首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the processes that underpin the community assembly of bacteria is a key challenge in microbial ecology. We studied soil bacterial communities across a large-scale successional gradient of managed and abandoned grasslands paired with mature forest sites to disentangle drivers of community turnover and assembly. Diversity partitioning and phylogenetic null-modelling showed that bacterial communities in grasslands remain compositionally stable following abandonment and secondary succession but they differ markedly from fully afforested sites. Zeta diversity analyses revealed the persistence of core microbial taxa that both reflected and differed from whole-scale community turnover patterns. Differences in soil pH and C:N were the main drivers of community turnover between paired grassland and forest sites and the variability of pH within successional stages was a key factor related to the relative dominance of deterministic assembly processes. Our results indicate that grassland microbiomes could be compositionally resilient to abandonment and secondary succession and that the major changes in microbial communities between grasslands and forests occur fairly late in the succession when trees have established as the dominant vegetation. We also show that core taxa may show contrasting responses to management and abandonment in grasslands.  相似文献   

2.
It is uncertain whether the same ecological forces that structure plant and animal communities also shape microbial communities, especially those residing in soil. We sought to uncover the relative importance of present-day environmental characteristics, climatic variation, and historical contingencies in shaping soil actinobacterial communities in a long-term chronosequence. Actinobacteria communities were characterized in surface soil samples from four replicate forest stands with nearly identical edaphic and ecological properties, which range from 9500 to 14,000 years following glacial retreat in Michigan. Terminal restriction fragment length polymorphism (TRFLP) profiles and clone libraries of the actinobacterial 16S rRNA gene were constructed in each site for phenetic and phylogenetic analysis to determine whether dispersal limitation occurred following glacial retreat, or if community composition was determined by environmental heterogeneity. At every level of examination, actinobacterial community composition most closely correlated with distance, a surrogate for time, than with biogeochemical, plant community, or climatic characteristics. Despite correlation with leaf litter C:N and annual temperature, the significant and consistent relationship of biological communities with time since glacial retreat provides evidence that dispersal limitation is an ecological force structuring actinobacterial communities in soil over long periods of time.  相似文献   

3.
Altitudinally-defined climate conditions provide specific vegetation types and soil environments that could influence soil microbial communities, which in turn may affect microbial residues. However, the knowledge is limited in terms of the degree to which microbial communities and residues present and differ along altitude. In this study, we examined the soil microbial communities and residues along the northern slope of Changbai Mountain, China using phospholipid fatty acid (PLFA) and amino sugar analysis, respectively. Soil samples were taken from five different vegetation belts defined by climates. Principal component analysis (PCA) revealed substantial differences in soil microbial community composition among study sites, appeared to be driven primarily by soil pH and C/N ratio on the first principal component (PC1) which accounted for 50.7% of the total sample variance. The alpine tundra was separated from forest sites on the second principal component (PC2) by a signifiscantly higher amount of fungal PLFA (18:2ω6,9). Soil pH and C/N ratio were also correlated with the ratios of Gram-positive to Gram-negative bacteria (Gm+/Gm), glucosamine to galactosamine (GluN/GalN), and glucosamine to muramic acid (GluN/MurA). Both total PLFAs and amino sugars were positively correlated with soil organic carbon, inorganic nitrogen, available phosphorus and potassium. We concluded that soil pH and C/N ratio were the most important drivers for microbial community structure and amino sugar pattern, while substrate availability was of great importance in determining the concentrations of microbial communities and residues. These findings could be used to facilitate interpretation of soil microbial community and amino sugar data derived from measurements in latitude or managed forests.  相似文献   

4.
The bacterial and fungal rhizosphere communities of strawberry (Fragaria ananassa Duch.) and oilseed rape (Brassica napus L.) were analysed using molecular fingerprints. We aimed to determine to what extent the structure of different microbial groups in the rhizosphere is influenced by plant species and sampling site. Total community DNA was extracted from bulk and rhizosphere soil taken from three sites in Germany in two consecutive years. Bacterial, fungal and group-specific (Alphaproteobacteria, Betaproteobacteria and Actinobacteria) primers were used to PCR-amplify 16S rRNA and 18S rRNA gene fragments from community DNA prior to denaturing gradient gel electrophoresis (DGGE) analysis. Bacterial fingerprints of soil DNA revealed a high number of equally abundant faint bands, while rhizosphere fingerprints displayed a higher proportion of dominant bands and reduced richness, suggesting selection of bacterial populations in this environment. Plant specificity was detected in the rhizosphere by bacterial and group-specific DGGE profiles. Different bulk soil community fingerprints were revealed for each sampling site. The plant species was a determinant factor in shaping similar actinobacterial communities in the strawberry rhizosphere from different sites in both years. Higher heterogeneity of DGGE profiles within soil and rhizosphere replicates was observed for the fungi. Plant-specific composition of fungal communities in the rhizosphere could also be detected, but not in all cases. Cloning and sequencing of 16S rRNA gene fragments obtained from dominant DGGE bands detected in the bacterial profiles of the Rostock site revealed that Streptomyces sp. and Rhizobium sp. were among the dominant ribotypes in the strawberry rhizosphere, while sequences from Arthrobacter sp. corresponded to dominant bands from oilseed rape bacterial fingerprints.  相似文献   

