首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chaperone mini-GroEL is a soluble recombinant fragment containing the 191-345 amino acid sequence of GroEL with a 6xHis tag. The refolding protocol assisted with mini-GroEL was studied for the activity recovery of rhIFN-gamma inclusion bodies. In a suspended system, mini-GroEL showed significant enhancement of the activity recovery of rhIFN-gamma, applyed with a 1-5:1 stoichiometry of mini-GroEL to rhIFN-gamma at 25 degrees C. Moreover, 1 M urea in the renaturation buffer had a synergistic effect on suppressing the aggregation and improving the activity recovery. Finally, a novel chromatographic column, containing 1 cm height of Sephadex G 200 at the top of column and packed with immobilized mini-GroEL to promote refolding, was devised. The total activity recovered per milligram of denatured rhIFN-gamma was up to 3.93 x 10(6) IU with the immobilized mini-GroEL column, which was reused four times without evident loss of renaturation ability. A convenient technique with the integrated process of chaperon preparation and rhIFN-gamma folding in vitro was developed.  相似文献   

2.
Expression of recombinant proteins in Escherichia coli often leads to formation of inclusion bodies (IB). If a recombinant protein contains one or more disulfide bonds, protein refolding and thiol oxidation reactions are required to recover its biological activity. Previous studies have demonstrated that molecular chaperones and foldases assist with the in vitro protein refolding. However, their use has been limited by the stoichiometric amount required for the refolding reaction. In search of alternatives to facilitate the use of these folding biocatalysts in this study, DsbA, DsbC, and the apical domain of GroEL (AD) were fused to the carbohydrate-binding module CBDCex of Cellulomonas fimi. The recombinant proteins were purified and immobilized in cellulose and used to assist the oxidative refolding of denatured and reduced lysozyme. The assisted refolding yields obtained with immobilized folding biocatalysts were at least twice of those obtained in the spontaneous refolding, suggesting that the AD, DsbA, and DsbC immobilized in cellulose might be useful for the oxidative refolding of recombinant proteins that are expressed as inclusion bodies. In addition, the spontaneous or assisted refolding kinetics data fitted well (r2 > 0.9) to a previously reported lysozyme refolding model. The estimated refolding (k N) and aggregation (k A) constants were consistent with the hypothesis that foldases assisted the oxidative refolding of lysozyme by decreasing protein aggregation rather than increasing the refolding rate.  相似文献   

3.
DsbA (disulfide bond formation protein A) is essential for disulfide bond formation directly affecting the nascent peptides folding to the correct conformation in vivo. In this paper, recombinant DsbA protein was employed to catalyze denatured lysozyme refolding and inhibit the aggregation of folding intermediates in vitro. Statistical methods, i.e., Plackett–Burman design and small central composite design, were adopted to screen out important factors affecting the refolding process and correlating these parameters with the refolding efficiency including both protein recovery and specific activity of refolded lysozyme. Four important parameters: initial lysozyme concentration, urea concentration, KCl concentration and GSSG (glutathione disulfide) concentration were picked out and operating conditions were optimized by introducing the effectiveness coefficient method and transforming the multiple objective programming into an ordinary constrained optimization issue. Finally, 99.7% protein recovery and 25,600 U/mg specific activity of lysozyme were achieved when 281.35 μg/mL denatured lysozyme refolding was catalyzed by an equivalent molar of DsbA at the optimal settings. The results indicated that recombinant DsbA protein could effectively catalyze the oxidized formation and reduced isomerization of intramolecular disulfide bonds in the refolding of lysozyme in vitro.  相似文献   

4.
A refolding strategy was described for on-column refolding of recombinant human interferon-gamma (rhIFN-gamma) inclusion bodies by expanded bed adsorption (EBA) chromatography. After the denatured rhIFN-gamma protein bound onto the cation exchanger of STREAMLINE SP, the refolding process was performed in expanded bed by gradually decreasing the concentration of urea in the buffer and the refolded rhIFN-gamma protein was recovered by the elution in packed bed mode. It was demonstrated that the denatured rhIFN-gamma protein could be efficiently refolded by this method with high yield. Under appropriate experimental conditions, the protein yield and specific activity of rhIFN-gamma was up to 52.7% and 8.18 x 10(6) IU/mg, respectively.  相似文献   

