首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the lengths of aeration and nonaeration periods on nitrogen removal and the nitrifying bacterial community structure were assessed in intermittently aerated (IA) reactors treating digested swine wastewater. Five IA reactors were operated in parallel with different aeration-to-nonaeration time ratios (ANA). Populations of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were monitored using 16S rRNA slot blot hybridizations. AOB species diversity was assessed using amoA gene denaturant gradient gel electrophoresis. Nitrosomonas and Nitrosococcus mobilis were the dominant AOB and Nitrospira spp. were the dominant NOB in all reactors, although Nitrosospira and Nitrobacter were also detected at lower levels. Reactors operated with the shortest aeration time (30 min) showed the highest Nitrosospira rRNA levels, and reactors operated with the longest anoxic periods (3 and 4 h) showed the lowest levels of Nitrobacter, compared to the other reactors. Nitrosomonas sp. strain Nm107 was detected in all reactors, regardless of the reactor's performance. Close relatives of Nitrosomonas europaea, Nitrosomonas sp. strain ENI-11, and Nitrosospira multiformis were occasionally detected in all reactors. Biomass fractions of AOB and effluent ammonia concentrations were not significantly different among the reactors. NOB were more sensitive than AOB to long nonaeration periods, as nitrite accumulation and lower total NOB rRNA levels were observed for an ANA of 1 h:4 h. The reactor with the longest nonaeration time of 4 h performed partial nitrification, followed by denitrification via nitrite, whereas the other reactors removed nitrogen through traditional nitrification and denitrification via nitrate. Superior ammonia removal efficiencies were not associated with levels of specific AOB species or with higher AOB species diversity.  相似文献   

2.
The effects of the lengths of aeration and nonaeration periods on nitrogen removal and the nitrifying bacterial community structure were assessed in intermittently aerated (IA) reactors treating digested swine wastewater. Five IA reactors were operated in parallel with different aeration-to-nonaeration time ratios (ANA). Populations of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were monitored using 16S rRNA slot blot hybridizations. AOB species diversity was assessed using amoA gene denaturant gradient gel electrophoresis. Nitrosomonas and Nitrosococcus mobilis were the dominant AOB and Nitrospira spp. were the dominant NOB in all reactors, although Nitrosospira and Nitrobacter were also detected at lower levels. Reactors operated with the shortest aeration time (30 min) showed the highest Nitrosospira rRNA levels, and reactors operated with the longest anoxic periods (3 and 4 h) showed the lowest levels of Nitrobacter, compared to the other reactors. Nitrosomonas sp. strain Nm107 was detected in all reactors, regardless of thereactor's performance. Close relatives of Nitrosomonas europaea, Nitrosomonas sp. strain ENI-11, and Nitrosospira multiformis were occasionally detected in all reactors. Biomass fractions of AOB and effluent ammonia concentrations were not significantly different among the reactors. NOB were more sensitive than AOB to long nonaeration periods, as nitrite accumulation and lower total NOB rRNA levels were observed for an ANA of 1 h:4 h. The reactor with the longest nonaeration time of 4 h performed partial nitrification, followed by denitrification via nitrite, whereas the other reactors removed nitrogen through traditional nitrification and denitrification via nitrate. Superior ammonia removal efficiencies were not associated with levels of specific AOB species or with higher AOB species diversity.  相似文献   

3.
Up-flow oxygen-controlled biofilm reactors equipped with a non-woven fabric support were used as a single reactor system for autotrophic nitrogen removal based on a combined partial nitrification and anaerobic ammonium oxidation (anammox) reaction. The up-flow biofilm reactors were initiated as either a partial nitrifying reactor or an anammox reactor, respectively, and simultaneous partial nitrification and anammox was established by careful control of the aeration rate. The combined partial nitrification and anammox reaction was successfully developed in both biofilm reactors without additional biomass inoculation. The reactor initiated as the anammox reactor gave a slightly higher and more stable mean nitrogen removal rate of 0.35 (± 0.19) kg-N m−3 d−1 than the reactor initiated as the partial nitrifying reactor (0.23 (± 0.16) kg-N m−3 d−1). FISH analysis revealed that the biofilm in the reactor started as the anammox reactor were composed of anammox bacteria located in inner anoxic layers that were surrounded by surface aerobic AOB layers, whereas AOB and anammox bacteria were mixed without a distinguishable niche in the biofilm in the reactor started as the partial nitrifying reactor. However, it was difficult to efficiently maintain the stable partial nitrification owing to inefficient aeration in the reactor, which is a key to development of the combined partial nitrification and anammox reaction in a single biofilm reactor.  相似文献   

