首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gangliosides are implicated in neuronal development processes. The regulation of ganglioside levels is closely related to the induction of neuronal cell differentiation. In this study, the relationship between ganglioside expression and neuronal cell development was investigated using an in vitro model of neural differentiation from mouse embryonic stem (mES) cells. Daunorubicin (DNR) was applied to induce the expression of gangliosides in embryoid body (EB) (4+). We observed an increase in expression of gangliosides in all stages of EBs by treatment of DNR (2microM). High-performance thin-layer chromatography (HPTLC) showed that gangliosides GD3, GD1a, GT1b, and GQ1b increased in DNR-treated 7-day-old EB (4+) [EB (4+):7]. DNR treatment significantly increased the expression of gangliosides, especially GT1b and GQ1b in comparison to control cells. Interestingly, GQ1b co-localized with microtubule-associated protein 2 (MAP-2) expressing cells in DNR-treated EB (4+):7. The co-localization of GQ1b and MAP-2 was found in neurite-bearing cells in DNR-treated 15-day-old EB (4+) [EB (4+):15], whereas no significant expression of GQ1b and less neurite formation were observed in untreated control. Also, the expression of synaptophysin and NF200, both neuronal markers associated with neruites, was increased by DNR treatment. These results demonstrate that DNR increases expression of gangliosides, especially GQ1b, in differentiating neuronal cells. Further, neurite-bearing neuronal cell differentiation can be facilitated by DNR, possibly through the induction of gangliosides. Thus, the present data suggest that DNR is beneficial for facilitating neuronal differentiation from ES cells and among the gangliosides analyzed in the present study, GQ1b is mainly involved in neurite formation.  相似文献   

2.
NELL2 was first identified as a mammalian homolog of chick NEL (Neural EGF-like) protein. It is almost exclusively expressed in neurons of the rat brain and has been suggested to play a role in neural differentiation. However, there is still no clear evidence for the detailed function of NELL2 in the differentiation of neurons. In this study, we identified NELL2 function during neural differentiation of mouse embryonic carcinoma P19 cells. Endogenous expression of NELL2 in the P19 cells increased in parallel with the neuronal differentiation induced by retinoic acid (RA). We found that the mouse NELL2 promoter contains RA response elements (RAREs) and that treatment with RA increased NELL2 promoter activity. Transfection of P19 cells with NELL2 expression vectors induced a dramatic increase in cell aggregation, resulting in the facilitation of neural differentiation. Moreover, NELL2 significantly increased N-cadherin expression in the P19 cell. These data suggest that NELL2 plays an important role in the regulation of neuronal differentiation via control of N-cadherin expression and cell aggregation.  相似文献   

3.
Cell-cell adhesion mediated by cadherins is believed to play an essential role in the control of cell differentiation and tissue formation. Our recent studies indicate that N-cadherin is involved in human osteoblast differentiation. However, the signalling molecules that regulate cadherins in osteoblasts are not known. We tested the possibility that N-cadherin expression and function may be regulated by direct activation of protein kinase C (PKC) in human osteoblasts. Treatment of immortalized human neonatal calvaria (IHNC) cells with phorbol 12,13-dibutyrate (100 nM) transiently increased PKC activity. RT-PCR analysis showed that transient treatment with phorbol ester transiently increased N-cadherin mRNA levels at 4-12 h. Western blot analysis showed that N-cadherin protein levels were increased by phorbol ester at 24-48 h, and this was confirmed by immunocytochemical analysis. In contrast, E-cadherin expression was not affected. Transient treatment of IHNC cells with phorbol ester increased cell-cell aggregation, which was suppressed by neutralizing N-cadherin antibody, showing that the increased N-cadherin induced by phorbol ester was functional. Finally, phorbol ester dose-dependently increased alkaline phosphatase activity, an early marker of osteoblast differentiation. This effect was comparable to the promoting effect of BMP-2, a potent activator of osteoblast differentiation. These data show that direct activation of PKC by phorbol ester increases N-cadherin expression and function, and promotes ALP activity in human calvaria osteoblasts, which provides a signaling mechanism by which N-cadherin is regulated and suggests a role for PKC in N-cadherin-mediated control of human osteoblast differentiation.  相似文献   

