首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Anabaena sp. PCC 7120 is a filamentous cyanobacterium that serves as a model to analyze prokaryotic cell differentiation, evolutionary development of plastids, and the regulation of nitrogen fixation. The cell wall is the cellular structure in contact with the surrounding medium. To understand the dynamics of the cell wall proteome during cell differentiation, the cell wall from Anabaena heterocysts was enriched and analyzed. In line with the recently proposed continuity of the outer membrane along the Anabaena filament, most of the proteins identified in the heterocyst cell-wall fraction are also present in the cell wall of vegetative cells, even though the lipid content of both membranes is different.  相似文献   

4.
5.
In response to deprivation for fixed nitrogen, the filamentous cyanobacterium Anabaena sp. strain PCC 7120 provides a microoxic intracellular environment for nitrogen fixation through the differentiation of semiregularly spaced vegetative cells into specialized cells called heterocysts. The devH gene is induced during heterocyst development and encodes a product with characteristics of a trans-acting regulatory protein. A devH mutant forms morphologically distinguishable heterocysts but is Fox(-), incapable of nitrogen fixation in the presence of oxygen. We demonstrate that rearrangements of nitrogen fixation genes take place normally in the devH mutant and that it is Fix(+), i.e., has nitrogenase activity under anoxic conditions. The Fox(-) phenotype was shown by ultrastructural studies to be associated with the absence of the glycolipid layer of the heterocyst envelope. The expression of glycolipid biosynthetic genes in the mutant is greatly reduced, and heterocyst glycolipids are undetectable.  相似文献   

6.
7.
Two operons have been cloned from Anabaena sp. strain PCC 7120 DNA, each of which encodes the three core subunits of distinct mitochondrial-type cytochrome c oxidases. The two operons are only 72 to 85% similar to one another at the nucleotide level in the most conserved subunit. One of these, coxBACII, is induced >20-fold in the middle to late stages of heterocyst differentiation. Analysis of green fluorescent protein reporters indicates that this operon is expressed specifically in proheterocysts and heterocysts. The other operon, coxBACI, is induced only 2.5-fold following nitrogen step-down and is expressed in all cells. Surprisingly, a disruption mutant of coxAII, the gene encoding subunit I of the heterocyst-specific oxidase, grows normally in the absence of combined nitrogen. It is likely that coxBACI and/or two other putative terminal oxidases present in the Anabaena sp. strain PCC 7120 genome are able to compensate for the loss of the heterocyst-specific oxidase in providing ATP for nitrogen fixation and maintaining a low oxygen level in heterocysts.  相似文献   

8.
An 11-kilobase-pair element interrupts the nifD gene in vegetative cells of Anabaena sp. strain PCC 7120. The nifD element normally excises only from the chromosomes of cells that differentiate into nitrogen-fixing heterocysts. The xisA gene contained within the element is required for the excision. Shuttle vectors containing the Escherichia coli tac consensus promoter fused to various 5' deletions of the xisA gene were constructed and conjugated into Anabaena sp. strain PCC 7120 cells. Some of the expression plasmids resulted in excision of the nifD element in a high proportion of vegetative cells. Excision of the element required deletion of an xisA 5' regulatory region which presumably blocks expression in Anabaena sp. strain PCC 7120 vegetative cells but not in E. coli. Strains lacking the nifD element grew normally in medium containing a source of combined nitrogen and showed normal growth and heterocyst development in medium lacking combined nitrogen. The xisA gene was shown to be the only Anabaena gene required for the proper rearrangement in E. coli of a plasmid containing the borders of the nifD element.  相似文献   

9.
10.
The filamentous cyanobacterium Anabaena sp. strain PCC 7120 produces terminally differentiated heterocysts in response to a lack of combined nitrogen. Heterocysts are found approximately every 10th cell along the filament and are morphologically and biochemically specialized for nitrogen fixation. At least two DNA rearrangements occur during heterocyst differentiation in Anabaena sp. strain PCC 7120, both the result of developmentally regulated site-specific recombination. The first is an 11-kilobase-pair (kb) deletion from within the 3' end of the nifD gene. The second rearrangement occurs near the nifS gene but has not been completely characterized. The DNA sequences found at the recombination sites for each of the two rearrangements show no similarity to each other. To determine the topology of the rearrangement near the nifS gene, cosmid libraries of vegetative-cell genomic DNA were constructed and used to clone the region of the chromosome involved in the rearrangement. Cosmid clones which spanned the DNA separating the two recombination sites that define the ends of the element were obtained. The restriction map of this region of the chromosome showed that the rearrangement was the deletion of a 55-kb DNA element from the heterocyst chromosome. The excised DNA was neither degraded nor amplified, and its function, if any, is unknown. The 55-kb element was not detectably transcribed in either vegetative cells or heterocysts. The deletion resulted in placement of the rbcLS operon about 10 kb from the nifS gene on the chromosome. Although the nifD 11-kb and nifS 55-kb rearrangements both occurred under normal aerobic heterocyst-inducing conditions, only the 55-kb excision occurred in argon-bubbled cultures, indicating that the two DNA rearrangements can be regulated differently.  相似文献   