4.
This study aimed to find optimal operation conditions for nitrogen removal from high strength slaughterhouse wastewater at 11 °C using the intermittently aerated sequencing batch reactors (IASBRs) so as to provide an engineering control strategy for the IASBR technology. Two operational parameters were examined: (1) loading rates and (2) aeration rates. Both the two parameters affected variation of DO concentrations in the IASBR operation cycles. It was found that to achieve efficient nitrogen removal via partial nitrification–denitrification (PND), “DO elbow” point must appear at the end of the last aeration period. There was a correlation between the ammonium oxidizing bacteria (AOB)/nitrite oxidizing bacteria (NOB) ratio and the average DO concentrations in the last aeration periods; when the average DO concentrations in the last aeration periods were lower than 4.86 mg/L, AOB became the dominant nitrifier population, which benefited nitrogen removal via PND. Both the nitrogen loading rate and the aeration rate influenced the population sizes of AOB and NOB. To accomplish efficient nitrogen removal via PND, the optimum aeration rate (A, L air/min) applied can be predicted according to the average organic loading rates based on mathematical equations developed in this study. The research shows that the amount of N2O generation in the aeration period was reduced with increasing the aeration rate; however, the highest N2O generation in the non-aeration period was observed at the optimum aeration rates.  相似文献   

5.
Aims:  To investigate whether the ammonia-oxidizing bacterial (AOB) communities of replicate nitrifying bioreactors (i) co-evolve or diverge over time and (ii) are stable or dynamic during periods of complete nitrification.
Methods and Results:  Three sequential batch reactors (SBR) were inoculated with sludge from a municipal wastewater treatment plant, fed with ammonium-enriched tap water and operated in parallel for 134 days. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) demonstrated co-evolvement of the AOB communities over time. During start-up, temporary decreases in nitrification were noticed, and the AOB community rate of change values (Δ t (week)) were medium to high (12–22%). During the adjacent period of complete nitrification, low AOB community dynamics were observed (Δ t (week) < 5%). Further pragmatic processing of the DGGE profiles revealed a high range-weighted richness and a medium functional organization of the AOB communities.
Conclusions:  After a start-up period, high functional stability and low dynamics of the AOB communities were observed. Deterministic rather than stochastic driving forces led to AOB community co-evolvement in the replicate SBR.
Significance and Impact of the Study:  Replicates in identical set-ups are reproducible, and pragmatic processing of DGGE patterns is a straightforward tool to score and compare the functionality of the bacterial communities.  相似文献   

6.
Ammonia-oxidizing bacteria (AOB) are essential for the nitrification process in wastewater treatment. To retain these slow-growing bacteria in wastewater treatment plants (WWTPs), they are often grown as biofilms, e.g., on nitrifying trickling filters (NTFs) or on carriers in moving bed biofilm reactors (MBBRs). On NTFs, a decreasing ammonium gradient is formed because of the AOB activity, resulting in low ammonium concentrations at the bottom and reduced biomass with depth. To optimize the NTF process, different ammonium feed strategies may be designed. This, however, requires knowledge about AOB population dynamics. Using fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy, we followed biomass changes during 6 months, of three AOB populations on biofilm carriers. These were immersed in aerated MBBR tanks in a pilot plant receiving full-scale wastewater. Tanks were arranged in series, forming a wastewater ammonium gradient mimicking an NTF ammonium gradient. The biomass of one of the dominating Nitrosomonas oligotropha-like populations increased after an ammonium upshift, reaching levels comparable to the high ammonium control in 28 days, whereas a Nitrosomonas europaea-like population increased relatively slowly. The MBBR results, together with competition studies in NTF systems fed with wastewater under controlled ammonium regimes, suggest a differentiation between the two N. oligotropha populations, which may be important for WWTP nitrification.  相似文献   

7.
Wang X  Wen X  Xia Y  Hu M  Zhao F  Ding K 《PloS one》2012,7(4):e36272

Background

Chemoautotrophic ammonia oxidizing bacteria (AOB) have the metabolic ability to oxidize ammonia to nitrite aerobically. This metabolic feature has been widely used, in combination with denitrification, to remove nitrogen from wastewater in wastewater treatment plants (WWTPs). However, the relative influence of specific deterministic environmental factors to AOB community dynamics in WWTP is uncertain. The ecological principles underlying AOB community dynamics and nitrification stability and how they are related are also poorly understood.