5.
The soil microbial community is essential for maintaining ecosystem functioning and is intimately linked with the plant community. Yet, little is known on how soil microbial communities in the root zone vary at continental scales within plant species. Here we assess the effects of soil chemistry, large-scale environmental conditions (i.e. temperature, precipitation and nitrogen deposition) and forest land-use history on the soil microbial communities (measured by phospholipid fatty acids) in the root zone of four plant species (Geum urbanum, Milium effusum, Poa nemoralis and Stachys sylvatica) in forests along a 1700 km latitudinal gradient in Europe.Soil microbial communities differed significantly among plant species, and soil chemistry was the main determinant of the microbial community composition within each plant species. Influential soil chemical variables for microbial communities were plant species-specific; soil acidity, however, was often an important factor. Large-scale environmental conditions, together with soil chemistry, only explained the microbial community composition in M. effusum and P. nemoralis. Forest land-use history did not affect the soil microbial community composition.Our results underpin the dominant role of soil chemistry in shaping microbial community composition variation within plant species at the continental scale, and provide insights into the composition and functionality of soil microbial communities in forest ecosystems.  相似文献   

6.
The influences on soil chemical and microbial properties of parent material, north south aspect and time measured as stand age were investigated in six spruce (Picea abies (L.) Karst.) forests located in the alpine range of Northern Italy. Soil samples from A horizons were analysed for humic substances and in parallel Amplified Ribosomal DNA Restriction Analysis (ARDRA) community profiles and microbial biomass carbon and nitrogen content were determined. Chemical data were analyzed by canonical discriminant analysis while the ARDRA fingerprints were ordered in clusters using image analysis software. The geologic parent material was the most determining factor and the aspect-dependent microclimate features also played a distinct role in defining both soil chemistry and microbial community composition; in contrast the composition of the deeper humus layers (OH, A) was stable and similar within a spruce forest cycle time. Most important variables in the construction of the discriminating models resulted soil pH, Dissolved Organic Carbon content and Dissolved Organic Matter phenolic compounds. Bacterial communities appeared to be shaped first and foremost by the substratum, secondly by mountain slope orientation, and thirdly by forest stage, thus confirming the CDA model.  相似文献   

7.
Increases in the magnitude and variability of precipitation events have been predicted for the Chihuahuan Desert region of West Texas. As patterns of moisture inputs and amounts change, soil microbial communities will respond to these alterations in soil moisture windows. In this study, we examined the soil microbial community structure within three vegetation zones along the Pine Canyon Watershed, an elevation and vegetation gradient in Big Bend National Park, Chihuahuan Desert. Soil samples at each site were obtained in mid-winter (January) and in mid-summer (August) for 2 years to capture a component of the variability in soil temperature and moisture that can occur seasonally and between years along this watershed. Precipitation patterns and amounts differed substantially between years with a drought characterizing most of the second year. Soils were collected during the drought period and following a large rainfall event and compared to soil samples collected during a relatively average season. Structural changes within microbial community in response to site, season, and precipitation patterns were evaluated using fatty acid methyl ester (FAME) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analyses. Fungal FAME amounts differed significantly across seasons and sites and greatly outweighed the quantity of bacterial and actinomycete FAME levels for all sites and seasons. The highest fungal FAME levels were obtained in the low desert scrub site and not from the high elevation oak–pine forests. Total bacterial and actinomycete FAME levels did not differ significantly across season and year within any of the three locations along the watershed. Total bacterial and actinomycete FAME levels in the low elevation desert-shrub and grassland sites were slightly higher in the winter than in the summer. Microbial community structure at the high elevation oak–pine forest site was strongly correlated with levels of NH4 +–N, % soil moisture, and amounts of soil organic matter irrespective of season. Microbial community structure at the low elevation desert scrub and sotol grasslands sites was most strongly related to soil pH with bacterial and actinobacterial FAME levels accounting for site differences along the gradient. DGGE band counts of amplified soil bacterial DNA were found to differ significantly across sites and season with the highest band counts found in the mid-elevation grassland site. The least number of bands was observed in the high elevation oak–pine forest following the large summer-rain event that occurred after a prolonged drought. Microbial responses to changes in precipitation frequency and amount due to climate change will differ among vegetation zones along this Chihuahuan Desert watershed gradient. Soil bacterial communities at the mid-elevation grasslands site are the most vulnerable to changes in precipitation frequency and timing, while fungal community structure is most vulnerable in the low desert scrub site. The differential susceptibility of the microbial communities to changes in precipitation amounts along the elevation gradient reflects the interactive effects of the soil moisture window duration following a precipitation event and differences in soil heat loads. Amounts and types of carbon inputs may not be as important in regulating microbial structure among vegetation zones within in an arid environment as is the seasonal pattern of soil moisture and the soil heat load profile that characterizes the location.  相似文献   