4.
Induced pluripotent stem cells (iPSCs) exhibit reduced efficiency and higher variability in neural differentiation compared to embryonic stem cells (ESCs). In this study, we showed that mouse iPSCs failed to efficiently give rise to neuronal cells using conventional methods previously established for driving mouse ESC differentiation. We reported a novel approach which remarkably increases neural differentiation of mouse iPSCs. This novel approach initiated embryoid body (EB) formation directly from the whole cell clones isolated from the top of feeder cells. Compared to conventional neural induction methods such as single cell suspension or monolayer culture, the cell clone-derived EB method led to a pronounced increase in directed generation of various types of neural cells including neural stem cells, motoneurons and dopaminergic neurons in response to different inducers. Through gene expression microarray analysis, we identified 14 genes that were highly expressed in the cell clone-derived EBs. Among them, we found that Cdh2, also known as N-cadherin, played important roles in controlling the neural differentiation efficiency of mouse iPSCs. Forced expression of Cdh2 in iPSCs substantially enhanced the differentiation efficiency while knocking-down of Cdh2 by shRNA blocked the neural differentiation. Our results revealed a critical role of Cdh2 in the process of efficient neural differentiation of mouse iPS cells.  相似文献   

5.
6.
N-cadherin is one of the important molecules for cell to cell interaction in the development of the central nervous system (CNS). In this report, we have shown that N-cadherin mRNA and protein were increased rapidly in retinoic acid (RA)-induced neuronal differentiation of embryonic carcinoma P19 cells. To explore possible roles for N-cadherin during this process, N-cadherin-overexpressing P19 cell lines were established. These transfected cells could differentiate into neurofilament-expressing neurons in the absence of RA. RT-PCR revealed that the expression patterns of development-related genes, such as Oct-3/4, nestin, Notch-1, and Mash-1 were similar between the transfected P19 cells and the RA-induced wild-type P19 cells during their neuronal differentiation. On the contrary, the Wnt-1 gene was up-regulated in the N-cadherin-overexpressing P19 cells, but could not be detected in the wild-type P19 cells. These results suggest N-cadherin may play a role in neuronal differentiation of P19 cells, possibly through the Wnt-1 signaling pathway.  相似文献   

7.
Li Y  Luo J  Lau WM  Zheng G  Fu S  Wang TT  Zeng HP  So KF  Chung SK  Tong Y  Liu K  Shen J 《PloS one》2011,6(8):e22901
In the present study, we aim to elucidate the roles of caveolin-1(Cav-1), a 22 kDa protein in plasma membrane invaginations, in modulating neuronal differentiation of neural progenitor cells (NPCs). In the hippocampal dentate gyrus, we found that Cav-1 knockout mice revealed remarkably higher levels of vascular endothelial growth factor (VEGF) and the more abundant formation of newborn neurons than wild type mice. We then studied the potential mechanisms of Cav-1 in modulating VEGF signaling and neuronal differentiation in isolated cultured NPCs under normoxic and hypoxic conditions. Hypoxic embryonic rat NPCs were exposed to 1% O2 for 24 h and then switched to 21% O2 for 1, 3, 7 and 14 days whereas normoxic NPCs were continuously cultured with 21% O2. Compared with normoxic NPCs, hypoxic NPCs had down-regulated expression of Cav-1 and up-regulated VEGF expression and p44/42MAPK phosphorylation, and enhanced neuronal differentiation. We further studied the roles of Cav-1 in inhibiting neuronal differentiation by using Cav-1 scaffolding domain peptide and Cav-1-specific small interfering RNA. In both normoxic and hypoxic NPCs, Cav-1 peptide markedly down-regulated the expressions of VEGF and flk1, decreased the phosphorylations of p44/42MAPK, Akt and Stat3, and inhibited neuronal differentiation, whereas the knockdown of Cav-1 promoted the expression of VEGF, phosphorylations of p44/42MAPK, Akt and Stat3, and stimulated neuronal differentiation. Moreover, the enhanced phosphorylations of p44/42MAPK, Akt and Stat3, and neuronal differentiation were abolished by co-treatment of VEGF inhibitor V1. These results provide strong evidence to prove that Cav-1 can inhibit neuronal differentiation via down-regulations of VEGF, p44/42MAPK, Akt and Stat3 signaling pathways, and that VEGF signaling is a crucial target of Cav-1. The hypoxia-induced down-regulation of Cav-1 contributes to enhanced neuronal differentiation in NPCs.  相似文献   