Methodology/Principal Findings

The community dynamics of ammonia oxidizing bacteria (AOB) in a pilot-scale WWTP were monitored over a one-year period by Terminal Restriction Fragment Length Polymorphism (T-RFLP). During the study period, the effluent ammonia concentrations were almost below 2 mg/L, except for the first 60 days, indicting stable nitrification. T-RFLP results showed that, during the test period with stable nitrification, the AOB community structures were not stable, and the average change rate (every 15 days) of AOB community structures was 10%±8%. The correlations between T-RFLP profiles and 10 operational and environmental parameters were tested by Canonical Correlation Analysis (CCA) and Mantel test. The results indicated that the dynamics of AOB community correlated most strongly with Dissolved Oxygen (DO), effluent ammonia, effluent Biochemical Oxygen Demand (BOD) and temperature.

Conclusions/Significance

This study suggests that nitrification stability is not necessarily accompanied by a stable AOB community, and provides insight into parameters controlling the AOB community dynamics within bioreactors with stable nitrification.  相似文献   

8.
Although biological nitrogen removal via nitrite is recognized as one of the cost-effective and sustainable biological nitrogen removal processes, nitrite accumulation has proven difficult to achieve in continuous processes treating low-strength nitrogenous wastewater. Partial nitrification to nitrite was achieved and maintained in a lab-scale completely stirred tank reactor (CSTR) treating real domestic wastewater. During the start-up period, sludge with ammonia-oxidizing bacteria (AOB) but no nitrite-oxidizing bacteria (NOB) was obtained by batch operation with aeration time control. The nitrifying sludge with the dominance of AOB was then directly switched into continuous operation. It was demonstrated that partial nitrification to nitrite in the continuous system could be repeatedly and reliably achieved using this start-up strategy. The ratio of dissolved oxygen to ammonium loading rate (DO/ALR) was critical to maintain high ammonium removal efficiency and nitrite accumulation ratio. Over 85% of nitrite accumulation ratio and more than 95% of ammonium removal efficiency were achieved at DO/ALR ratios in an optimal range of 4.0–6.0 mg O2/g N d, even under the disturbances of ammonium loading rate. Microbial population shift was investigated, and fluorescence in situ hybridization analysis indicated that AOB were the dominant nitrifying bacteria over NOB when stable partial nitrification was established.  相似文献   

9.
Achieving sustainable partial nitrification to nitrite has been proven difficult in treating low strength nitrogenous wastewater. Real-time aeration duration control was used to achieve efficient partial nitrification to nitrite in a sequencing batch reactor (SBR) to treat low strength domestic wastewater. Above 90% nitrite accumulation ratio was maintained for long-term operation at normal condition, or even lower water temperature in winter. Partial nitrification established by controlling aeration duration showed good performance and robustness even though encountering long-term extended aeration and starvation period. Process control enhanced the successful accumulation of ammonia oxidizing bacteria (AOB) and washout of nitrite oxidizing bacteria (NOB). Scanning electron microscope observations indicated that the microbial morphology showed a shift towards small rod-shaped clusters. Fluorescence in situ hybridization (FISH) results demonstrated AOB were the dominant nitrifying bacteria, up to 8.3 ± 1.1% of the total bacteria; on the contrary, the density of NOB decreased to be negligible after 135 days operation since adopting process control.  相似文献   

