首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
MicroRNA regulation of gene expression in plants   总被引:21,自引:0,他引:21  
It has only been a few years since we began to appreciate that microRNAs provide an unanticipated level of gene regulation in both plants and metazoans. The high level of complementarity between plant microRNAs and their target mRNAs has allowed rapid progress towards the elucidation of their varied biological functions. MicroRNAs have been shown to regulate diverse developmental processes, including organ separation, polarity, and identity, and to modulate their own biogenesis and function. Recently, they have also been implicated in some processes outside of plant development.  相似文献   

3.
MicroRNA regulation and interspecific variation of gene expression   总被引:5,自引:0,他引:5  
MicroRNAs (miRNAs) modulate expression of their target genes in various tissues and at different developmental stages, but it is unclear whether they drive cross-species variation in gene expression. By comparing data from mammal and fly species we found that the cross-species expression variation of miRNA targets is significantly lower than that of other genes. This implies that miRNAs can affect gene expression by reducing stochastic noise, buffering cross-species variation and constraining evolutionary gene expression variation.  相似文献   

4.
Shao C  Prise KM  Folkard M 《Mutation research》2008,638(1-2):139-145
The aim of this study was to investigate the signaling factor and its pathway involved in the targeted irradiation-induced bystander response from glioblastoma cells to primary fibroblasts. After co-culturing with a glioblastoma T98G population where a fraction of cells had been individually irradiated with a precise number of helium particles, additional micronucleus (MN) were induced in the non-irradiated human fibroblasts AG01522 cells and its yield was independent of irradiation dose. This bystander MN induction was eliminated by treating the cells with either aminoguanidine (AG), an iNOS inhibitor, or anti-transforming growth factor-beta1 (anti-TGF-beta1). In addition, TGF-beta1 could be released from irradiated T98G cells but this release was inhibited by AG. In consistent, TGF-beta1 could also be induced from T98G cells treated with diethylamine nitric oxide (DEANO), a donor of nitric oxide (NO). Moreover, the effect of TGF-beta1 on bystander AG01522 cells was investigated. It was found that reactive oxygen species (ROS) and MN were induced in AG01522 cells after TGF-beta1 treatment. Our results indicate that, downstream of NO, TGF-beta1 plays an important role in the targeted T98G cells induced bystander response to AG0 cells by further causing DNA damage in vicinal fibroblasts through a ROS related pathway. This study may have implications for properly evaluating the secondary effects of radiotherapy.  相似文献   

5.
Prostaglandins (PGs) are lipid-derived mediators of rapid and localized cellular responses. Given the role of PG in supporting thymic T cell development, we investigated the expression of the PG synthases, also known as cyclooxygenases (COX)-1 and -2, in the biosynthesis of PGs in thymic stromal cell lines. The predominant isozyme expressed in cortical thymic epithelial cells was COX-1, while COX-2 predominated in the medulla. IFN-gamma up-regulated expression and activity of COX-2 in medullary cells, in which COX-2 was expressed constitutively. In contrast, IFN-gamma down-regulated COX-1 activity, but not expression, in cortical cells. Stromal cells support T cell development in the thymus, although the mediators of this effect are unknown. Selective inhibition of COX-2, but not COX-1, blocked the adhesion of CD4+CD8+ and CD4+CD8- thymocytes to medullary cell lines. No effect of the inhibitors was observed on the interactions of thymocytes with cortical epithelial lines. These data further support the differential regulation of COX-1 and COX-2 expression and function in thymic stromal cells. PGs produced by COX-2 in the medullary thymic stroma may regulate the development of thymocytes by modulating their interaction with stromal cells.  相似文献   