8.
9.
Little is known about the mechanisms underlying the effects of Cyclosporin A (CsA) on the fate of stem cells, including cardiomyogenic differentiation. Therefore, we investigated the effects and the molecular mechanisms behind the actions of CsA on cell lineage determination of P19 cells. CsA induced cardiomyocyte-specific differentiation of P19 cells, with the highest efficiency at a concentration of 0.32 μM during embryoid body (EB) formation via activation of the Wnt signaling pathway molecules, Wnt3a, Wnt5a, and Wnt8a, and the cardiac mesoderm markers, Mixl1, Mesp1, and Mesp2. Interestingly, cotreatment of P19 cells with CsA plus dimethyl sulfoxide (DMSO) during EB formation significantly increases cardiac differentiation. In contrast, mRNA expression levels of hematopoietic and endothelial lineage markers, including Flk1 and Er71, were severely reduced in CsA-treated P19 cells. Furthermore, expression of Flk1 protein and the percentage of Flk1+ cells were severely reduced in 0.32 μM CsA-treated P19 cells compared to control cells. CsA significantly modulated mRNA expression levels of the cell cycle molecules, p53 and Cyclins D1, D2, and E2 in P19 cells during EB formation. Moreover, CsA significantly increased cell death and reduced cell number in P19 cells during EB formation. These results demonstrate that CsA induces cardiac differentiation but inhibits hemato-endothelial differentiation via activation of the Wnt signaling pathway, followed by modulation of cell lineage-determining genes in P19 cells during EB formation.  相似文献   

10.
Phosphatidylinositol (PI) 3-kinase has been suggested to mediate cell survival. Consistent with this possibility, apoptosis of conditionally (simian virus 40 Tts) immortalized rat hippocampal H19-7 neuronal cells was increased in response to wortmannin, an inhibitor of PI 3-kinase. Downstream effectors of PI 3-kinase include Rac1, protein kinase C, and the serine-threonine kinase Akt (protein kinase B). Here, we show that activation of Akt is one mechanism by which PI 3-kinase can mediate survival of H19-7 cells during serum deprivation or differentiation. While ectopic expression of wild-type Akt (c-Akt) does not significantly enhance survival in H19-7 cells, expression of activated forms of Akt (v-Akt or myristoylated Akt) results in enhanced survival which can be comparable to that conferred by Bcl-2. Conversely, expression of a dominant-negative mutant of Akt accelerates cell death upon serum deprivation or differentiation. Finally, the results indicate that Akt can transduce a survival signal for differentiating neuronal cells through a mechanism that is independent of induction of Bcl-2 or Bcl-xL or inhibition of Jun kinase activity.  相似文献   

