首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gel-based oligonucleotide microarray approach was developed for quantitative profiling of binding affinity of a protein to single-stranded DNA (ssDNA). To demonstrate additional capabilities of this method, we analyzed the binding specificity of ribonuclease (RNase) binase from Bacillus intermedius (EC 3.1.27.3) to ssDNA using generic hexamer oligodeoxyribonucleotide microchip. Single-stranded octamer oligonucleotides were immobilized within 3D hemispherical gel pads. The octanucleotides in individual pads 5'-{N}N(1)N(2)N(3)N(4)N(5)N(6){N}-3' consisted of a fixed hexamer motif N(1)N(2)N(3)N(4)N(5)N(6) in the middle and variable parts {N} at the ends, where {N} represent A, C, G and T in equal proportions. The chip has 4096 pads with a complete set of hexamer sequences. The affinity was determined by measuring dissociation of the RNase-ssDNA complexes with the temperature increasing from 0 degrees C to 50 degrees C in quasi-equilibrium conditions. RNase binase showed the highest sequence-specificity of binding to motifs 5'-NNG(A/T/C)GNN-3' with the order of preference: GAG > GTG > GCG. High specificity towards G(A/T/C)G triplets was also confirmed by measuring fluorescent anisotropy of complexes of binase with selected oligodeoxyribonucleotides in solution. The affinity of RNase binase to other 3-nt sequences was also ranked. These results demonstrate the applicability of the method and provide the ground for further investigations of nonenzymatic functions of RNases.  相似文献   

2.
Gel-based oligonucleotide microarray approach was developed for quantitative profiling of binding affinity of a protein to single-stranded DNA (ssDNA). To demonstrate additional capabilities of this method, we analyzed the binding specificity of ribonuclease (RNase) binase from Bacillus intermedius (EC 3.1.27.3) to ssDNA using generic hexamer oligodeoxyribonucleotide microchip. Single-stranded octamer oligonucleotides were immobilized within 3D hemispherical gel pads. The octanucleotides in individual pads 5′-{N}N1N2N3N4N5N6{N}-3′ consisted of a fixed hexamer motif N1N2N3N4N5N6 in the middle and variable parts {N} at the ends, where {N} represent A, C, G and T in equal proportions. The chip has 4096 pads with a complete set of hexamer sequences. The affinity was determined by measuring dissociation of the RNase–ssDNA complexes with the temperature increasing from 0°C to 50°C in quasi-equilibrium conditions. RNase binase showed the highest sequence-specificity of binding to motifs 5′-NNG(A/T/C)GNN-3′ with the order of preference: GAG > GTG > GCG. High specificity towards G(A/T/C)G triplets was also confirmed by measuring fluorescent anisotropy of complexes of binase with selected oligodeoxyribonucleotides in solution. The affinity of RNase binase to other 3-nt sequences was also ranked. These results demonstrate the applicability of the method and provide the ground for further investigations of nonenzymatic functions of RNases.  相似文献   

3.
The systematic evolution of ligands by exponential enrichment process is a combinatorial chemistry method that allows the identification of specific oligonucleotide sequences, known as aptamers, that bind to a desired target molecule with high affinity and specificity. Here, a DNA-aptamer specific for human -selectin was immobilized to a chromatography support to create an affinity column. This column was effectively applied as either the first or second step in the purification of a recombinant human -selectin–Ig fusion protein from Chinese hamster ovary cell-conditioned medium. The fusion protein was efficiently bound to the column and efficiently eluted by gentle elution schemes. Application of the aptamer column as the initial purification step resulted in a 1500-fold purification with an 83% single step recovery. These results demonstrate that oligonucleotide aptamers can be effective affinity purification reagents.  相似文献   