5.
A hexahistidine tag was fused to the N-terminus of apoaequorin. A suitable vector encoding the fusion protein was constructed and used for transformation of Escherichia coli JM109 cells. Apoaequorin was overexpressed under the control of tac promoter. It was found, however, that most of the protein existed in the form of inclusion bodies. Inclusion bodies were solubilized with urea, followed by purification and refolding of (His)(6)-apoaequorin in a single chromatographic step by immobilized metal-ion affinity chromatography using Ni(2+)-nitrilotriacetic acid agarose. The purity, as determined by SDS-PAGE analysis, was greater than 80%. The yield was 0.7-1 mg apoaequorin from a 50 ml bacterial culture. The kinetics of light emission of purified aequorin upon addition of Ca(2+) was typical of the commercial aequorin. The luminescence of the purified aequorin was a linear function of its concentration extending over six orders of magnitude. As low as 0.5 attomoles purified aequorin gave a signal-to-noise ratio of 1.8.  相似文献   

6.
Interleukin-4 (IL4) is a multifunctional cytokine which plays a key role in the immune system. Several antagonists/agonists of IL4 are reported through mutagenesis studies, but their solution structural studies using nuclear magnetic resonance (NMR) spectroscopy are hindered as milligram quantities of isotopically labeled protein are required for structural refinements. In this work, a His-tagged recombinant form of human IL4 was overexpressed in Escherichia coli under the control of a T7 promoter. The resulting inclusion bodies were separated from cellular debris by centrifugation and solubilized by 6M guanidine-HCl in the presence of reducing agents. The denatured IL4 was immobilized on Ni2+-fractogel beads and refolded in a single chromatographic step by gradual removal of denaturant. This protocol yielded 15-20 mg of isotope-enriched protein from 1L of culture grown in minimal medium. The refolded protein was highly pure and was correctly folded as judged by its two-dimensional NMR spectrum. To show the successful application of this refolding protocol to IL4 variants, 15N-labeled Y124D-IL4 was also prepared and its first two-dimensional NMR spectrum was presented.  相似文献   

7.
We have applied an efficient solid-phase protein refolding method to the milligram scale production of natively folded recombinant chemokine proteins. Chemokines are intensely studied proteins because of their roles in immune system regulation, response to inflammation, fetal development, and numerous disease states including, but not limited to, HIV-1/AIDS, cancer metastasis, Crohn's disease, asthma and arthritis. Many investigators use recombinant chemokines for research purposes, however these proteins partition almost exclusively to the inclusion body fraction when produced in Escherichia coli. A major hurdle is to correctly refold the chemokine and oxidize the two highly conserved disulfide bonds found in nearly all chemokines. Conventional methods for oxidation and refolding by dialysis or extreme dilution are effective but slow and yield large volumes of dilute chemokine. Here we use an on-column approach for rapid refolding and oxidation of four chemokines, CXCL12/SDF-1alpha (stromal cell-derived factor-1alpha), CCL5/RANTES, XCL1/lymphotactin, and CX3CL1/fractalkine. NMR spectra of SDF-1alpha, RANTES, lymphotactin, and fractalkine indicate these chemokines adopt native structures. On-column refolded SDF-1alpha is fully active in an intracellular calcium flux assay. Our success with multiple SDF-1alpha mutants and members of all four chemokine subfamilies suggests that on-column refolding is a robust method for preparative-scale production of recombinant chemokine proteins.  相似文献   