10.
In this study, the performance of partial nitrification via nitrite and microbial community structure were investigated and compared in two sequencing batch reactors (SBR) with different dissolved oxygen (DO) levels. Both reactors achieved stable partial nitrification with nitrite accumulation ratio of above 95% by using real-time aeration duration control. Compared with high DO (above 3 mg/l on average) SBR, simultaneous nitrification and denitrification (SND) via nitrite was carried out in low DO (0.4–0.8 mg/l) SBR. The average efficiencies of SND in high DO and low DO reactor were 7.7% and 44.9%, and the specific SND rates were 0.20 and 0.83 mg N/(mg MLSS h), respectively. Low DO did not produce sludge with poorer settling properties but attained lower turbidities of the effluent than high DO. Fluorescence in situ hybridization (FISH) analysis in both the reactors showed that ammonia-oxidizing bacteria (AOB) were the dominant nitrifying bacteria and nitrite-oxidizing bacteria (NOB) did not be recovered in spite of exposing nitrifying sludge to high DO. The morphology of the sludge from both two reactors according to scanning electron microscope indicated that small rod-shaped and spherical clusters were dominant, although filamentous bacteria and few long rod-shaped coexisted in the low DO reactor. By selecting properly DO level and adopting process control method is not only of benefit to the achievement of novel biological nitrogen removal technology, but also favorable to sludge population optimization.  相似文献   

11.
The understanding of the relationship between ammoniaoxidizing bacteria (AOB) communities in activated sludge and the operational treatment parameters supports the control of the treatment of ammonia-rich wastewater. The modifications of treatment parameters by alteration of the number and length of aerobic and anaerobic stages in the sequencing batch reactor (SBR) working cycle may influence the efficiency of ammonium oxidation and induce changes in the AOB community. Therefore, in the research, the impact of an SBR cycle mode with alternating aeration/ mixing conditions (7 h/1 h vs. 4 h/5.5 h) and volumetric exchange rate (n) on AOB abundance and diversity in activated sludge during the treatment of anaerobic sludge digester supernatant at limited oxygen concentration in the aeration stage (0.7 mg O2/l) was assessed. AOB diversity expressed by the Shannon-Wiener index (H') was determined by the cycle mode. At aeration/mixing stage lengths of 7 h/1 h, H' averaged 2.48 +/- 0.17, while at 4 h/ 5.5 h it was 2.35 +/- 0.16. At the given mode, AOB diversity decreased with increasing n. The cycle mode did not affect AOB abundance; however, a higher AOB abundance in activated sludge was promoted by decreasing the volumetric exchange rate. The sequences clustering with Nitrosospira sp. NpAV revealed the uniqueness of the AOB community and the simultaneously lower ability of adaptation of Nitrosospira sp. to the operational parameters applied in comparison with Nitrosomonas sp.  相似文献   

12.

Aim

To provide deeper insights into nitrification process within aerobic bioreactors containing supplemental physical support media (hybrid bioreactors).

Methods and Results

Three bench‐scale hybrid bioreactors with different media size and one control bioreactor were operated to assess how biofilm integrity influences microbial community conditions and bioreactor performance. The systems were operated initially at a 5‐day hydraulic retention time (HRT), and all reactors displayed efficient nitrification and chemical oxygen demand (COD) removal (>95%). However, when HRT was reduced to 2·5 days, COD removal rates remained high, but nitrification efficiencies declined in all reactors after 19 days. To explain reduced performance, nitrifying bacterial communities (ammonia‐oxidizing bacteria, AOB; nitrite‐oxidizing bacteria, NOB) were examined in the liquid phase and also on the beads using qPCR, FISH and DGGE. Overall, the presence of the beads in a reactor promoted bacterial abundances and diversity, but as bead size was increased, biofilms with active coupled AOB–NOB activity were less apparent, resulting in incomplete nitrification.

Conclusions

Hybrid bioreactors have potential to sustain effective nitrification at low HRTs, but support media size and configuration type must be optimized to ensure coupled AOB and NOB activity in nitrification.

Significance and Impact of the Study

This study shows that AOB and NOB coupling must be accomplished to minimize nitrification failure.  相似文献   

13.
The effect of environmental conditions, especially ammonium concentration, on community composition and nitrification activity of nitrifying bacterial biofilms in a pilot wastewater treatment plant was examined. A decreasing ammonium gradient was created when four aerated tanks with suspended carrier material were serially fed with wastewater. Community composition was analysed using fluorescence in situ hybridization (FISH) probes as well as partial 16S rRNA and amoA gene analysis using polymerase chain reaction-denaturating gradient gel electrophoresis (PCR-DGGE) and sequencing. Fluorescence in situ hybridization probes identified at least five ammonia-oxidizing bacterial (AOB) and two nitrite-oxidizing bacterial (NOB) populations. A change in nitrifying community was detected in the tanks, indicating that ammonium was an important structuring factor. Further, we found support for different autoecology within the Nitrosomonas oligotropha lineage, as at least one population within this lineage increased in relative abundance with ammonium concentration while another population decreased. Absolute numbers of AOB and NOB growing in biofilms on the carriers were determined and the cell specific nitrification rates calculated seemed strongly correlated to ammonium concentration. Oxygen could also be limiting in the biofilms of the first tank with high ammonium concentrations. The response of the nitrifying community to increased ammonium concentrations differed between the tanks, indicating that activity correlates with community structure.  相似文献   