4.
New artificial ribonucleases, conjugates of short oligodeoxyribonucleotides with peptides containing alternating arginine and leucine, were synthesized and characterized in terms of their catalytic activity and specificity of RNA cleavage. The conjugates efficiently cleave different RNAs within single-stranded regions. Depending on the sequence and length of the oligonucleotide, the conjugates display either G–X>>Pyr–A or Pyr–A>>G–X cleavage specificity. Preferential RNA cleavage at G–X phosphodiester bonds was observed for conjugate NH2-Gly-[ArgLeu]4-CCAAACA. The conjugates function as true catalysts, exhibiting reaction turnover up to 175 for 24 h. Our data show that in the conjugate the oligonucleotide plays the role of a factor which provides an ‘active‘ conformation of the peptide via intramolecular interactions, and that it is the peptide residue itself which is responsible for substrate affinity and catalysis.  相似文献   

5.
A high-affinity monoclonal antidigoxin antibody, produced by somatic cell fusion, was amplified by the formation of ascites. Purification from ascites was accomplished by affinity chromatography by passing the ascites over a digitoxin-amine-agarose column. Affinity-purified antidigoxin antibody was coupled to a pellicular microbead at concentrations of 10, 25, 50, and 100 mg/g bead. The immobilized antibody was characterized for binding affinity, for specificity to other cardiac glycosides, and for binding capacity. There were no changes in the binding affinity observed for the immobilized antibody when compared to that of the antibody grown in culture media. Binding capacities for the immobilized antibody were decreased from calculated theoretical values. Saturating the microbead with increasing concentrations of antibody lowered the binding efficiency of the antibody from 32 to 22% of theoretical values. Attempts to improve the binding capacity by immobilizing antibodies to the microbead at the immunoglobulin carbohydrate by periodate oxidation were unsuccessful. These data demonstrate that antidrug antibodies immobilized on solid supports remain functional and may have the capability of removing drug from biological fluids passed over the support.  相似文献   

6.
N-Sulfonyl phosphoramidate derivatives of oligodeoxyribonucleotides containing N-tosyl phosphoramidate groups are first reported. The synthesis is based on Staudinger reaction between tosyl azide and 3′,5′-dinucleoside β-cyanoethyl phosphite comprising the immobilized oligonucleotide, which is obtained by the phosphoramidite coupling during the solid-phase oligonucleotide synthesis. The N-tosyl phosphoramidate group was stable under conditions of the oligonucleotide synthesis, in particular, upon acidic detritylation followed by the removal of protective groups and cleavage from the polymer support by the treatment with concentrated aqueous ammonia at 55°C. The stability of DNA and RNA duplexes of the model oligonucleotides containing N-tosyl phosphoramidate groups was only slightly lower than that of native DNA:DNA and DNA:RNA duplexes, respectively.  相似文献   

7.
Novel cationic triazine dyes for protein purification   总被引:1,自引:0,他引:1  
The effectiveness of a new immobilized cationic triazine dye was investigated alongside two new amphoteric triazine dyes and two well known anionic triazine dyes, Procion Red H-3B and Procion Blue H-B, as chromatographic media for binding four familiar proteases-trypsin, chymotrypsin, thrombin and carboxypeptidase-B-as well as a typical oxidoreductase, lactate dehydrogenase, and human serum albumin. The new affinity adsorbent, CL-Sepharose-immobilized Cationic Dye, specifically binds trypsin-like proteases such as trypsin, thrombin, and carboxypeptidase-B, but none of the other proteins tested. In contrast, the amphoteric and anionic immobilized dyes bind all the other proteins tested in a similar fashion. The specificity of the cationic dye was exploited in the resolution of trypsin and chymotrypsin from a crude activated bovine pancreatic extract. The procedure described here affords trypsin with specific activity of 7400 units/mg with a 79% overall yield in a single step. The immobilized cationic dye, unlike previously reported adsorbents for trypsin, is inexpensive, readily synthesized, and displays a workable capacity of 4000 trypsin units or 0.55 mg protein/g moist weight gel (1.2 mumol dye/g moist weight gel) from a crude bovine pancreatic extract and, thus, is potentially amenable to process-scale operations.  相似文献   