8.
A continuous refolding method with addition of denatured protein solution in a fed-batch manner through a ceramic membrane tube was developed. Denatured and fully reduced lysozyme was continuously refolded with high refolding efficiencies. In this method, a denatured lysozyme solution was gradually added from the outer surface of the membrane tube into a refolding buffer flowing continuously inside the tube under controlled mixing conditions. The refolding efficiencies of lysozyme in this continuous refolding were higher than those in a batch dilution method. This method has applicability to large-scale downstream processes and can attain a high efficiency and protein concentration in refolding. Refolded proteins can be supplied continuously following purification steps.  相似文献   

9.
Interferon-lambda1 (IFN-lambda1) is a member of the recently discovered type III IFNs (IFN-lambda), which possesses antiviral, antitumor, and immunomodulatory activities. In this study, the recombinant human IFN-lambda1 containing a hexahistidine tag was expressed in Escherichia coli. IFN-lambda1 was overexpressed under the control of T7 promoter and most of the protein existed in the form of inclusion bodies. The expressed insoluble protein was solubilized with urea, purified and refolded by one-step immobilized metal-ion affinity chromatography using Ni(2+)-nitrilotriacetic acid agarose. The purified IFN-lambda1 appeared as a single band on SDS-PAGE and the purity was more than 95%. The yield was 86 mg IFN-lambda1 from 1L of bacterial culture. Western blotting and N-terminal sequencing confirmed the identity of the purified protein. The purified IFN-lambda1 exhibited specific antiviral activity as demonstrated by a cytopathic effect reduction assay. Thus, this on-column refolding method provides an efficient way to obtain an active IFN-lambda1 with high yield and high purity.  相似文献   

10.
The EC-SOD cDNA was cloned by polymerase chain reaction (PCR) and inserted into the Escherichia coli expression plasmid pET-28a( ) and transformed into E. coli BL21 (DE3). The corresponding protein that was overexpressed as a recombinant His6-tagged EC-SOD was present in the form of inactive inclusion bodies. This structure was first solubilized under denaturant conditions (8.0 M urea). Then, after a capture step using immobilized metal affinity chromatography (IMAC), a gradual refolding of the protein was performed on-column using a linear urea gradient from 8.0 M to 1.5 M in the presence of glutathione (GSH) and oxidized glutathione (GSSG). The mass ratio of GSH to GSSG was 4:1. The purified enzyme was active,showing that at least part of the protein was properly refolded. The protein was made concentrated by ultrafiltration, and then isolated using Sephacryl S-200 HR. There were two protein peaks in the A280 profile.Based on the results of electrophoresis, we concluded that the two fractions were formed by protein subunits of the same mass, and in the fraction where the molecular weight was higher, the dimer was formed through the disulfide bond between subunits. Activities were detected in the two fractions, but the activity of the dimer was much higher than that of the single monomer. The special activities of the two fractions were found to be 3475 U/mg protein and 510 U/mg protein, respectively.  相似文献   

11.
The present study aimed to obtain more effective refolding agents and to understand the influence of their chemical structures on their function as refolding agents. To achieve these aims, we investigated the effects of a large variety of N'-substituted N-methylimidazolium chlorides on the oxidative refolding of lysozyme in a high throughput manner. Among the molecules examined, N-methylimidazolium cations with a short N'-alkyl chain, such as an N'-ethyl or N'-butyl chain, significantly enhanced the refolding yield compared to conventional refolding additives such as arginine hydrochloride and Triton X-100. Detailed kinetic analyses revealed that the effective cations selectively decreased the aggregation rate constant (kA) without any large decreases in the folding rate constant (kN). However, when the hydrophobicity of the N'-substituent of the cations was increased, the desirable properties of the short N'-alkyl chain-type cations for protein refolding were diminished. Furthermore, increases in the N'-alkyl chain length to an N'-octyl or N'-dodecyl chain drastically decreased the kA values, thereby increasing the ratio of kN to kA, despite the very small kN values and resulting in enhanced refolding yields. Thus, by tuning the chemical structure of the N'-substituents of N-methylimidazolium chloride, five effective refolding agents (N'-ethyl-, N'-propyl-, N'-butyl-, N'-pentyl- and N'-isobutyl-N-methylimidazolium chlorides) were successfully obtained, and the kinetic parameters of folding and aggregation during the refolding process could be controlled using three different modes.  相似文献   