11.
Extracellular ATP exerts both short-term and long-term effects in the CNS by stimulating cell-surface purinergic receptors. Here we have examined the effect of purinergic receptor activation on N-cadherin expression, a calcium-dependent cell adhesion molecule involved in many processes, including glia-glia and axon-glia interactions. When primary cultures of rat cortical astrocytes were treated with ATP, N-cadherin protein expression increased in a time- and concentration-dependent manner. In addition, ATP treatment caused an increase in N-cadherin immunoreactivity in both the cytoplasm and on the cell surface membrane. Interestingly, experiments with cycloheximide revealed that relocalization of N-cadherin to the cell surface membrane were independent of protein synthesis. The ATP-induced increase in N-cadherin protein expression was blocked by reactive blue 2 and 8-(p-sulfophenyl)-theophylline, suggesting involvement of both P2 and P1 purinergic receptors, respectively. In addition, N-cadherin expression was partially blocked when signaling from purinergic receptors to extracellular signal regulated protein kinase or Akt was inhibited by 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene or wortmannin, respectively. By using an in vitro model of traumatic CNS injury, we found that N-cadherin expression was increased when astrocytes were subjected to rapid and reversible mechanical strain. The findings presented here demonstrate a role for extracellular ATP, purinergic receptors and protein kinase signaling in regulating N-cadherin expression and suggest a role for this mechanism in cell-cell interactions.  相似文献   

12.
Ginsenoside Rg1, a steroidal saponin of high abundance in ginseng, possesses the neuroprotective effects. In this study, we tried to explore the effect of Rg1 on promoting differentiation of mouse embryonic stem (ES) cells towards the neuronal lineage and its potential role involved in glucocorticoid receptor (GR) activation. Rg1 treatment induced a remarkable increase in the population of neuron-like cells in a time-dependent manner. More than 80% of Rg1-treated embryoid bodies (EBs) differentiated into neuron-like cells on d 8 + 10. Furthermore, the gradually increased protein expression of neurofilament (NEFM) and β-tubulin III (a neuronal specific protein) was determined. GR expression gradually increased during the differentiation course. RU486, an antagonist of GR, could efficiently block the neurogenesis-promoting activity of Rg1. On the other side, Rg1 stimulated the phosphorylation of ERK1/2 and Akt at different time points through GR activation-dependent mechanisms. Treatment of both U0126 (an inhibitor of MEK) and LY294002 (an inhibitor of PI3 K), hampered the neuronal differentiation induced by Rg1. Meantime, U0126 further decreased Rg1-induced p-Akt expression. In conclusion, Rg1 possesses the effects on inducing differentiation of mouse ES cells into neurons in vitro via the GR-MEK-ERK1/2-PI3 K-Akt signaling pathway.  相似文献   

13.
During development, cardiac commitment within the mesoderm requires endoderm-secreted factors. Differentiation of embryonic stem cells into the three germ layers in vitro recapitulates developmental processes and can be influenced by supplements added to culture medium. Hence, we investigated the effect of fetal bovine serum (FBS) and KnockOut serum replacement (SR) on germ layers specification and cardiac differentiation of H1 human embryonic stem cells (hESC) within embryoid bodies (EB). At the time of EB formation, FBS triggered an increased apoptosis. As assessed by quantitative PCR on 4-, 10-, and 20-day-old EB, FBS promoted a faster down-regulation of pluripotency marker Oct4 and an increased expression of endodermal (Sox17, alpha-fetoprotein, AFP) and mesodermal genes (Brachyury, CSX). While neuronal and hematopoietic differentiation occurred in both supplements, spontaneously beating cardiomyocytes were only observed in FBS. Action potential (AP) morphology of hESC-derived cardiomyocytes indicated that ventricular cells were present only after 2 months of culture. However, quantification of myosin light chain 2 ventricular (mlc2v)-positive areas revealed that mlc2v-expressing cardiomyocytes could be detected already after 2 weeks of differentiation, but not in all beating clusters. In conclusion, FBS enabled cardiac differentiation of hESC, likely in an endodermal-dependent pathway. Among cardiac cells, ventricular cardiomyocytes differentiated over time, but not as the predominant cardiac cell subtype.  相似文献   