8.
9.
10.
The binding of guanosine/thymidine-rich oligodeoxyribonucleotides containing various deletions, extensions, and point mutations to polypurine DNA targets was investigated by DNase I footprinting. Intermolecular purine-purine-pyrimidine triple-helical DNA formation was best achieved using oligonucleotides 12 nucleotides in length. Longer oligonucleotides were slightly weaker in binding affinity, whereas shorter oligonucleotides were considerably weaker. Oligonucleotide extensions had a slight effect on triplex formation, while single point mutations located near the oligonucleotide ends had a greater effect. In the cases of extensions and point mutations, changes to the 3' end of the oligonucleotide had a consistently greater effect on triplex formation than changes to the 5' end. Such differences in triplex-forming ability were not caused by an intrinsic property of these oligonucleotides, since the same point mutated oligonucleotides could bind with high affinity to duplex DNAs containing complementary sites. Taken together, our data suggest that there may be an asymmetry involved in the process of purine-motif triplex formation, with interactions between the 3' end of the oligonucleotide and complementary sequences on the target duplex DNA being dominant.  相似文献   

11.
The RecA protein of Escherichia coli performs a number of ATP-dependent, in vitro reactions and is a DNA-dependent ATPase. Small oligodeoxyribonucleotides were used as DNA cofactors in a kinetic analysis of the ATPase reaction. Polymers of deoxythymidilic acid as well as oligonucleotides of mixed base composition stimulated the RecA ATPase activity in a length-dependent fashion. Both the initial rate and the extent of the reaction were affected by chain length. Full activity was seen with chain lengths > or = 30 nt. Partial activity was seen with chain lengths of 15-30 nt. The lower activity of shorter oligonucleotides was not simply due to a reduced affinity for DNA, since effects of chain length on KmATP and the Hill coefficient for ATP hydrolysis were also observed. The results also suggested that single-stranded DNA secondary structure frequently affects the ATPase activity of RecA protein with oligodeoxyribonucleotides.  相似文献   

12.
This paper reports the design of Molecularly Imprinted Polymers (MIP) with affinity towards (S)-citalopram using computational modeling for the selection of functional monomers and monomer:template ratio. Acrylamide was selected as functional monomer and the final complex functional monomer/template resulted in a 3:1 ratio. The polymer was synthesized by radical polymerization initiated by UV onto magnetic stir-bars in order to obtain a stir bar sorptive extraction (SBSE) device capable of selective enantiomeric recognition. After successful template removal, the parameters affecting the SBSE procedure (sample volume, ionic strength, extraction time and pH) were optimized for the effective rebinding of the target analyte. The resultant chirally imprinted polymer based stir-bar was able to selectively extract (S)-citalopram from a racemic mixture in an aqueous media with high specificity (specificity factor 4) between 25 and 500 μgL(-1). The MIP coated stir-bars can have significance for enantiospecific sample pre-concentration and subsequent analysis without the need for any chiral chromatographic separation.  相似文献   

13.
A generic oligodeoxyribonucleotide microchip was used to determine the sequence specificity of Hoechst 33258 binding to double-stranded DNA. The generic microchip contained 4096 oxctadeoxynucleo-tides in which all possible 4(6)= 4096 hexadeoxy-nucleotide sequences are flanked on both the 3'- and 5'-ends with equimolar mixtures of four bases. The microchip was manufactured by chemical immobilization of presynthesized 8mers within polyacrylamide gel pads. A selected set of immobilized 8mers was converted to double-stranded form by hybridization with a mixture of fluorescently labeled complementary 8mers. Massive parallel measurements of melting curves were carried out for the majority of 2080 6mer duplexes, in both the absence and presence of the Hoechst dye. The sequence-specific affinity for Hoechst 33258 was calculated as the increase in melting temperature caused by ligand binding. The dye exhibited specificity for A:T but not G:C base pairs. The affinity is low for two A:T base pairs, increases significantly for three, and reaches a plateau for four A:T base pairs. The relative ligand affinity for all trinucleotide and tetranucleotide sequences (A/T)(3)and (A/T)(4)was estimated. The free energy of dye binding to several duplexes was calculated from the equilibrium melting curves of the duplexes formed on the oligonucleotide microchips. This method can be used as a general approach for massive screening of the sequence specificity of DNA-binding compounds.  相似文献   