8.
High rates of inorganic nitrogen (N) deposition or internal N turnover increases the risks of N loss from forests with negative effects on stream water quality. We hypothesized that soil fungi may be more important N sinks than bacteria, and thus examined the impact of soil microbial community composition on N leaching from forests. We studied 19 spruce stands to examine relationships between microbial community composition, stem growth, soil-, and lysimeter-collected soil solution characteristics, and N leaching. We used nitrate concentration in the soil solution below the rooting zone as an N leaching index and phospholipid fatty acid (PLFA) analysis for characterisation of microbial communities. Microbial community composition in the organic horizon and soil solution chemistry below the rooting zone was highly correlated. Stands with low concentrations of nitrate (NO3 ?) and aluminium (Al) had higher fungi: bacteria ratio compared with stands with higher concentrations of NO3 ? and Al. Stem growth and fungi: bacteria ratio explained 70 % of the variation in N and Al leaching. We identified three microbial predictors of variation in soil solution chemistry, of which the fungi: bacteria was the strongest. The other two were putative indicators of microbial C limitation, a condition known to stimulate N mineralisation and nitrification.  相似文献   

9.
To address the link between soil microbial community composition and soil processes, we investigated the microbial communities in forest floors of two forest types that differ substantially in nitrogen availability. Cedar-hemlock (CH) and hemlock-amabilis fir (HA) forests are both common on northern Vancouver Island, B.C., occurring adjacently across the landscape. CH forest floors have low nitrogen availability and HA high nitrogen availability. Total microbial biomass was assessed using chloroform fumigation-extraction and community composition was assessed using several cultivation-independent approaches: denaturing gradient gel electrophoresis (DGGE) of the bacterial communities, ribosomal intergenic spacer analysis (RISA) of the bacterial and fungal communities, and phospholipid fatty acid (PLFA) profiles of the whole microbial community. We did not detect differences in the bacterial communities of each forest type using DGGE and RISA, but differences in the fungal communities were detected using RISA. PLFA analysis detected subtle differences in overall composition of the microbial community between the forest types, as well as in particular groups of organisms. Fungal PLFAs were more abundant in the nitrogen-poor CH forests. Bacteria were proportionally more abundant in HA forests than CH in the lower humus layer, and Gram-positive bacteria were proportionally more abundant in HA forests irrespective of layer. Bacterial and fungal communities were distinct in the F, upper humus, and lower humus layers of the forest floor and total biomass decreased in deeper layers. These results indicate that there are distinct patterns in forest floor microbial community composition at the landscape scale, which may be important for understanding nutrient availability to forest vegetation.  相似文献   

10.
We evaluated the microbial communities in three Hawaiian forest soils along a natural fertility gradient and compared their distinct responses to long-term nitrogen (N) additions. The sites studied have the same elevation, climate, and dominant vegetation, but vary in age of development, and thus in soil nutrient availability and nutrient limitation to plant growth. Fertilized plots at each site have received 100 kg ha year(-1) N addition for at least 8 years. Soil parameters, water content, pH, and ammonium and nitrate availability differed by site, but not between control and N-addition treatments within a site at the time of sampling. Microbial biomass also varied by site, but was not affected by N addition. In contrast, microbial community composition (measured by phospholipid analysis) varied among sites and between control and N-addition plots within a site. These data suggest that microbial community composition responds to N addition even when plant net primary productivity is limited by nutrients other than N. This may have implications for the behavior of forests impacted by atmospheric N deposition that are considered to be "nitrogen saturated," yet still retain N in the soil.  相似文献   

