首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used a particle-based Monte Carlo simulation to dissect the regulatory mechanism of molecular translocation of CaMKII, a key regulator of neuronal synaptic function. Geometry was based upon measurements from EM reconstructions of dendrites in CA1 hippocampal pyramidal neurons. Three types of simulations were performed to investigate the effects of geometry and other mechanisms that control CaMKII translocation in and out of dendritic spines. First, the diffusional escape rate of CaMKII from model spines of varied morphologies was examined. Second, a postsynaptic density (PSD) was added to study the impact of binding sites on this escape rate. Third, translocation of CaMKII from dendrites and trapping in spines was investigated using a simulated dendrite. Based on diffusion alone, a spine of average dimensions had the ability to retain CaMKII for duration of ~4 s. However, binding sites mimicking those in the PSD controlled the residence time of CaMKII in a highly nonlinear manner. In addition, we observed that F-actin at the spine head/neck junction had a significant impact on CaMKII trapping in dendritic spines. We discuss these results in the context of possible mechanisms that may explain the experimental results that have shown extended accumulation of CaMKII in dendritic spines during synaptic plasticity and LTP induction.  相似文献   

2.
Ca2+-calmodulin-dependent protein kinase II (CaMKII) is a key regulator of glutamatergic synapses and plays an essential role in many forms of synaptic plasticity. It has recently been observed that stimulating dendrites locally with a single glutamate/glycine puff induces a local translocation of CaMKII into spines that subsequently spreads in a wave-like manner towards the distal dendritic arbor. Here we present a mathematical model of the diffusion, activation and translocation of dendritic CaMKII. We show how the nonlinear dynamics of CaMKII diffusion-activation generates a propagating translocation wave, provided that the rate of activation is sufficiently fast. We also derive an explicit formula for the wave speed as a function of physiological parameters such as the diffusivity of CaMKII and the density of spines. Our model provides a quantitative framework for understanding the spread of CaMKII translocation and its possible role in heterosynaptic plasticity.  相似文献   

3.
AMPA receptor trafficking in dendritic spines is emerging as a major postsynaptic mechanism for the expression of plasticity at glutamatergic synapses. AMPA receptors within a spine are in a continuous state of flux, being exchanged with local intracellular pools via exo/endocytosis and with the surrounding dendrite via lateral membrane diffusion. This suggests that one cannot treat a single spine in isolation. Here we present a model of AMPA receptor trafficking between multiple dendritic spines distributed along the surface of a dendrite. Receptors undergo lateral diffusion within the dendritic membrane, with each spine acting as a spatially localized trap where receptors can bind to scaffolding proteins or be internalized through endocytosis. Exocytosis of receptors occurs either at the soma or at sites local to dendritic spines via constitutive recycling from intracellular pools. We derive a reaction–diffusion equation for receptor trafficking that takes into account these various processes. Solutions of this equation allow us to calculate the distribution of synaptic receptor numbers across the population of spines, and hence determine how lateral diffusion contributes to the strength of a synapse. A number of specific results follow from our modeling and analysis. (1) Lateral membrane diffusion alone is insufficient as a mechanism for delivering AMPA receptors from the soma to distal dendrites. (2) A source of surface receptors at the soma tends to generate an exponential-like distribution of receptors along the dendrite, which has implications for synaptic democracy. (3) Diffusion mediates a heterosynaptic interaction between spines so that local changes in the constitutive recycling of AMPA receptors induce nonlocal changes in synaptic strength. On the other hand, structural changes in a spine following long term potentiation or depression have a purely local effect on synaptic strength. (4) A global change in the rates of AMPA receptor exo/endocytosis is unlikely to be the sole mechanism for homeostatic synaptic scaling. (5) The dynamics of AMPA receptor trafficking occurs on multiple timescales and varies according to spatial location along the dendrite. Understanding such dynamics is important when interpreting data from inactivation experiments that are used to infer the rate of relaxation to steady-state.  相似文献   