14.
An achiral, acyclic nucleoside analogue has been incorporated once or twice in oligodeoxyribonucleotides by the phosphoramidite method, and conditions found which allow deprotection of the oligonucleotides containing a sensitive modified allylic unit. The binding affinity of the modified oligonucleotides towards complementary DNA and RNA was reduced compared to unmodified DNA (DeltaT(m) -2 to -6.5 degrees C). An oligonucleotide with two modifications at the 3'-end showed considerable resistance towards cleavage with a 3'-exonuclease.  相似文献   

15.
Severe acute respiratory syndrome (SARS) brought aglobal outbreak in spring of 2003 [1–3], and more andmore attention has been paid on it when a new caseresurfaced in Singapore last September [4]. By the endof May in 2003, WHO reported a cumulative total of 8202infected cases with 725 deaths from 28 countries.Because of the high transmission and morality rate ofSARS, scientists in many countries have made theirefforts in studying SARS coronavirus (SARS-CoV)[5, 6]. Several genomes of…  相似文献   

16.
Obtaining antibodies with high affinity and specificity against antigens are required for the development of therapeutic and diagnostic antibodies. In this study, the contributions to binding affinity in the CDR2 and CDR3 regions of two monoclonal antibodies E3.3 and 2H2 were investigated by random mutagenesis in a phage-display synthetic oligonucleotide library. One high-affinity clone (CDR3-30) was obtained with a 3-fold increase of the dissociation constant, resulting from the changes in amino acids at residues 95, 97, and 98 in the CDRH3 region. Analysis of the predicted structure by modeling suggested that the contributions of mutated residues in the CDR3 region to the binding affinity involved not only complementarity between antigen and CDR3, but also interaction between heavy and light chains. The information gained from this study may benefit the design of vaccines and therapeutic antibodies against Japanese encephalitis virus infection.  相似文献   

17.
The possibility of inducing apoptosis in K562 myelogenic erythroleukemia cells, A549 lung carcinoma cells, and normal human lymphocytes was studied for Bacillus intermedius RNase (binase) and its mutants Lys26 Ala and His101 Glu with impaired catalytic activity. Selective induction of apoptosis in leukemic blood cells by binase was demonstrated for the first time. Binase did not exert an antiproliferative or proapoptotic effect on peripheral blood lymphocytes of healthy donors. Low-molecular-weight (less than 50 kb in size) oligonucleosomal DNA fragments, which are early markers of apoptosis, were observed in human solid-tumor cells treated with binase. Studies with the binase mutants showed that a decrease in catalytic activity to 2.5% of the level characteristic of the wild-type enzyme deprives binase of its proapoptotic effect. The selective proapoptotic effect of binase on malignant cells provides evidence that bacterial RNases are promising for designing alternative antitumor drugs.__________Translated from Molekulyarnaya Biologiya, Vol. 39, No. 3, 2005, pp. 457–463.Original Russian Text Copyright © 2005 by Zelenikhin, Kolpakov, Cherepnev, Ilinskaya.  相似文献   

18.
Abstract

Artificial ribonucleases, conjugates of short oligodeoxyribonucleotides and peptides built of arginine, leucine, proline, and serine, were synthesized and assessed in terms of ribonuclease activity and specificity of RNA cleavage. A specific group of the conjugates was identified that display T1-ribonuclease-like activity and cleave RNA predominantly at G-X sequences. Circular dichroism study of the structures of the most active conjugates, free peptide (LR)4G, and oligonucleotides revealed that conjugation of oligonucleotide to the peptide results in a specific peptide folding that possibly provides ribonuclease activity to the conjugate.  相似文献   