14.
We investigated the effects of the cellular redox state on nerve growth factor (NGF)-induced neuronal differentiation and its signaling pathways. Treatment of PC12 cells with buthionine sulfoximine (BSO) reduced the levels of GSH, a major cellular reductant, and enhanced NGF-induced neuronal differentiation, activation of AP-1 and the NGF receptor tyrosine kinase, TrkA. Conversely, incubation of the cells with a reductant, N-acetyl-L-cysteine (NAC), inhibited NGF-induced neuronal differentiation and AP-1 activation. Consistent with the suppression, NAC inhibited NGF-induced activation of TrkA, formation of receptor complexes comprising TrkA, Shc, Grb2, and Sos, and activation of phospholipase Cgamma and phosphatidylinositol 3-kinase. Biochemical analysis suggested that the cellular redox state regulates TrkA activity through modulation of protein tyrosine phosphatases (PTPs). Thus, cellular redox state regulates signaling pathway of NGF through PTPs, and then modulates neuronal differentiation.  相似文献   

15.
Menkes disease (MD) is a copper-deficient neurodegenerative disorder that manifests severe neurologic symptoms such as seizures, lethargic states, and hypotonia. Menkes disease is due to a dysfunction of ATP7A, but the pathophysiology of neurologic manifestation is poorly understood during embryonic development. To understand the pathophysiology of neurologic symptoms, molecular and cellular phenotypes were investigated in Menkes disease-derived induced pluripotent stem cells (MD-iPSCs). MD-iPSCs were generated from fibroblasts of a Menkes disease patient. Abnormal reticular distribution of ATP7A was observed in MD-fibroblasts and MD-iPSCs, respectively. MD-iPSCs showed abnormal morphology in appearance during embryoid body (EB) formation as compared with wild type (WT)-iPSCs. Intriguingly, aberrant switch of E-cadherin (E-cad) to N-cadherin (N-cad) and impaired neural rosette formation were shown in MD-iPSCs during early differentiation. When extracellular copper was chelated in WT-iPSCs by treatment with bathocuprione sulfate, aberrant switch of E-cad to N-cad and impaired neuronal differentiation were observed, like in MD-iPSCs. Our results suggest that neurological defects in Menkes disease patients may be responsible for aberrant cadherin transition and impaired neuronal differentiation during early developmental stage.  相似文献   

16.
17.
Receptor for advanced glycation end products (RAGE) mediates neurite outgrowth and cell migration upon stimulation with its ligand, amphoterin. We show here that RAGE-dependent changes in cell morphology are associated with proliferation arrest and changes in gene expression in neuroblastoma cells. Chromogranin B, a component of secretory vesicles in endocrine cells and neurons, was found to be up-regulated by RAGE signaling during differentiation of neuroblastoma cells along with the two other members of the chromogranin family, chromogranin A and secretogranin II. Ligation of RAGE by amphoterin lead to rapid phosphorylation and nuclear localization of cyclic AMP response element-binding protein (CREB), a major regulator of chromogranin expression. Furthermore, inhibition of ERK1/2-Rsk2-dependent CREB phosphorylation efficiently inhibited up-regulation of chromogranin gene expression upon RAGE activation. To further study the effects of RAGE and amphoterin on cellular differentiation, we stimulated embryonic stem cells expressing RAGE or a signaling-deficient mutant of RAGE with amphoterin. Amphoterin was found to promote RAGE-dependent neuronal differentiation of embryonic stem cells characterized by up-regulation of neuronal markers light neurofilament protein and beta-III-tubulin, activation of CREB, and increased expression of chromogranins A and B. These data suggest that RAGE signaling is capable of driving neuronal differentiation involving CREB activation and induction of chromogranin expression.  相似文献   