6.
Differential regulation and function of Fas expression on glial cells   总被引:8,自引:0,他引:8  
Fas/Apo-1 is a member of the TNF receptor superfamily that signals apoptotic cell death in susceptible target cells. Fas or Fas ligand (FasL)-deficient mice are relatively resistant to the induction of experimental allergic encephalomyelitis, implying the involvement of Fas/FasL in this disease process. We have examined the regulation and function of Fas expression in glial cells (astrocytes and microglia). Fas is constitutively expressed by primary murine microglia at a low level and significantly up-regulated by TNF-alpha or IFN-gamma stimulation. Primary astrocytes express high constitutive levels of Fas, which are not further affected by cytokine treatment. In microglia, Fas expression is regulated at the level of mRNA expression; TNF-alpha and IFN-gamma induced Fas mRNA by approximately 20-fold. STAT-1alpha and NF-kappaB activation are involved in IFN-gamma- or TNF-alpha-mediated Fas up-regulation in microglia, respectively. The cytokine TGF-beta inhibits basal expression of Fas as well as cytokine-mediated Fas expression by microglia. Upon incubation of microglial cells with FasL-expressing cells, approximately 20% of cells underwent Fas-mediated cell death, which increased to approximately 60% when cells were pretreated with either TNF-alpha or IFN-gamma. TGF-beta treatment inhibited Fas-mediated cell death of TNF-alpha- or IFN-gamma-stimulated microglial cells. In contrast, astrocytes are resistant to Fas-mediated cell death, however, ligation of Fas induces expression of the chemokines macrophage inflammatory protein-1beta (MIP-1beta), MIP-1alpha, and MIP-2. These data demonstrate that Fas transmits different signals in the two glial cell populations: a cytotoxic signal in microglia and an inflammatory signal in the astrocyte.  相似文献   

7.
8.
MicroRNAs (miRNAs) are 21-24-nucleotide non-coding RNAs found in diverse organisms. Although hundreds of miRNAs have been cloned or predicted, only very few miRNAs have been functionally characterized. Embryo implantation is a crucial step in mammalian reproduction. Many genes have been shown to be significantly changed in mouse uterus during embryo implantation. However, miRNA expression profiles in the mouse uterus between implantation sites and inter-implantation sites are still unknown. In this study, miRNA microarray was used to examine differential expression of miRNAs in the mouse uterus between implantation sites and inter-implantation sites. Compared with inter-implantation sites, there were 8 up-regulated miR-NAs at implantation sites, which were confirmed by both Northern blot and in situ hybridization. miR-21 was highly expressed in the subluminal stromal cells at implantation sites on day 5 of pregnancy. Because miR-21 was not detected in mouse uterus during pseudopregnancy and under delayed implantation, miR-21 expression at implantation sites was regulated by active blastocysts. Furthermore, we showed that Reck was the target gene of miR-21. Our data suggest that miR-21 may play a key role during embryo implantation.  相似文献   

9.
10.
Studies over the last several years have revealed the existence of a biological phenomenon known as "bystander effect", wherein cells that are not exposed to radiation elicit a similar response to that of irradiated cells. Understanding the mechanism(s) underlying the bystander effect is important not only for radiation risk assessment but also for evaluation of protocols for cancer radiotherapy. Evaluation of signaling pathways in bystander cells may provide an insight to understand the molecular mechanisms(s) responsible for this complex phenomenon. With this objective, the time course kinetics of intracellular distribution of protein kinase C (PKC isoforms PKC-betaII, PKC-alpha/beta, PKC-theta) was investigated in total and subcellular (cytosolic and nuclear) fractions of human lung fibroblast (MRC-5) cells. MRC-5 cells were either irradiated or treated with the irradiated conditioned medium collected 1h after 1 or 10 Gy of gamma-irradiation. The radiation dose selected was in the range of therapeutic usage of radiation for the human cancer treatment. Unexpectedly, bystander cells showed higher activation of protein kinase C isoforms as compared to irradiated and sham-treated control cells. Protein kinase C isoforms were more enriched in the nuclear fraction than the cytosolic fraction proteins. Induction of PKC isoforms in bystander cells are due to post-translational modifications as shown by the non-phosphorylated protein kinase C level in both irradiated and bystander cells did not differ from the sham-treated control cells. The specific activation of protein kinase C isoforms in bystander cells as demonstrated for the first time in this study may help to identify the effect of therapeutically used radiation exposure for the tumor destructions along with its implications for adjacent non-irradiated cells and organs.  相似文献   