11.
PatS and products of nitrogen fixation control heterocyst pattern   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

12.
13.
Kuhn I  Peng L  Bedu S  Zhang CC 《Journal of bacteriology》2000,182(16):4640-4643
Heterocysts are terminally differentiated cells devoted to nitrogen fixation in the filamentous cyanobacterium Anabaena sp. strain PCC 7120. We show here that the cell division protein FtsZ is present in vegetative cells but undetectable in heterocysts. These results provide a first rational explanation for the inability of mature heterocysts to undergo cell division.  相似文献   

14.
15.
16.
Heterocysts, formed when filamentous cyanobacteria, such as Anabaena sp. strain PCC 7120, are grown in the absence of combined nitrogen, are cells that are specialized in fixing atmospheric nitrogen (N(2)) under oxic conditions and that transfer fixed nitrogen to the vegetative cells of the filament. Anabaena sp. mutants whose sepJ gene (open reading frame alr2338 of the Anabaena sp. genome) was affected showed filament fragmentation and arrested heterocyst differentiation at an early stage. In a sepJ insertional mutant, a layer similar to a heterocyst polysaccharide layer was formed, but the heterocyst-specific glycolipids were not synthesized. The sepJ mutant did not exhibit nitrogenase activity even when assayed under anoxic conditions. In contrast to proheterocysts produced in the wild type, those produced in the sepJ mutant still divided. SepJ is a multidomain protein whose N-terminal region is predicted to be periplasmic and whose C-terminal domain resembles an export permease. Using a green fluorescent protein translationally fused to the carboxyl terminus of SepJ, we observed that in mature heterocysts and vegetative cells, the protein is localized at the intercellular septa, and when cell division starts, it is localized in a ring whose position is similar to that of a Z ring. SepJ is a novel composite protein needed for filament integrity, proper heterocyst development, and diazotrophic growth.  相似文献   

17.
HetR is the master regulator of heterocyst differentiation in the filamentous cyanobacterium Anabaena sp. strain PCC 7120. Genetic selection was used to identify 33 amino acid substitutions in HetR that reduced the proportion of cells undergoing heterocyst differentiation to less than 2%. Conservative substitutions in the wild-type HetR protein revealed three mutations that dramatically reduced the amount of heterocyst differentiation when the mutant allele was present in place of the wild-type allele on a replicating plasmid in a mutant lacking hetR on the chromosome. An H69Y substitution resulted in heterocyst formation among less than 0.1% of cells, and D17E and G36A substitutions resulted in a Het- phenotype, compared to heterocyst formation among approximately 25% of cells with the wild-type hetR under the same conditions. The D17E substitution prevented DNA binding activity exhibited by wild-type HetR in mobility shift assays, whereas G36A and H69Y substitutions had no affect on DNA binding. D17E, G36A, and H69Y substitutions also resulted in higher levels of the corresponding HetR protein than of the wild-type protein when each was expressed from an inducible promoter in a hetR deletion strain, suggesting an effect on HetR protein turnover. Surprisingly, C48A and S152A substitutions, which were previously reported to result in a Het- phenotype, were found to have no effect on heterocyst differentiation or patterning when the corresponding mutations were introduced into an otherwise wild-type genetic background in Anabaena sp. strain PCC 7120. The clustering of mutations that satisfied the positive selection near the amino terminus suggests an important role for this part of the protein in HetR function.  相似文献   

18.
19.
We have quantitatively modeled heterocyst differentiation after fixed nitrogen step-down in the filamentous cyanobacterium Anabaena sp. PCC 7120 without lateral inhibition due to the patterning proteins PatS or HetN. We use cell growth and division together with fixed-nitrogen dynamics and allow heterocysts to differentiate upon the local exhaustion of available fixed nitrogen. Slow transport of fixed nitrogen along a shared periplasmic space allows for fast growing cells to differentiate ahead of their neighbors. Cell-to-cell variability in growth rate determines the initial heterocyst pattern. Early release of fixed nitrogen from committed heterocysts allows a significant fraction of vegetative cells to be retained at later times. We recover the experimental heterocyst spacing distributions and cluster size distributions of Khudyakov and Golden [Khudyakov, I.Y., Golden, J.W., 2004. Different functions of HetR, a master regulator of heterocyst differentiation in Anabaena sp PCC 7120, can be separated by mutation. Proc. Natl. Acad. Sci. U. S. A. 101, 16040-16045].  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号