4.
The spread of electrical activity in a dendritic tree is shaped, in part, by its morphology. Conversely, experimental evidence is growing that electrical and chemical activity can slowly shape the morphology of the dendrite. In this theoretical study, the dendritic spines are dynamic elements, with biophysical properties that change in response to patterns of electrical activity. Recent experiments and diagrammatic models suggest that activity-dependent processes can regulate structural modifications in dendritic spines as well as their distribution along the dendrite. This study considers how local changes in spine structure (minutes to hours) can influence patterns of electrical activity along the dendrite; and how electrical activity due to synaptic events and excitable membrane dynamics can, over time, influence the morphology of the dendrite. The model presents a slow subsystem for structural synaptic plasticity associated with long-term potentiation. A perturbation problem evolves naturally when the spine stem shortens, since the ratio of spine stem resistance to input resistance is small. Hence, the difference between the spine head and dendritic potentials become negligible. This paper presents an asymptotic expansion of head potential in terms of dendritic potential. This leads to a reduced model for post-synaptic restructuring that captures the dynamics of the full model in a briefer computation period when the spines are well connected to the dendrite.  相似文献   

5.
The processing of excitatory synaptic inputs involves compartmentalized dendritic Ca2+ oscillations. The downstream signaling evoked by these local Ca2+ transients and their impact on local synaptic development and remodeling are unknown. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is an important decoder of Ca2+ signals and mediator of synaptic plasticity. In addition to its known accumulation at spines, we observed with live imaging the dynamic recruitment of CaMKII to dendritic subdomains adjacent to activated synapses in cultured hippocampal neurons. This localized and transient enrichment of CaMKII to dendritic sites coincided spatially and temporally with dendritic Ca2+ transients. We show that it involved an interaction with microtubular elements, required activation of the kinase, and led to localized dendritic CaMKII autophosphorylation. This process was accompanied by the adjacent remodeling of spines and synaptic AMPA receptor insertion. Replacement of endogenous CaMKII with a mutant that cannot translocate within dendrites lessened this activity-dependent synaptic plasticity. Thus, CaMKII could decode compartmental dendritic Ca2+ transients to support remodeling of local synapses.  相似文献   

6.
Drebrin is a major F‐actin binding protein in dendritic spines that is critically involved in the regulation of dendritic spine morphogenesis, pathology, and plasticity. In this study, we aimed to identify a novel drebrin‐binding protein involved in spine morphogenesis and synaptic plasticity. We confirmed the beta subunit of Ca2+/calmodulin‐dependent protein kinase II (CaMKIIβ) as a drebrin‐binding protein using a yeast two‐hybrid system, and investigated the drebrin–CaMKIIβ relationship in dendritic spines using rat hippocampal neurons. Drebrin knockdown resulted in diffuse localization of CaMKIIβ in dendrites during the resting state, suggesting that drebrin is involved in the accumulation of CaMKIIβ in dendritic spines. Fluorescence recovery after photobleaching analysis showed that drebrin knockdown increased the stable fraction of CaMKIIβ, indicating the presence of drebrin‐independent, more stable CaMKIIβ. NMDA receptor activation also increased the stable fraction in parallel with drebrin exodus from dendritic spines. These findings suggest that CaMKIIβ can be classified into distinct pools: CaMKIIβ associated with drebrin, CaMKIIβ associated with post‐synaptic density (PSD), and CaMKIIβ free from PSD and drebrin. CaMKIIβ appears to be anchored to a protein complex composed of drebrin‐binding F‐actin during the resting state. NMDA receptor activation releases CaMKIIβ from drebrin resulting in CaMKIIβ association with PSD.