11.
Semi-natural grassland soils are frequently fertilised for agricultural improvement. This practice often comes at a loss of the indigenous flora while fast-growing nitrogen-responsive species, such as Lolium perenne, take over. Since soil microbial communities depend on plant root exudates for carbon and nitrogen sources, this shift in vegetation is thought to influence soil microbial community structure. In this study, we investigated the influence of different plant species, fertilisation and L. perenne ingression on microbial communities in soils from three semi-natural Irish grasslands. Bacterial and fungal community compositions were determined by automated ribosomal intergenic spacer analysis, and community changes were linked to environmental factors by multivariate statistical analysis. Soil type had a strong effect on bacterial and fungal communities, mainly correlated to soil pH, as well as soil carbon and nitrogen status. Within each soil type, plant species composition was the main influencing factor followed by nitrogen fertilisation and finally Lolium ingression in the acidic upland and mesotrophic grassland. In the alkaline grassland, however, Lolium ingression had a stronger effect than fertilisation. Our results suggest that a change in plant species diversity strongly influences the microbial community structure, which may subsequently lead to significant changes in ecosystem functioning.  相似文献   

12.
Although northern temperate forests are generally not considered phosphorus (P) limited, ecosystem P limitation may occur on highly weathered or strongly acidic soils where bioavailable inorganic P is low. In such environments, soil organisms may compensate by increasing the utilization of organic P via the production of extracellular enzymes to prevent limitation. In this study, we experimentally increased available P and/or pH in several acidic eastern deciduous forests underlain by glaciated and unglaciated soils in eastern Ohio, USA. We hypothesized that where inorganic P is low; soil microbes are able to access organic P by increasing production of phosphatase enzymes, thereby overcoming biogeochemical P limitations. We measured surface soil for: available P pools, N mineralization and nitrification rates, total C and N, enzymes responsible for C, N, and P hydrolysis, and microbial community composition (PLFA). Increasing surface soil pH a whole unit had little effect on microbial community composition, but increased N cycling rates in unglaciated soils. Phosphorus additions suppressed phosphatase activities over 60% in the unglaciated soils but were unchanged in the glaciated soils. All treatments had minimal influence on microbial biomass, but available pools of P strongly correlated with microbial composition. Microbes may be dependent on sources of organic P in some forest ecosystems and from a microbial perspective soil pH might be less important overall than P availability. Although our sampling was conducted less than 1 year after treatment initiation, microbial community composition was strongly influenced by available P pools and these effects may be greater than short-term increases in soil pH.  相似文献   

13.
Tree growth limitation at treeline has mainly been studied in terms of carbon limitation while effects and mechanisms of potential nitrogen (N) limitation are barely known, especially in the southern hemisphere. We investigated how soil abiotic properties and microbial community structure and composition change from lower to upper sites within three vegetation belts (Nothofagus betuloides and N. pumilio forests, and alpine vegetation) across an elevation gradient (from 0 to 650 m a.s.l.) in Cordillera Darwin, southern Patagonia. Increasing elevation was associated with a decrease in soil N‐NH4+ availability within the N. pumilio and the alpine vegetation belt. Within the alpine vegetation belt, a concurrent increase in the soil C:N ratio was associated with a shift from bacterial‐dominated in lower alpine sites to fungal‐dominated microbial communities in upper alpine sites. Lower forested belts (N. betuloides, N. pumilio) exhibited more complex patterns both in terms of soil properties and microbial communities. Overall, our results concur with recent findings from high‐latitude and altitude ecosystems showing decreased nutrient availability with elevation, leading to fungal‐dominated microbial communities. We suggest that growth limitation at treeline may result, in addition to proximal climatic parameters, from a competition between trees and soil microbial communities for limited soil inorganic N. At higher elevation, soil microbial communities could have comparably greater capacities to uptake soil N than trees, and the shift towards a fungal‐dominated community would favour N immobilization over N mineralization. Though evidences of altered nutrient dynamics in tree and alpine plant tissue with increasing altitude remain needed, we contend that the measured residual low amount of inorganic N available for trees in the soil could participate to the establishment limitation. Finally, our results suggest that responses of soil microbial communities to elevation could be influenced by functional properties of forest communities for instance through variations in litter quality.  相似文献   