12.
The influence of several parameters on the gel filtration refolding of hen egg white lysozyme from a starting concentration of 40 mg/ml was investigated. Refolding was found to be unaffected by temperature between 30 and 50°C, giving 100% recovered specific activity. At 10°C a 20% reduction in refolding yield was observed. Refolding was carried out successfully with both acrylamide (Sephacryl S100)- and dextran (Superdex 75)-based gel media. At the isoelectric pH of lysozyme, aggregation was suppressed in the column method, whereas protein aggregates were formed during dilution-based refolding. A number of compounds (carboxymethyl cellulose, dextran, sucrose) were added to the mobile phase to reduce the relative viscosity between the sample and mobile phase. Only sucrose, up to 20% (wt), was found not to interfere with lysozyme refolding.  相似文献   

13.
An exopolyphosphatase gene has been cloned by polymerase chain reaction (PCR) from Trypanosoma brucei and the corresponding protein overexpressed as a recombinant His-tag (histidine tag) exopolyphosphatase in E. coli in order to characterize its biochemical activity and to produce antibody to determine its localization. Because overexpression of this protein in bacteria resulted in the formation of inactive inclusion bodies, these structures were first solubilized in denaturant condition (6 M urea). Secondly, after a capture step using immobilized metal affinity chromatography (IMAC), a gradual refolding of the protein was performed on-column from 6 M to 0 M urea in the presence of 1% Triton X-100. Triton X-100 was used to abolish protein aggregation during the refolding step. The purified enzyme was active, demonstrating that at least part of the proteins was properly refolded.  相似文献   

14.
Recombinant Staphylococcus aureus elongation factor G (EF-G) is difficult to refold by dilution due to the formation of large amounts of misfolded structures. However, refolding of EF-G by adsorption to a chromatographic column packed with immobilized polyethylene glycol 20,000 (PEG 20 K) followed by pulse elution with 8 M urea resulted in 88% mass recovery and 80% of correctly refolded structure. The PEG 20 K was coupled to brominated allyl group derivatized Sepharose High Performance to construct a mild hydrophobic adsorbent. Various other hydrophobic interaction adsorbents were also attempted to refold EF-G. However, ligands with high hydrophobicity tended to misfold EF-G, resulting in irreversible adsorption. Various solvents, detergents, and low temperature as well as 8 M urea were tried to release bound EF-G. Only pulse elution with 8 M urea was efficient. Urea concentrations favorable for efficiently refolding EF-G were investigated. Low urea concentration produced more misfolded structures.  相似文献   

15.
Prion protein has a key role in the occurrence of transmissible spongiform encephalopathy (TSE) and development of these diseases. Here, we provide a convenient procedure for on-column purification and refolding of the full-length mature bovine prion protein (bPrP) from Escherichia coli using immobilized metal (Ni) affinity chromatography, based on the metal-binding property of its unusual octarepeat sequences containing six tandem copies. Following extensive washing, the bPrP pellet was solubilized by guanidine hydrochloride and subjected to Ni-NTA agarose column. Purification and refolding were achieved by stepwise gradient washing with reduced guanidine hydrochloride concentrations. Triton X-100 and beta-mercaptoethanol were required in this rapid refolding process. The isolated prion protein was identified by monoclonal antibodies and its integrity was monitored by mass spectroscopy. Its correct folding was confirmed from circular dichroism (CD) experiments. Moreover, thioflavin T-binding assay showed that the recombinant bPrP could be transformed into amyloid fiber structures like that of the infectious prion isoform PrP(sc).  相似文献   