  相似文献   


7.
Neural activity regulates dendrite and synapse development, but the underlying molecular mechanisms are unclear. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is an important sensor of synaptic activity, and the scaffold protein liprinalpha1 is involved in pre- and postsynaptic maturation. Here we show that synaptic activity can suppress liprinalpha1 protein level by two pathways: CaMKII-mediated degradation and the ubiquitin-proteasome system. In hippocampal neurons, liprinalpha1 mutants that are immune to CaMKII degradation impair dendrite arborization, reduce spine and synapse number, and inhibit dendritic targeting of receptor tyrosine phosphatase LAR, which is important for dendrite development. Thus, regulated degradation of liprinalpha1 is important for proper LAR receptor distribution, and could provide a mechanism for localized control of dendrite and synapse morphogenesis by activity and CaMKII.  相似文献   

8.
Spinophilin is a protein phosphatase-1- and actin-binding protein that modulates excitatory synaptic transmission and dendritic spine morphology. We have recently shown that the interaction of spinophilin with the actin cytoskeleton depends upon phosphorylation by protein kinase A. We have now found that spinophilin is phosphorylated by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in neurons. Ca(2+)/calmodulin-dependent protein kinase II, located within the post-synaptic density of dendritic spines, is known to play a role in synaptic plasticity and is ideally positioned to regulate spinophilin. Using tryptic phosphopeptide mapping, site-directed mutagenesis and microsequencing analysis, we identified two sites of CaMKII phosphorylation (Ser-100 and Ser-116) within the actin-binding domain of spinophilin. Phosphorylation by CaMKII reduced the affinity of spinophilin for F-actin. In neurons, phosphorylation at Ser-100 by CaMKII was Ca(2+) dependent and was associated with an enrichment of spinophilin in the synaptic plasma membrane fraction. These results indicate that spinophilin is phosphorylated by multiple kinases in vivo and that differential phosphorylation may target spinophilin to specific locations within dendritic spines.  相似文献   

9.
Excitatory synaptic transmission and plasticity are critically modulated by N-methyl-D-aspartate receptors (NMDARs). Activation of NMDARs elevates intracellular Ca(2+) affecting several downstream signaling pathways that involve Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). Importantly, NMDAR activation triggers CaMKII translocation to synaptic sites. NMDAR activation failed to induce Ca(2+) responses in hippocampal neurons lacking the mandatory NMDAR subunit NR1, and no EGFP-CaMKIIalpha translocation was observed. In cells solely expressing Ca(2+)-impermeable NMDARs containing NR1(N598R)-mutant subunits, prolonged NMDA application elevated internal Ca(2+) to the same degree as in wild-type controls, yet failed to translocate CaMKIIalpha. Brief local NMDA application evoked smaller Ca(2+) transients in dendritic spines of mutant compared to wild-type cells. CaMKIIalpha mutants that increase binding to synaptic sites, namely CaMKII-T286D and CaMKII-TT305/306VA, rescued the translocation in NR1(N598R) cells in a glutamate receptor-subtype-specific manner. We conclude that CaMKII translocation requires Ca(2+) entry directly through NMDARs, rather than other Ca(2+) sources activated by NMDARs. Together with the requirement for activated, possibly ligand-bound, NMDARs as CaMKII binding partners, this suggests that synaptic CaMKII accumulation is an input-specific signaling event.  相似文献   

10.
Several suggestions have been made about the functional significance of dendritic spines in connection with synaptic plasticity. We investigated transient electrical behavior of spines with bulbous terminals in neurons with arbitrary dendritic geometries. It is shown that postsynaptic potential transform caused by a synapse on a spine can be resolved into a product of two transfer functions and the synaptic input current transform. The first transfer function was determined to be independent of the spine. The second transfer function represents the straightforward attenuation effect of the spine, which determines the effective synaptic current reaching the parent dendrite. Using what is known of the size and the shape of spines from histology, we conclude that almost all of the synaptic current flow into the parent dendrite, and that therefore the straightforward attenuation effect is negligible. Consequently, when the synaptic current remained unaltered, as was the case for a large synaptic resistance as compared with the spine stem resistance, a morphological change of the spine did not produce an effective change in the postsynaptic potential. On the other hand, when the synaptic resistance is compared with the spine stem impedance, the morphological change of the spine might induce changes of the synaptic current and the postsynaptic potential.  相似文献   

