首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
3.
We observed a chilling-induced ethylene biosynthesis in Braeburn apples.The stimulatory effect depended on the length of the cooling period. The longerthe period, the stronger the stimulation. Low temperature stimulated activityand gene expression of ACS, but only stimulated gene expression of ACO. Thestimulatory effect of low temperature on gene expression was stronger andearlier in ACS than in ACO. 1-MCP (1-methylcyclopropene), an inhibitor ofethylene action, inhibited ethylene biosynthesis in fruit stored at 20°C and 0 °C. This inhibitory effect can beslightly recovered in fruit stored at 0 °C, but not at 20°C. Expression of genes for ACS and ACO was weaker in1-MCP-treated fruit stored at 20 °C, than those at 0°C. Thus, it is possible that expression of genes for ACS andACO in fruit at low temperature was mainly, but not completely, regulated bytheethylene receptor.  相似文献   

4.
5.
《Epigenetics》2013,8(6):353-356
Maintenance of intact heterochromatin structure through epigenetic mechanisms is essential for cell survival. Defects in heterochromatin formation caused by loss of chromatin-modifying enzymes lead to genomic instability and cellular senescence. The NAD+-dependent histone deacetylase SIR-2 and the H1 linker histone are intriguing chromatin elements that are connected to chromatin regulation and cell viability in the single cellular eukaryotic organism yeast. However, it remains an open question how SIR-2 and H1 mediate heterochromatin formation in simple multi-cellular organisms such as C. elegans and in even more complex organisms such as mammals. Recently we have identified SIR-2.1 and the H1 histone subtype, HIS-24 as factors involved in heterochromatin regulation at subtelomeric regions in C. elegans. In addition we show that SIR-2.1, HIS-24, and MES-2, a ortholog to Enhancer of zeste E(Z) are functionally related in heterochromatin formation contributing to fertility and embryogenesis. Here we discuss the interplay between SIR-2, H1 histone and histone methyltransferases in modulation of chromatin structure in further detail.  相似文献   

6.
7.
Zhao  Weian  Wu  Xiaoqi  Wang  Zhiyuan  Pan  Bo  Liu  Lifei  Liu  Lingjuan  Huang  Xupei  Tian  Jie 《中国科学:生命科学英文版》2020,63(4):563-570
Epigenetic regulations play an important role in disease development. In this study, we have investigated epigenetic regulations in restrictive cardiomyopathy mice with cTnI 193 His mutation. Our results demonstrated that phosphodiesterase(PDEs) 4d was down-regulated in the heart of these mice. Further studies showed that the epigenetic modifications were associated with enhanced acetylation of histone 3 lysine 4 and lysines 9, whereas tri-methylation of histone 3 lysine 4, were decreased in histones near the PDE4d gene promoter regions. The binding levels of histone transmethylase SMYD1 and histone deacetylase HDAC1 were increased in the gene promoter regions in cTnI193 His transgenic hearts. Using immune-fluorescent labeling we found an evidence of cTnI existence in the nucleus of cardiomyocytes and Western blotting further confirmed that both wild type and mutated cTnI could be detected in the cell nucleus of the hearts. Furthermore, an interaction between cTnI and SMYD1, or cTnI and HDAC1 was observed. Overexpression of the mutated cTnI in cultured cardiomyocytes reduced the expression of PDE4d.Our data suggest that the decrease of PDE4d expression in RCM mice caused by cTnI mutations may be related to epigenetic regulation, i.e., histone acetylation and methylation, and cTnI might be involved in this procedure via an interaction with HDAC1 and SMAD1 in the hearts.  相似文献   

8.
9.
10.
The INhibitor of Growth (ING) proteins act as type II tumor suppressors and epigenetic regulators, being stoichiometric members of histone acetyltransferase and histone deacetylase complexes. Expression of the alternatively spliced ING1a tumor suppressor increases >10-fold during replicative senescence. ING1a overexpression inhibits growth; induces a large flattened cell morphology and the expression of senescence-associated β-galactosidase; increases Rb, p16, and cyclin D1 levels; and results in the accumulation of senescence-associated heterochromatic foci. Here we identify ING1a-regulated genes and find that ING1a induces the expression of a disproportionate number of genes whose products encode proteins involved in endocytosis. Intersectin 2 (ITSN2) is most affected by ING1a, being rapidly induced >25-fold. Overexpression of ITSN2 independently induces expression of the p16 and p57KIP2 cyclin-dependent kinase inhibitors, which act to block Rb inactivation, acting as downstream effectors of ING1a. ITSN2 is also induced in normally senescing cells, consistent with elevated levels of ING1a inducing ITSN2 as part of a normal senescence program. Inhibition of endocytosis or altering the stoichiometry of endosome components such as Rab family members similarly induces senescence. Knockdown of ITSN2 also blocks the ability of ING1a to induce a senescent phenotype, confirming that ITSN2 is a major transducer of ING1a-induced senescence signaling. These data identify a pathway by which ING1a induces senescence and indicate that altered endocytosis activates the Rb pathway, subsequently effecting a senescent phenotype.  相似文献   

11.
12.
沉默交配型信息调节因子2同源蛋白1(silent mating type information regulation 2 homolog 1,Sirt1)是哺乳动物中与酵母沉默信息调节蛋白2(silencing information regulator 2,Sir2)高度同源的蛋白质,它是一种依赖NAD+的III类组蛋白去乙酰化酶(HDAC III),在细胞分化、衰老、凋亡、DNA损伤修复、能量及内分泌代谢调节中起重要作用,同时在基因沉默、表观遗传学修饰、转录调控及信号转导调节中发挥重要的生物学功能。本文对其近年的研究进展做一概述。  相似文献   

13.
14.
15.
16.
Understanding how senescence is established and maintained is an important area of study both for normal cell physiology and in tumourigenesis. Modifications to N-terminal tails of histone proteins, which can lead to chromatin remodelling, appear to be key to the regulation of the senescence phenotype. Epigenetic mechanisms such as modification of histone proteins have been shown to be sufficient to regulate gene expression levels and specific gene promoters can become epigenetically altered at senescence. This suggests that epigenetic mechanisms are important in senescence and further suggests epigenetic deregulation could play an important role in the bypass of senescence and the acquisition of a tumourigenic phenotype. Tumour suppressor proteins and cellular senescence are intimately linked and such proteins are now known to regulate gene expression through chromatin remodelling, again suggesting a link between chromatin modification and cellular senescence. Telomere dynamics and the expression of the telomerase genes are also both implicitly linked to senescence and tumourigenesis, and epigenetic deregulation of the telomerase gene promoters has been identified as a possible mechanism for the activation of telomere maintenance mechanisms in cancer. Recent studies have also suggested that epigenetic deregulation in stem cells could play an important role in carcinogenesis, and new models have been suggested for the attainment of tumourigenesis and bypass of senescence. Overall, proper regulation of the chromatin environment is suggested to have an important role in the senescence pathway, such that its deregulation could lead to tumourigenesis.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号