16.
A method for the production and purification of biologically active recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF), expressed in Escherichia coli, has been developed. Washing of an inclusion body fraction which allows the removal of numerous ballast proteins and on-column refolding of rhGM-CSF are specific characteristics of the method. The refolding efficiency reached 70%; the purity of the preparation constituted 95%. The biological activity was similar to those of other recombinant hGM-CSF analogs.  相似文献   

17.
Kinetics and mechanism of the refolding of denatured ribonuclease A   总被引:2,自引:0,他引:2  
P W Mui  Y Konishi  H A Scheraga 《Biochemistry》1985,24(16):4481-4489
On the basis of two experimental observations, it is established that the refolding mechanism of ribonuclease A (RNase A) is independent of the nature of the denaturant used [urea or guanidine hydrochloride (Gdn.HCl)]. First, by use of a double-jump technique, it is demonstrated that a similar nativelike intermediate exists on the major slow-folding pathway of both urea- and Gdn.HCl-denatured RNase A. Second, from the temperature dependence of the slow-refolding kinetics, it is shown that the activation parameters (both enthalpy and entropy) of the rate-limiting steps, as monitored by tyrosine absorbance and fluorescence, are identical for the refolding of urea- and Gdn.HCl- denatured RNase A. A refolding scheme involving one intermediate on each of the two slow-folding pathways is proposed by adopting the notion that RNase A refolds through a sequential mechanism. However, these two intermediates are formed from their respective unfolded forms (USII and USI) through two different processes of distinct physical origin. The intermediate IN, which is formed from the major slow-folding species USII through a conformational folding step, already possesses many properties of the native protein. In contrast, the intermediate (designated as I') on the minor slow-folding pathway is formed from USI by the isomerization of a proline residue (possibly Pro93) and is still conformationally unfolded. It is shown that such a refolding scheme can account for the known kinetic features of both major and minor slow-refolding pathways of RNase A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The oxidative refolding of reduced, denatured hen egg white lysozyme in the presence of a mixed macromolecular crowding agent containing both bovine serum albumin (BSA) and polysaccharide has been studied from a physiological point of view. When the total concentration of the mixed crowding agent is 100 g/liter, in which the weight ratio of BSA to dextran 70 is 1:9, the refolding yield of lysozyme after refolding for 4 h under this condition increases 24% compared with that in the presence of BSA and 16% compared with dextran 70. A remarkable increase in the refolding yield of lysozyme by a mixed crowding agent containing BSA and Ficoll 70 is also observed. Further folding kinetics analyses show that these two mixed crowding agents accelerate the oxidative refolding of lysozyme remarkably, compared with single crowding agents. These results suggest that the stabilization effects of mixed macromolecular crowding agents are stronger than those of single polysaccharide crowding agents such as dextran 70 and Ficoll 70, whereas the excluded volume effects of mixed macromolecular crowding agents are weaker than those of single protein crowding agents such as BSA. Both the refolding yield and the rate of the oxidative refolding of lysozyme in these two mixed crowded solutions with suitable weight ratios are higher than those in single crowded solutions, indicating that mixed macromolecular crowding agents are more favorable to lysozyme folding and can be used to simulate the intracellular environments more accurately than single crowding agents do.  相似文献   

19.
Proteins are essential for cellular and biological processes. Proteins are synthesized and fold into the native structure to become active. The inability of a protein molecule to remain in its native conformation is called as protein misfolding, and this is due to several environmental factors. Protein misfolding and aggregation handle several human diseases. Protein misfolding is believed to be one of the causes of several disorders such as cancer, degenerative diseases, and metabolic pathologies. The zinc oxide (ZnO) nanoparticle was significantly promoted refolding of thermally denatured green fluorescent protein (GFP). In the present study, ZnO nanoparticles interaction with GFP was investigated by ultraviolet ‐ visible spectrophotometer, fluorescence spectrophotometer, and dynamic light scattering. Results suggest that the ZnO nanoparticles significantly assist the refolding of denatured GFP. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Raman scattering of native and thermally denatured lysozyme   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号