11.
The calcium calmodulin dependent kinase (CaMKII) is important for long-term potentiation at dendritic spines. Photo-activatable GFP (PaGFP) - CaMKII fusions were used to map CaMKII movements between and within spines in dissociated hippocampal neurons. Photo-activated PaGFP (GFP*) generated in the shaft spread uniformly, but was retained for about 1?s in spines. The differential localization of GFP*-CaMKII isoforms was visualized with hundred nanometer precision frame to frame using de-noising algorithms. GFP*-CaMKIIα localized to the tips of mushroom spines. The spatiotemporal profiles of native and kinase defective GFP*-CaMKIIβ, differed markedly from GFP*-CaMKIIα and mutant GFP*-CaMKIIβ lacking the association domain. CaMKIIβ bound to cortical actin in the dendrite and the stable actin network in spine bodies. Glutamate produced a transiently localized GFP*-CaMKIIα fraction and a soluble GFP*-CaMKIIβ fraction in spine bodies. Single molecule simulations of the interplay between diffusion and biochemistry of GFP* species were guided by the spatiotemporal maps and set limits on binding parameters. They highlighted the role of spine morphology in modulating bound CaMKII lifetimes. The long residence times of GFP*-CaMKIIβ relative to GFP*-CaMKIIα followed as consequence of more binding sites on the actin cytoskeleton than the post-synaptic density. These factors combined to retain CaMKII for tens of seconds, sufficient to outlast the calcium transients triggered by glutamate, without invoking complex biochemistry.  相似文献   

12.
To understand the cell signaling of protein kinases, it is essential to monitor their activity in each of the subcellular compartments. Here we developed a method to visualize the activities of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in the cytoplasm, plasma membrane, and nucleus, separately, by utilizing targeted phosphorylation motifs and phosphorylation-specific antibodies. This approach was used to monitor the activities of post-synaptic CaMKII in cultured hippocampal neurons. Strong stimulation of the neurons by N-methyl-d-aspartate led to global activations of CaMKII in the cell bodies and dendrites. On the other hand, weak stimulation by removal of Mg(2+) block of N-methyl-d-aspartate receptors induced CaMKII signaling localized within single dendritic spines. Post-synaptic CaMKII is thought to modify synaptic efficiency. The present data for the first time demonstrate the activation of CaMKII localized within single dendritic spines and are consistent with the notion that synaptic efficiency is modified by CaMKII in single or multiple spine level depending on the strength of receptor activation.  相似文献   

13.
Glutamate receptor trafficking into dendritic spines is a pivotal step in synaptic plasticity, yet the relevance of plasticity-producing rise of [Ca2+]i and of spine morphology to subsequent delivery of glutamate receptors into dendritic spine heads are still not well understood. Following chemical induction of LTP, an increase in eGFP-GluR1 fluorescence in short but not long dendritic spines of cultured hippocampal neurons was found. Repeated flash photolysis of caged calcium, which produced a transient rise of [Ca2+]i inside spine heads caused a selective, actin and protein synthesis dependent increase of eGFP-GluR1 in these spines. Strikingly, GluR1 increase was correlated with the ability of a calcium transient generated in the spine head to diffuse into the parent dendrite, and inversely correlated with the length of the spine: short spines were more likely to raise GluR1 than long ones. These observations link, for the first time, calcium transients in dendritic spines with spine morphology and its ability to undergo synaptic plasticity.  相似文献   