14.
The effect of the addition of synthetic sheep urine (SSU) and plant species on the bacterial community composition of upland acidic grasslands was studied using a microcosm approach. Low, medium, and high concentrations of SSU were applied to pots containing plant species typical of both unimproved (Agrostis capillaris) and agriculturally improved (Lolium perenne) grasslands, and harvests were carried out 10 days and 50 days after the addition of SSU. SSU application significantly increased both soil pH (P < 0.005), with pH values ranging from pH 5.4 (zero SSU) to pH 6.4 (high SSU), and microbial activity (P < 0.005), with treatment with medium and high levels of SSU displaying significantly higher microbial activity (triphenylformazan dehydrogenase activity) than treatment of soil with zero or low concentrations of SSU. Microbial biomass, however, was not significantly altered by any of the SSU applications. Plant species alone had no effect on microbial biomass or activity. Bacterial community structure was profiled using bacterial automated ribosomal intergenic spacer analysis. Multidimensional scaling plots indicated that applications of high concentrations of SSU significantly altered the bacterial community composition in the presence of plant species but at different times: 10 days after application of high concentrations of SSU, the bacterial community composition of L. perenne-planted soils differed significantly from those of any other soils, whereas in the case of A. capillaris-planted soils, the bacterial community composition was different 50 days after treatment with high concentrations of SSU. Canonical correspondence analysis also highlighted the importance of interactions between SSU addition, plant species, and time in the bacterial community structure. This study has shown that the response of plants and bacterial communities to sheep urine deposition in grasslands is dependent on both the grass species present and the concentration of SSU applied, which may have important ecological consequences for agricultural grasslands.  相似文献   

15.
Plant communities, soil organic matter and microbial communities are predicted to be interlinked and to exhibit concordant patterns along major environmental gradients. We investigated the relationships between plant functional type composition, soil organic matter quality and decomposer community composition, and how these are related to major environmental variation in non-acid and acid soils derived from calcareous versus siliceous bedrocks, respectively. We analysed vegetation, organic matter and microbial community compositions from five non-acidic and five acidic heath sites in alpine tundra in northern Europe. Sequential organic matter fractionation was used to characterize organic matter quality and phospholipid fatty acid analysis to detect major variation in decomposer communities. Non-acidic and acidic heaths differed substantially in vegetation composition, and these disparities were associated with congruent shifts in soil organic matter and microbial communities. A high proportion of forbs in the vegetation was positively associated with low C:N and high soluble N:phenolics ratios in soil organic matter, and a high proportion of bacteria in the microbial community. On the contrary, dwarf shrub-rich vegetation was associated with high C:N and low soluble N:phenolics ratios, and a high proportion of fungi in the microbial community. Our study demonstrates a strong link between the plant community composition, soil organic matter quality, and microbial community composition, and that differences in one compartment are paralleled by changes in others. Variation in the forb-shrub gradient of vegetation may largely dictate variations in the chemical quality of organic matter and decomposer communities in tundra ecosystems. Soil pH, through its direct and indirect effects on plant and microbial communities, seems to function as an ultimate environmental driver that gives rise to and amplifies the interactions between above- and belowground systems. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
In grasslands, fire management and fertilization are established drivers of plant community change, but associated soil fungal responses are less well defined. We predicted that soil fungal communities would change seasonally, that decades of fire cessation and nitrogen (N) fertilization would alter fungal distributions, and that plant and fungal community change would be correlated. Surface soils were sampled monthly for 1 y from a 30-y fire by fertilization experiment to evaluate fungal community dynamics and assess correlation with plant community heterogeneity. ITS gene community composition was seasonally stable, excepting increased arbuscular mycorrhizal fungal summer abundance in the burned, fertilized treatment. Long-term treatments affected soil fungal and plant communities, with correlated heterogeneity patterns. Despite woody encroachment in the fire cessation treatment, soil fungal communities did not resemble those of forests. This study provides evidence supporting the strength of feedbacks between fungal and plant community change in response to long-term grassland fire and N management changes.  相似文献   