14.
Chemical inhibition of nitrification in activated sludge   总被引:5,自引:0,他引:5  
Conventional aerobic nitrification was adversely affected by single pulse inputs of six different classes of industrially relevant chemical toxins: an electrophilic solvent (1-chloro-2,4-dinitrobenzene, CDNB), a heavy metal (cadmium), a hydrophobic chemical (1-octanol), an uncoupling agent (2,4-dinitrophenol, DNP), alkaline pH, and cyanide in its weak metal complexed form. The concentrations of each chemical source that caused 1 5, 25, and 50% respiratory inhibition of a nitrifying mixed liquor during a short-term assay were used to shock sequencing batch reactors containing nitrifying conventional activated sludge. The reactors were monitored for recovery over a period of 30 days or less. All shock conditions inhibited nitrification, but to different degrees. The nitrate generation rate (NGR) of the shocked reactors recovered overtime to control reactor levels and showed that it was a more sensitive indicator of nitrification inhibition than both initial respirometric tests conducted on unexposed biomass and effluent nitrogen species analyses. CDNB had the most severe impact on nitrification, followed by alkaline pH 11, cadmium, cyanide, octanol, and DNP. Based on effluent data, cadmium and octanol primarily inhibited ammonia-oxidizing bacteria (AOB) while CDNB, pH 11,and cyanide inhibited both AOB and nitrite-oxidizing bacteria (NOB). DNP initially inhibited nitrification but quickly increased the NGR relative to the control and stimulated nitrification after several days in a manner reflective of oxidative uncoupling. The shocked mixed liquor showed trends toward recovery from inhibition for all chemicals tested, but in some cases this reversion was slow. These results contribute to our broader effort to identify relationships between chemical sources and the process effects they induce in activated sludge treatment systems.  相似文献   

15.
Nitrospira is a dominant member of nitrite-oxidizing bacteria (NOB) in nitrifying bioreactors as well as in natural habitats. In this study, Nitrospira NOB were investigated in the two nitrifying reactors operated with high and low dissolved oxygen (DO) concentrations for a period of 300 days. Phylogenetic and terminal restriction fragment length polymorphism analyses based on 16S rRNA gene sequences revealed that the Nitrospira community compositions of the two reactors during the early period related to group 1 and half of the Nitrospira community composition shifted to group 2 in the high-DO reactor after day 179, although there was no significant change in the low-DO reactor. These results suggested that DO was an important factor affecting Nitrospira community compositions in the nitrifying reactors.  相似文献   

16.
Culture enrichments and culture-independent molecular methods were employed to identify and confirm the presence of novel ammonia-oxidizing bacteria (AOB) in nitrifying freshwater aquaria. Reactors were seeded with biomass from freshwater nitrifying systems and enriched for AOB under various conditions of ammonia concentration. Surveys of cloned rRNA genes from the enrichments revealed four major strains of AOB which were phylogenetically related to the Nitrosomonas marina cluster, the Nitrosospira cluster, or the Nitrosomonas europaea-Nitrosococcus mobilis cluster of the beta subdivision of the class Proteobacteria. Ammonia concentration in the reactors determined which AOB strain dominated in an enrichment. Oligonucleotide probes and PCR primer sets specific for the four AOB strains were developed and used to confirm the presence of the AOB strains in the enrichments. Enrichments of the AOB strains were added to newly established aquaria to determine their ability to accelerate the establishment of ammonia oxidation. Enrichments containing the Nitrosomonas marina-like AOB strain were most efficient at accelerating ammonia oxidation in newly established aquaria. Furthermore, if the Nitrosomonas marina-like AOB strain was present in the original enrichment, even one with other AOB, only the Nitrosomonas marina-like AOB strain was present in aquaria after nitrification was established. Nitrosomonas marina-like AOB were 2% or less of the cells detected by fluorescence in situ hybridization analysis in aquaria in which nitrification was well established.  相似文献   