19.
Affinity tags have become highly popular tools for purifying recombinant proteins from crude extracts by affinity chromatography. Besides, short peptides are excellent ligands for affinity chromatography, as they are not likely to cause an immune response in case of leakage into the product, they are more stable than antibodies to elution and cleaning conditions and they usually have very acceptable selectivity. Hydropathically complementary peptides designed de novo show enough selectivity to be used successfully as peptide ligands for protein purification from crude extracts. Recognition specificity and selectivity in the interaction between the complementary peptide pair His-Leu-Leu-Phe-Pro-Ile-Ile-Ile-Ala-Ala-Ser-Leu and Lys-Asn-Tyr-Pro-Lys-Lys-Lys-Met-Glu-Lys-Arg-Phe have been demonstrated by other authors. In this work, we designed a recombinant protein purification method using a peptide affinity tag that binds to a peptide-binding partner immobilized on a chromatographic matrix. The enhanced green fluorescent protein expressed (EGFP) in Escherichia coli was used as the model. The peptide Gly-Gly-Gly-His-Leu-Leu-Phe-Pro-Ile-Ile-Ile-Ala-Ala-Ser-Leu was synthesized by solid phase using the Fmoc chemistry and immobilized in NHS-Sepharose (PC-Sepharose). Gly residues were added as a spacer arm at the N terminus. The EGFP was expressed either with the fusion tag Lys-Asn-Tyr-Pro-Lys-Lys-Lys-Met-Glu-Lys-Arg-Phe on the C terminus (EGFP-CPTag) or without any fusion tag. After cell disruption, the extract was directly applied to the PC-Sepharose column equilibrated with 20mM sodium phosphate buffer, pH 7.0. The adsorbed EGFP-CPTag was then eluted with 1M Tris. The yield was 98% and the purification factor 4.6. By contrast, EGFP without tag pass through without interacting with the PC-Sepharose column. The method designed can be applied for the purification of other recombinant proteins.  相似文献   

20.
Four forms of chymotrypsin (Chtr1, Chtr2, Chtr3, Chtr4), one form of trypsin and one form of elastase were purified from a slightly alkaline extract of ostrich (Struthio camelus) pancreas. The zymogens in the crude extract were activated with immobilized trypsin and then separated by affinity chromatography using immobilized inhibitors and ion exchange chromatography. One of the purified forms of chymotrypsin (Chtr1) exhibited an unusual interaction with the highly selective protein trypsin inhibitor from Cucurbita maxima (CMTI). Interactions with other protein trypsin inhibitors such as basic pancreatic trypsin inhibitor (BPTI), soybean trypsin inhibitor (STI), trypsin inhibitors from Cyclanthera pedata (CyPTI), Cucurbita pepo (CPTI), Cucurbita pepo var. giramontia (CPGTI) and Linum usitatissimum (LUTI) were also investigated. This study demonstrated the affinity of Chtr1 to inhibitors containing Arg at P1 position. Studies of substrate specificity of Chtr1 using oxidized B-chain of insulin revealed four susceptible bonds: Tyr15-Leu16, Phe24-Phe25, Phe25-Tyr26 and, surprisingly, Arg22-Gly23. The amino acid composition, as well as the first 13 residues of the N-terminal amino acid sequence, was determined. Studies of ostrich elastase showed that it can interact with immobilized CMTI in the presence of 5 M NaCl. This unusual characteristic is reported for the first time and suggests that elastase specificity depends on ionic strength. The kinetic constants K(M), k(cat) and k(cat)/K(M) for purified ostrich trypsin, chymotrypsin 4 and elastase were also determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号