18.
Little is known regarding the role of inter-cellular interaction during neuronal differentiation. Homophilic N-cadherin engagement between cells contributes to neuronal migration. However, its function in neurite initiation is not clear. In this study, we provide the first evidence that the adaptor protein SH2B1β regulated N-cadherin levels and neurite initiation. Overexpression of SH2B1β reduces N-cadherin levels and increased phosphotyrosine 654 β-catenin, leading to increased nerve growth factor-induced neurite initiation in PC12 cells, an established model for neuronal differentiation. In contrast, overexpression of the dominant-negative mutant SH2B1β(R555E) increases N-cadherin expression, cell-cell aggregation, and reduces neurite initiation. Moreover, SH2B1β binds directly or indirectly to N-cadherin indicative of its involvement in regulating the levels of N-cadherin. Taken together, these findings provide significant new insights into how N-cadherin-mediated inter-cellular interactions may influence neurite initiation and how SH2B1β may regulate these processes.  相似文献   

19.
Human DIXDC1 is a member of Dishevelled-Axin (DIX) domain containing gene family which plays important roles in Wnt signaling and neural development. In this report, we first confirmed that expression of Ccd1, a mouse homologous gene of DIXDC1, was up-regulated in embryonic developing nervous system. Further studies showed that Ccd1 was expressed specifically in neurons and colocalized with early neuronal marker Tuj1. During the aggregation induced by RA and neuronal differentiation of embryonic carcinoma P19 cells, expressions of Ccd1 as well as Wnt-1 and N-cadherin were dramatically increased. Stable overexpression of DIXDC1 in P19 cells promoted the neuronal differentiation. P19 cells overexpressing DIXDC1 but not the control P19 cells could differentiate into Tuj1 positive cells with RA induction for only 2 days. Meanwhile, we also found that overexpression of DIXDC1 facilitated the expression of Wnt1 and bHLHs during aggregation and differentiation, respectively, while inhibited gliogenesis by down-regulating the expression of GFAP in P19 cells. Thus, our finding suggested that DIXDC1 might play an important role during neurogenesis, overexpression of DIXDC1 in embryonic carcinoma P19 cells promoted neuronal differentiation, and inhibited gliogenesis induced by retinoic acid. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. XT Jing and HT Wu contributed equally to this work.  相似文献   

20.
Bone morphogenetic protein-2 (BMP-2), a member of the transforming growth factor-beta (TGF-beta) superfamily, is characterized by its ability to induce cartilage and bone formation. We have recently demonstrated that the multipotential, murine embryonic mesenchymal cell line, C3H10T1/2, when cultured at high density, is induced by BMP-2 or TGF-beta 1 to undergo chondrogenic differentiation. The high-cell-density requirement suggests that specific cell-cell interactions, such as those mediated by cell adhesion molecules, are important in the chondrogenic response. In view of our recent finding that N-cadherin, a Ca(2+)-dependent cell adhesion molecule, is functionally required in normal embryonic limb mesenchyme cellular condensation and chondrogenesis, we examine here whether N-cadherin is also involved in BMP-2 induction of chondrogenesis in C3H10T1/2 cells. BMP-2 stimulation of chondrogenesis in high-density micromass cultures of C3H10T1/2 cells was evidenced by Alcian blue staining, elevated [35S]sulfate incorporation, and expression of the cartilage matrix markers, collagen type II and cartilage proteoglycan link protein. With BMP-2 treatment, N-cadherin mRNA expression was stimulated 4-fold within 24 h, and by day 5, protein levels were stimulated 8-fold. An N-cadherin peptidomimic containing the His-Ala-Val sequence to abrogate homotypic N-cadherin interactions inhibited chondrogenesis in a concentration-dependent manner. To analyze the functional role of N-cadherin further, C3H10T1/2 cells were stably transfected with expression constructs of either full-length N-cadherin or a dominant negative, N-terminal deletion mutant of N-cadherin. Moderate (2-fold) overexpression of full-length N-cadherin augmented, whereas higher (4-fold) overexpression inhibited the BMP-2-chondrogenic effect. On the other hand, expression of the dominant negative N-cadherin mutant dramatically inhibited BMP-2 stimulated chondrogenesis. These data strongly suggest that upregulation of N-cadherin expression, at defined critical levels, is a candidate mechanistic component of BMP-2 stimulation of mesenchymal chondrogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号