17.
In this study, we analysed the nitrifying microbial community (ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB)) within three different aerobic granular sludge treatment systems as well as within one flocculent sludge system. Granular samples were taken from one pilot plant run on municipal wastewater as well as from two lab-scale reactors. Fluorescent in situ hybridization (FISH) and quantitative PCR (qPCR) showed that Nitrobacter was the dominant NOB in acetate-fed aerobic granules. In the conventional system, both Nitrospira and Nitrobacter were present in similar amounts. Remarkably, the NOB/AOB ratio in aerobic granular sludge was elevated but not in the conventional treatment plant suggesting that the growth of Nitrobacter within aerobic granular sludge, in particular, was partly uncoupled from the lithotrophic nitrite supply from AOB. This was supported by activity measurements which showed an approximately threefold higher nitrite oxidizing capacity than ammonium oxidizing capacity. Based on these findings, two hypotheses were considered: either Nitrobacter grew mixotrophically by acetate-dependent dissimilatory nitrate reduction (ping-pong effect) or a nitrite oxidation/nitrate reduction loop (nitrite loop) occurred in which denitrifiers reduced nitrate to nitrite supplying additional nitrite for the NOB apart from the AOB.  相似文献   

18.
Nitrification plays a significant role in the global nitrogen cycle. Ammonia oxidation, the first step of nitrification, is performed in wastewater treatment by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). Most previous studies focused on their distribution in natural environments. In this study we qualified and quantified AOB, AOA, total bacteria, and total archaea in six different wastewater treatment systems (WTSs) using clone library and real-time PCR techniques. The results revealed that wastewater quality was an essential factor for the distribution of AOB and AOA in aerobic reactors. Although both AOB and AOA were present in all samples and contributed to nitrification simultaneously, AOB were the dominant nitrifiers in the three industrial WTSs, whereas AOA were dominant in the three domestic WTSs. This indicates AOA may be more sensitive to some toxic compounds than AOB. In addition, the dominant groups of AOB in the industrial WTSs were Nitrosomonas and Nitrosospira; the composition of AOA in the domestic WTSs was very similar, possibly due to the same source of raw sewage.  相似文献   

19.
The optimum growth requirements of two nitrifying consortia developed from treated sewage by enrichment technique were determined by a series of experiments. There was total inhibition of nitrification at above 2.75 g l(-1) NH4(+)- N and 2.5 g l(-1) NO2(-)-N and the ammonia oxidizing consortium preferred a pH at 8.5 and the nitrite oxidizing consortium a pH of 7.5 as the optima for nitrification. Optimum temperatures were between 20 degrees and 30 degrees C for both the groups. As the rate of airflow was increased from 1 to 7 l/min, the build-up of NO2(-)-N increased 10-fold and the consumption of NO2(-)-N increased by a factor of 28.8 implying that the ammonia oxidizing consortium in a bioreactor required three times more aeration than that for nitrite oxidizers for expressing their full nitrifying potential. These data directly contribute for developing a fermentation process for the mass production of nitrifiers as well as for designing bioreactors for nitrifying sewage.  相似文献   

20.
Recently, partial nitrification has been adopted widely as a first step of both nitrite shunt and deammonification processes towards efficient and economical nitrogen removal from wastewater. Effective partial nitrification relies on stimulating the first step of nitrification while inhibiting the second step and by consequence accumulating ammonia-oxidizing bacteria (AOB). Successful AOB accumulation depends upon the knowledge of their microbial characteristics and kinetics parameters as well as the main parameters that can selectively inhibits NOBs’ growth or allow AOBs to outcompete them. Several bioreactors configurations either in suspended or attached growth have been used towards achieving partial nitrification using different inhibition conditions. This review aims to illustrate an up to date version of the metabolism and factors affecting AOB growth and summarize the current bioreactors configurations in all lab-scale and full-scale applications for AOB. Moreover, successful partial nitrification attempts in the literature in suspended and attached growth systems have been complied. Additionally, the possibility of improving the current applications of AOB and the integration into the operation of existing WWTPs in order to transform into water resources recovery facility has been presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号