14.
Neuronal dendrites, together with dendritic spines, exhibit enormously diverse structure. Selective targeting and local translation of mRNAs in dendritic spines have been implicated in synapse remodeling or synaptic plasticity. The mechanism of mRNA transport to the postsynaptic site is a fundamental question in local dendritic translation. TLS (translocated in liposarcoma), previously identified as a component of hnRNP complexes, unexpectedly showed somatodendritic localization in mature hippocampal pyramidal neurons. In the present study, TLS was translocated to dendrites and was recruited to dendrites not only via microtubules but also via actin filaments. In mature hippocampal pyramidal neurons, TLS accumulated in the spines at excitatory postsynapses upon mGluR5 activation, which was accompanied by an increased RNA content in dendrites. Consistent with the in vitro studies, TLS-null hippocampal pyramidal neurons exhibited abnormal spine morphology and lower spine density. Our results indicate that TLS participates in mRNA sorting to the dendritic spines induced by mGluR5 activation and regulates spine morphology to stabilize the synaptic structure.  相似文献   

15.
Calcium calmodulin dependent kinase II (CaMKII) is sequestered in dendritic spines within seconds upon synaptic stimulation. The program Smoldyn was used to develop scenarios of single molecule CaMKII diffusion and binding in virtual dendritic spines. We first validated simulation of diffusion as a function of spine morphology. Additional cellular structures were then incorporated to simulate binding of CaMKII to the post-synaptic density (PSD); binding to cytoskeleton; or their self-aggregation. The distributions of GFP tagged native and mutant constructs in dissociated hippocampal neurons were measured to guide quantitative analysis. Intra-spine viscosity was estimated from fluorescence recovery after photo-bleach (FRAP) of red fluorescent protein. Intra-spine mobility of the GFP-CaMKIIα constructs was measured, with hundred-millisecond or better time resolution, from FRAP of distal spine tips in conjunction with fluorescence loss (FLIP) from proximal regions. Different FRAP \ FLIP profiles were predicted from our Scenarios and provided a means to differentiate binding to the PSDs from self-aggregation. The predictions were validated by experiments. Simulated fits of the Scenarios provided estimates of binding and rate constants. We utilized these values to assess the role of self-aggregation during the initial response of native CaMKII holoenzymes to stimulation. The computations revealed that self-aggregation could provide a concentration-dependent switch to amplify CaMKII sequestration and regulate its activity depending on its occupancy of the actin cytoskeleton.  相似文献   

16.

Understanding the relationship between shape and function of dendritic spines is an elusive topic. Several modelling approaches have been used to investigate the interplay between spine geometry, calcium diffusion and electric signalling. We here use a second order finite element method to solve the Poisson–Nernst–Planck equations and describe electrodiffusion in dendritic spines. With this, we obtain relationships between dendritic geometry and calcic as well as electric responses to synaptic events. Our findings support the hypothesis that spine geometry plays a role shaping the electrical responses to synaptic events. Our method was also able to reveal the fine scale distribution of calcium in spines with irregular shapes.

  相似文献   

17.
Many neurons receive excitatory glutamatergic input almost exclusively onto dendritic spines. In the absence of spines, the amplitudes and kinetics of excitatory postsynaptic potentials (EPSPs) at the site of synaptic input are highly variable and depend on dendritic location. We hypothesized that dendritic spines standardize the local geometry at the site of synaptic input, thereby reducing location-dependent variability of local EPSP properties. We tested this hypothesis using computational models of simplified and morphologically realistic spiny neurons that allow direct comparison of EPSPs generated on spine heads with EPSPs generated on dendritic shafts at the same dendritic locations. In all morphologies tested, spines greatly reduced location-dependent variability of local EPSP amplitude and kinetics, while having minimal impact on EPSPs measured at the soma. Spine-dependent standardization of local EPSP properties persisted across a range of physiologically relevant spine neck resistances, and in models with variable neck resistances. By reducing the variability of local EPSPs, spines standardized synaptic activation of NMDA receptors and voltage-gated calcium channels. Furthermore, spines enhanced activation of NMDA receptors and facilitated the generation of NMDA spikes and axonal action potentials in response to synaptic input. Finally, we show that dynamic regulation of spine neck geometry can preserve local EPSP properties following plasticity-driven changes in synaptic strength, but is inefficient in modifying the amplitude of EPSPs in other cellular compartments. These observations suggest that one function of dendritic spines is to standardize local EPSP properties throughout the dendritic tree, thereby allowing neurons to use similar voltage-sensitive postsynaptic mechanisms at all dendritic locations.  相似文献   