11.
12.
13.
Zhou H  Suzuki M  Geard CR  Hei TK 《Mutation research》2002,499(2):135-141
Recent studies have indicated that extranuclear or extracellular targets are important in mediating the bystander genotoxic effects of alpha-particles. In the present study, human-hamster hybrid (A(L)) cells were plated on either one or both sides of double-mylar dishes 2-4 days before irradiation, depending on the density requirement of experiments. One side (with or without cells) was irradiated with alpha-particles (from 0.1 to 100 Gy) using the track segment mode of a 4 MeV Van de Graaff accelerator. After irradiation, cells were kept in the dishes for either 1 or 48 h. The non-irradiated cells were then collected and assayed for both survival and mutation. When one side with cells was irradiated by alpha-particles (1, 10 and 100 Gy), the surviving fraction among the non-irradiated cells was significantly lower than that of control after 48 h co-culture. However, such a change was not detected after 1h co-culture or when medium alone was irradiated. Furthermore, co-cultivation with irradiated cells had no significant effect on the spontaneous mutagenic yield of non-irradiated cells collected from the other half of the double-mylar dishes. These results suggested that irradiated cells released certain cytotoxic factor(s) into the culture medium that killed the non-irradiated cells. However, such factor(s) had little effect on mutation induction. Our results suggest that different bystander end points may involve different mechanisms with different cell types.  相似文献   

14.
Chen S  Zhao Y  Han W  Chiu SK  Zhu L  Wu L  Yu KN 《Mutation research》2011,706(1-2):59-64
Mammalian cells respond to ionization radiation by sending out extracellular signals to affect non-irradiated neighboring cells, which is referred to as radiation induced bystander effect. In the present paper, we described a phenomenon entitled the "rescue effects", where the bystander cells rescued the irradiated cells through intercellular signal feedback. The effect was observed in both human primary fibroblast (NHLF) and cancer cells (HeLa) using two-cell co-culture systems. After co-culturing irradiated cells with unirradiated bystander cells for 24h, the numbers of 53BP1 foci, corresponding to the number of DNA double-strand breaks in the irradiated cells were less than those in the irradiated cells that were not co-cultured with the bystander cells (0.78±0.04foci/cell vs. 0.90±0.04foci/cell) at a statistically significant level. Similarly, both micronucleus formation and extent of apoptosis in the irradiated cells were different at statistically significant levels if they were co-cultured with the bystander cells. Furthermore, it was found that unirradiated normal cells would also reduce the micronucleus formation in irradiated cancer cells. These results suggested that the rescue effects could participate in repairing the radiation-induced DNA damages through a media-mediated signaling feedback, thereby mitigating the cytotoxicity and genotoxicity of ionizing radiation.  相似文献   

15.
MicroRNA regulation and the variability of human cortical gene expression   总被引:1,自引:1,他引:1  
Zhang R  Su B 《Nucleic acids research》2008,36(14):4621-4628
Understanding the driving forces of gene expression variation within human populations will provide important insights into the molecular basis of human phenotypic variation. In the genome, the gene expression variability differs among genes, and at present, most research has focused on identifying the genetic variants responsible for the within population gene expression variation. However, little is known about whether microRNAs (miRNAs), which are small noncoding RNAs modulating expression of their target genes, could have impact on the variability of gene expression. Here we demonstrate that miRNAs likely lead to the difference of expression variability among genes. With the use of the genome-wide expression data in 193 human brain samples, we show that the increased variability of gene expression is concomitant with the increased number of the miRNA seeds interacting with the target genes, suggesting a direct influence of miRNA on gene expression variability. Compared with the non-miRNA-target genes, genes targeted by more than two miRNA seeds have increased expression variability, independent of the miRNA types. In addition, single-nucleotide polymorphisms (SNPs) located in the miRNA binding sites could further increase the gene expression variability of the target genes. We propose that miRNAs are one of the driving forces causing expression variability in the human genome.  相似文献   

