidin-resistant variants, as well as of two adenosine-resistant mutants of Chinese hamster ovary cells, phosphorylated adenosine, tubercidin, pyrazofurin, or tricyclic nucleoside in the presence of ATP at less than 1% of the rate of extracts of wild-type cells. However, addition of phosphoribosyl pyrophosphate stimulated the conversion of adenosine to nucleotides 40-fold. Similarly, intact adenosine kinase-deficient cells failed to phosphorylate the adenosine analogs, but still converted adenosine to nucleotides at 5-10% the rate observed with wild-type cells. Phosphorylation of adenosine and tubercidin in wild-type cells was inhibited by substrate at concentration above 5-10 microM. In contrast, the rate of conversion of adenosine to nucleotides by adenosine kinase-deficient cells increased linearly up to a concentration of 400 microM adenosine, with the consequence that, at this concentration, these cells took up adenosine almost as rapidly as wild-type cells. Adenosine uptake by these kinase-deficient cells was inhibited by adenine and 5'-deoxyadenosine, and was largely abolished in mutants devoid also of adenine phosphoribosyltransferase. We conclude that adenosine is converted to nucleotides in adenosine kinase-deficient cells via adenine. Indirect evidence implicates 5'-methylthioadenosine phosphorylase as the enzyme responsible for the degradation of adenosine to adenine.  相似文献   

16.
17.
We have investigated the genetic activation of the hprt (hypoxanthine-guanine phosphoribosyltransferase) gene located on the inactive X chromosome in primary and transformed female diploid Chinese hamster cells after treatment with the DNA methylation inhibitor 5-azacytidine (5azaCR). Mutants deficient in HPRT were first selected by growth in 6-thioguanine from two primary fibroblast cell lines and from transformed lines derived from them. These HPRT- mutants were then treated with 5azaCR and plated in HAT (hypoxanthine-methotrexate-thymidine) medium to select for cells that had reexpressed the hprt gene on the inactive X chromosome. Contrary to previous results with primary human cells, 5azaCR was effective in activating the hprt gene in primary Chinese hamster fibroblasts at a low but reproducible frequency of 2 x 10(-6) to 7 x 10(-6). In comparison, the frequency in independently derived transformed lines varied from 1 x 10(-5) to 5 x 10(-3), consistently higher than in the nontransformed cells. This increase remained significant when the difference in growth rates between the primary and transformed lines was taken into account. Treatment with 5azaCR was also found to induce transformation in the primary cell lines but at a low frequency of 4 x 10(-7) to 8 x 10(-7), inconsistent with a two-step model of transformation followed by gene activation to explain the derepression of hprt in primary cells. Thus, these results indicate that upon transformation, the hprt gene on the inactive Chinese hamster X chromosome is rendered more susceptible to action by 5azaCR, consistent with a generalized DNA demethylation associated with the transformation event or with an increase in the instability of an underlying primary mechanism of X inactivation.  相似文献   

18.
We studied the ability of single-stranded DNA (ssDNA) to participate in targeted recombination in mammalian cells. A 5' end-deleted adenine phosphoribosyltransferase (aprt) gene was subcloned into M13 vector, and the resulting ssDNA and its double-stranded DNA (dsDNA) were transfected to APRT-Chinese hamster ovary cells with a deleted aprt gene. APRT+ recombinants with the ssDNA was obtained at a frequency of 3 x 10(-7) per survivor, which was almost equal to that with the double-stranded equivalent. Analysis of the genome in recombinant clones produced by ssDNA revealed that 12 of 14 clones resulted from correction of the deletion in the aprt locus. On the other hand, the locus of the remaining 2 was not corrected; instead, the 5' deletion of the vector was corrected by end extension, followed by integration into random sites of the genome. To exclude the possibility that input ssDNA was converted into its duplex form before participating in a recombination reaction, we compared the frequency of extrachromosomal recombination between noncomplementary ssDNAs, and between one ssDNA and one dsDNA, of two phage vectors. The frequency with the ssDNAs was 0.4 x 10(-5), being 10-fold lower than that observed with the ssDNA and the dsDNA, suggesting that as little as 10% of the transfected ssDNA was converted into duplex forms before the recombination event, hence 90% remained unchanged as single-stranded molecules. Nevertheless, the above finding that ssDNA was as efficient as dsDNA in targeted recombination suggests that ssDNA itself is able to participate directly in targeted recombination reactions in mammalian cells.  相似文献   

19.
Three mammalian cell lines were examined for their ability to metabolize the regulatory oxysterol, 25-hydroxycholesterol, and derepress 3-hydroxy-3-methylglutaryl CoA reductase. In mouse L cell fibroblasts reductase activity was restored with the concomitant metabolism of 25-hydroxycholesterol via side-chain hydroxylation and scission of the C20-C22 bond. Chinese hamster lung cells did not appear to derepress the reductase and these cells and Chinese hamster ovary cells did not metabolize 25-hydroxycholesterol to a significant extent. Only 5-10% of the oxysterol became esterified with a fatty acid in any of the cell lines when grown in the described culture conditions.  相似文献   

20.
A mouse embryonal carcinoma cell line isolated for resistance to the adenine analogue 2,6-diaminopurine (DAP) was found to have near-wild-type levels of adenine phosphoribosyltransferase (APRT) activity in a cell-free assay. This DAP-resistant (DAPr) cell line, termed H29D1, also exhibited near-wild-type levels of adenine accumulation and the ability to grow in medium containing azaserine and adenine. Growth in this medium requires high levels of intracellular APRT activity. Using the polymerase chain reaction (PCR) and the dideoxy chain termination sequencing technique, an A-->G transition was discovered in exon 3 of the aprt gene in H29D1. This mutation resulted in an Arg-to-Gln change at amino acid 87 of the APRT protein that, in turn, resulted in a decreased affinity for adenine. An increased sensitivity of APRT to inhibition by AMP was observed when comparing H29D1 to P19, the parental cell line. Using a transgene containing the A-->G mutation, we demonstrated that this mutation is responsible for the biochemical and cellular phenotypes observed for the H29D1 cell line. The approach used in this study provides a definitive method for linking a mutation to a specific cellular phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号