18.
Excitatory synapses on mammalian principal neurons are typically formed onto dendritic spines, which consist of a bulbous head separated from the parent dendrite by a thin neck. Although activation of voltage-gated channels in the spine and stimulus-evoked constriction of the spine neck can influence synaptic signals, the contribution of electrical filtering by the spine neck to basal synaptic transmission is largely unknown. Here we use spine and dendrite calcium (Ca) imaging combined with 2-photon laser photolysis of caged glutamate to assess the impact of electrical filtering imposed by the spine morphology on synaptic Ca transients. We find that in apical spines of CA1 hippocampal neurons, the spine neck creates a barrier to the propagation of current, which causes a voltage drop and results in spatially inhomogeneous activation of voltage-gated Ca channels (VGCCs) on a micron length scale. Furthermore, AMPA and NMDA-type glutamate receptors (AMPARs and NMDARs, respectively) that are colocalized on individual spine heads interact to produce two kinetically and mechanistically distinct phases of synaptically evoked Ca influx. Rapid depolarization of the spine triggers a brief and large Ca current whose amplitude is regulated in a graded manner by the number of open AMPARs and whose duration is terminated by the opening of small conductance Ca-activated potassium (SK) channels. A slower phase of Ca influx is independent of AMPAR opening and is determined by the number of open NMDARs and the post-stimulus potential in the spine. Biphasic synaptic Ca influx only occurs when AMPARs and NMDARs are coactive within an individual spine. These results demonstrate that the morphology of dendritic spines endows associated synapses with specialized modes of signaling and permits the graded and independent control of multiple phases of synaptic Ca influx.  相似文献   

19.
The potential physiological impact of morphological changes in the active dendritic spines, which are believed to be associated with altered synaptic efficacy, was investigated in a computer simulation study using the NEURON package [1]. A compartmental model of a simplified neuron was built, which included 30 complex spines (neck, head, and active zone) and accommodating AMPA-type synaptic inputs with alpha-function conductances. Hodgkin-Huxley type excitable membranes were inserted into the spine heads. It was shown that arranging spines in dense clusters, as opposed to a uniformly random spine distribution, has a negligible effect on the synaptic signal transfer (other model conditions, including synaptic input and spine density, remained unchanged). However, if a proportion (e.g., 3–20%) of the spines partly fuse with their neighbors forming branched spines, this could increase dramatically the cell response to the unchanged synaptic input. Results of this pilot study provide the basis for a more detailed investigation of the relationship between the spine arrangement and synaptic function, considering dual-component synaptic currents and mechanisms controlling ion fluxes in the dendritic compartments.  相似文献   

20.
The spike-diffuse-spike (SDS) model describes a passive dendritic tree with active dendritic spines. Spine-head dynamics is modeled with a simple integrate-and-fire process, whilst communication between spines is mediated by the cable equation. In this paper we develop a computational framework that allows the study of multiple spiking events in a network of such spines embedded on a simple one-dimensional cable. In the first instance this system is shown to support saltatory waves with the same qualitative features as those observed in a model with Hodgkin-Huxley kinetics in the spine-head. Moreover, there is excellent agreement with the analytically calculated speed for a solitary saltatory pulse. Upon driving the system with time-varying external input we find that the distribution of spines can play a crucial role in determining spatio-temporal filtering properties. In particular, the SDS model in response to periodic pulse train shows a positive correlation between spine density and low-pass temporal filtering that is consistent with the experimental results of Rose and Fortune [1999, ‘Mechanisms for generating temporal filters in the electrosensory system,’ The Journal of Experimental Biology 202: 1281–1289]. Further, we demonstrate the robustness of observed wave properties to natural sources of noise that arise both in the cable and the spine-head, and highlight the possibility of purely noise induced waves and coherent oscillations. Action Editor: Erik De Schutter  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号