16.
Dendritic cells (DCs) play a central role as major targets of dengue virus (DV) infections and initiators of antiviral immune responses. Previous observations showed that DCs are activated by infection, presumably acquiring the capacity to promote cell-mediated immunity. However, separate evaluations of the maturation profiles of infected and uninfected bystander cells show that infection impairs the ability of DCs to upregulate cell surface expression of costimulatory, maturation, and major histocompatibility complex molecules, resulting in reduced T-cell stimulatory capacity. Infected DCs failed to respond to tumor necrosis factor alpha as an additional maturation stimulus and were apoptotic. Interleukin 10 (IL-10) was detected in supernatants from cultures of DV-infected DCs and cocultures of DCs and T cells. Taken together, these results constitute an immune evasion strategy used by DV that directly impairs antigen-presenting cell function by maturation blockade and induction of apoptosis.  相似文献   

17.
18.
Hu HY  Guo S  Xi J  Yan Z  Fu N  Zhang X  Menzel C  Liang H  Yang H  Zhao M  Zeng R  Chen W  Pääbo S  Khaitovich P 《PLoS genetics》2011,7(10):e1002327
Among other factors, changes in gene expression on the human evolutionary lineage have been suggested to play an important role in the establishment of human-specific phenotypes. However, the molecular mechanisms underlying these expression changes are largely unknown. Here, we have explored the role of microRNA (miRNA) in the regulation of gene expression divergence among adult humans, chimpanzees, and rhesus macaques, in two brain regions: prefrontal cortex and cerebellum. Using a combination of high-throughput sequencing, miRNA microarrays, and Q-PCR, we have shown that up to 11% of the 325 expressed miRNA diverged significantly between humans and chimpanzees and up to 31% between humans and macaques. Measuring mRNA and protein expression in human and chimpanzee brains, we found a significant inverse relationship between the miRNA and the target genes expression divergence, explaining 2%-4% of mRNA and 4%-6% of protein expression differences. Notably, miRNA showing human-specific expression localize in neurons and target genes that are involved in neural functions. Enrichment in neural functions, as well as miRNA-driven regulation on the human evolutionary lineage, was further confirmed by experimental validation of predicted miRNA targets in two neuroblastoma cell lines. Finally, we identified a signature of positive selection in the upstream region of one of the five miRNA with human-specific expression, miR-34c-5p. This suggests that miR-34c-5p expression change took place after the split of the human and the Neanderthal lineages and had adaptive significance. Taken together these results indicate that changes in miRNA expression might have contributed to evolution of human cognitive functions.  相似文献   

19.
20.
Radiation-induced bystander factors have been shown to be more toxic if they are from medium harvested from irradiated repair-deficient cells. The aim of this study was to test the hypothesis that the radiosensitivity of repair-proficient cells can be increased by exposing them to medium-borne factors harvested from sensitive cells and vice versa. Cells from a mismatch repair (MMR)-deficient cell line (Raji 10) with a sensitive response to radiation or the wild-type parent cell line were irradiated to 0.5 Gy gamma rays and then monitored for growth rate in their own medium or in the alternative conditioned medium. In other experiments, cells or conditioned medium were added to reporter cells (HPV-G, which are relatively sensitive keratinocytes, or highly radioresistant HT29 cells). The subsequent responses of the two cell lines to a 0.5-Gy dose of (60)Co gamma rays were measured. The results show that prior exposure of resistant cells to medium from irradiated sensitive cells reduced the clonogenic survival of the subsequently irradiated resistant cells. The reverse is also true. Measurement of the apoptosis index and BCL2 expression confirmed that the harvested medium was capable of modulating apoptosis after irradiation. This may have important applications in tumor therapy and also in the understanding of mechanisms involved in induction of adaptive responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号