17.
Leaching losses of nitrogen (N) from soil and atmospheric N deposition have led to widespread changes in plant community and microbial community composition, but our knowledge of the factors that determine ecosystem N retention is limited. A common feature of extensively managed, species-rich grasslands is that they have fungal-dominated microbial communities, which might reduce soil N losses and increase ecosystem N retention, which is pivotal for pollution mitigation and sustainable food production. However, the mechanisms that underpin improved N retention in extensively managed, species-rich grasslands are unclear. We combined a landscape-scale field study and glasshouse experiment to test how grassland management affects plant and soil N retention. Specifically, we hypothesised that extensively managed, species-rich grasslands of high conservation value would have lower N loss and greater N retention than intensively managed, species-poor grasslands, and that this would be due to a greater immobilisation of N by a more fungal-dominated microbial community. In the field study, we found that extensively managed, species-rich grasslands had lower N leaching losses. Soil inorganic N availability decreased with increasing abundance of fungi relative to bacteria, although the best predictor of soil N leaching was the C/N ratio of aboveground plant biomass. In the associated glasshouse experiment we found that retention of added 15N was greater in extensively than in intensively managed grasslands, which was attributed to a combination of greater root uptake and microbial immobilisation of 15N in the former, and that microbial immobilisation increased with increasing biomass and abundance of fungi. These findings show that grassland management affects mechanisms of N retention in soil through changes in root and microbial uptake of N. Moreover, they support the notion that microbial communities might be the key to improved N retention through tightening linkages between plants and microbes and reducing N availability.  相似文献   

18.
Understanding the interactions among microbial communities, plant communities and soil properties following deforestation could provide insights into the long-term effects of land-use change on ecosystem functions, and may help identify approaches that promote the recovery of degraded sites. We combined high-throughput sequencing of fungal rDNA and molecular barcoding of plant roots to estimate fungal and plant community composition in soil sampled across a chronosequence of deforestation. We found significant effects of land-use change on fungal community composition, which was more closely correlated to plant community composition than to changes in soil properties or geographic distance, providing evidence for strong links between above- and below-ground communities in tropical forests.  相似文献   

19.
Högberg MN  Högberg P  Myrold DD 《Oecologia》2007,150(4):590-601
In Fennoscandian boreal forests, soil pH and N supply generally increase downhill as a result of water transport of base cations and N, respectively. Simultaneously, forest productivity increases, the understory changes from ericaceous dwarf shrubs to tall herbs; in the soil, fungi decrease whereas bacteria increase. The composition of the soil microbial community is mainly thought to be controlled by the pH and C-to-N ratio of the substrate. However, the latter also determines the N supply to plants, the plant community composition, and should also affect plant allocation of C below ground to roots and a major functional group of microbes, mycorrhizal fungi. We used phospholipid fatty acids (PLFAs) to analyze the potential importance of mycorrhizal fungi by comparing the microbial community composition in a tree-girdling experiment, where tree belowground C allocation was terminated, and in a long-term (34 years) N loading experiment, with the shifts across a natural pH and N supply gradient. Both tree girdling and N loading caused a decline of ca. 45% of the fungal biomarker PLFA 18:2ω6,9, suggesting a common mechanism, i.e., that N loading caused a decrease in the C supply to ectomycorrhizal fungi just as tree girdling did. The total abundance of bacterial PLFAs did not respond to tree girdling or to N loading, in which cases the pH (of the mor layer) did not change appreciably, but bacterial PLFAs increased considerably when pH increased across the natural gradient. Fungal biomass was high only in acid soil (pH < 4.1) with a high C-to-N ratio (>38). According to a principal component analysis, the soil C-to-N ratio was as good as predictor of microbial community structure as pH. Our study thus indicated the soil C-to-N ratio, and the response of trees to this ratio, as important factors that together with soil pH influence soil microbial community composition.  相似文献   

20.
Factors regulating the diversity and composition of soil microbial communities include soil properties, land cover and climate. How these factors interact at large scale remains poorly investigated. Here, we used an extensive dataset including 715 locations from 24 European countries to investigate the interactive effects of climatic region, land cover and pH on soil bacteria and fungi. We found that differences in microbial diversity and community composition between land cover types depended on the climatic region. In Atlantic, Boreal and Continental regions, microbial richness was higher in croplands and grasslands than woodlands while richness in Mediterranean areas did not vary significantly among land cover types. These differences were further related to soil pH, as a driver of bacterial and fungal richness in most climatic regions, but the interaction of pH with land cover depended on the region. Microbial community composition differed the most between croplands and woodlands in all regions, mainly due to differences in pH. In the Mediterranean region, bacterial communities in woodlands and grasslands were the most similar, whereas in other regions, grassland and cropland-associated bacteria showed more similarity. Overall, we showed that key factors interact in shaping soil microbial communities in a climate-dependent way at large scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号