首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An understanding of metabolic adaptation during the colonization of plants by phytopathogenic fungi is critical for developing strategies to protect crops. Lipids are abundant in plant tissues, and fungal phytopathogens in the phylum basidiomycota possess both peroxisomal and mitochondrial β-oxidation pathways to utilize this potential carbon source. Previously, we demonstrated a role for the peroxisomal β-oxidation enzyme Mfe2 in the filamentous growth, virulence, and sporulation of the maize pathogen Ustilago maydis. However, mfe2 mutants still caused disease symptoms, thus prompting a more detailed investigation of β-oxidation. We now demonstrate that a defect in the had1 gene encoding hydroxyacyl coenzyme A dehydrogenase for mitochondrial β-oxidation also influences virulence, although its paralog, had2, makes only a minor contribution. Additionally, we identified a gene encoding a polypeptide with similarity to the C terminus of Mfe2 and designated it Mfe2b; this gene makes a contribution to virulence only in the background of an mfe2Δ mutant. We also show that short-chain fatty acids induce cell death in U. maydis and that a block in β-oxidation leads to toxicity, likely because of the accumulation of toxic intermediates. Overall, this study reveals that β-oxidation has a complex influence on the formation of disease symptoms by U. maydis that includes potential metabolic contributions to proliferation in planta and an effect on virulence-related morphogenesis.  相似文献   

3.
《Fungal biology》2019,123(6):481-488
Maize plants infected by Ustilago maydis develop galls known as “cuitlacoche”, a food product appreciated in the Mexican gastronomy. The virulence of different U. maydis isolates was assessed, as well as the development of the infection on one commercial maize variety. Sporidia were isolated of wild galls collected in Mexico. Sexual compatibility patterns were determined using the Fuzz reaction, showing a 1:1:1:1 segregation of mating type specificities. Ten U. maydis compatible strains were selected on the basis of their virulence, namely: four wild-type compatible sporidia, one multi-teliosporic strain, two hybrids between wild-type and tester strains, and three tester strains. Maize plants of a commercial hybrid (Tornado XR) were inoculated with these strains of U. maydis, using a randomized complete block experimental design. Phenological and phenotypic characteristics of plants, as well as production, quality and sensory attributes of the resulting galls, were evaluated. Greater yields of galls were recorded in tester strains (incidence >90 %, severity >80 %, productivity >12 t/ha), a hybrid strain (EM1-6 × FB1) [incidence 82.6 %, severity 51.8 %, productivity 5.6 t/ha] and a wild-type strain (EM4-10 × EM2-4) [incidence 68.2 %, severity 44.0 %, productivity 4.8 t/ha]. Wild-type strains showed better flavor, characterized by less bitterness and acidity, but prevailing sweet, umami and maize flavor.  相似文献   

4.
1-2H-Phthalazine hydrazone (hydralazine; HYD), 2-1H-pyridinone hydrazone (2-hydrazinopyridine; HP), 2-quinoline-car☐ylic acid (QCA), 1-isoquinolinecar☐ylic acid (IQCA), 2,2′-bi-1H-imidazole (2,2′-biimidazole; BI), and 1H-imidazole-4-acetic acid (imidazole-4-acetic acid; IAA) directly and reversibly inhibit homogeneous soluble bovine dopamine β-hydroxylase (3,4-dihydroxyphenethylamine, ascorbate:oxygen oxidoreductase (β-hydroxylating), EC 1.14.17.1). HYD, QCA and IAA show competitive allosteric inhibition of dopamine β-hydroxylase with respect to ascorbate (Kis = 5.7(±0.9) μM, 0.14(±0.03) mM, 0.80(±0.20) mM; nH= 1.4(±0.1), 1.8(±0.4), 2.8(±0.6), respectively). HYD and IAA show slope and intercept mixed-type allosteric inhibition of dopamine β-hydroxylase with respect to tyramine. QCA shows allosteric uncompetitive inhibition of dopamine β-hydroxylase with respect to tyramine. HP, BI and IQCA all show linear competitive inhibition (Kis = 1.9(±0.3) μM, 21(±6) μM, and 0.9(±0.3) μM, respectively) with respect to ascorbate. HP and BI show linear mixed-type while IQCA shows linear uncompetitive inhibition of dopamine β-hydroxylase with respect to tyramine. In the presence of HP, HYD or IAA intersecting double-reciprocal plots of the initial velocity as a function of tyramine concentration at differing fixed levels of ascorbate are observed. These findings are consistent with a uni-uni-ping-pong-ter-bi kinetic mechanism for dopamine β-hydroxylase that involves a ternary enzyme-ascorbate-tyramine-oxygen complex. The results for HYD, QCA and IAA are the first examples of allosteric inhibitor interactions with dopamine β-hydroxylase.  相似文献   

5.
Preparations of dopamine β-monooxygenase containing a full complement of copper (4.2 copper atoms per tetramer) show increased ascorbate-supported catalytic activities after addition of an excess of copper ions. The significance ot this observation on the question of the number of copper atoms per active site is discussed.Low molecular weight copper complexes such as copper salicylate cause uncoupling of electron transport from hydroxylation. This uncoupling is probably the reason for the well-known inhibition of this enzyme observed at high copper concentration.The onset of inhibition by the copper chelator bathocuproine disulfonate occurs on a faster time scale than the removal of enzyme-bound copper. Nevertheless, the copper removal is sufficiently rapid to require that it be considered in interpretation of inhibition experiments with chelators.  相似文献   

6.
A gene encoding an NADPH-dependent carbonyl reductase from Neurospora crassa (nccr) was cloned and heterologously expressed in Escherichia coli. The enzyme (NcCR) was purified and biochemically characterised. NcCR exhibited a restricted substrate spectrum towards various ketones, and the highest activity (468U/mg) was observed with dihydroxyacetone. However, NcCR proved to be very selective in the reduction of different α- and β-keto esters. Several compounds were converted to the corresponding hydroxy ester in high enantiomeric excess (ee) at high conversion rates. The enantioselectivity of NcCR for the reduction of ethyl 4-chloro-3-oxobutanoate showed a strong dependence on temperature. This effect was studied in detail, revealing that the ee could be substantially increased by decreasing the temperature from 40 °C (78.8%) to -3 °C (98.0%). When the experimental conditions were optimised to improve the optical purity of the product, (S)-4-chloro-3-hydroxybutanoate (ee 98.0%) was successfully produced on a 300 mg (1.8 mmol) scale using NcCR at -3 °C.  相似文献   

7.
Summary An alkalophilic bacterium producing high amounts of the cell-associated -mannosidase and extracellular -mannanase was isolated from soil. The isolate (AM-001) that grew well in alkaline pH media was identified as a strain of Bacillus sp. The optimal cultivation temperature for enzyme production was 31° C for -mannosidase and 37° C for -mannanase with the optimum production medium composed of 1% konjac powder, 0.2% yeast extract, 2% Polypepton, 0.1% K2HPO4, 0.02% MgSO4 · 7H2O and 0.5% Na2CO3. Optimum pH and temperature for -mannosidase were 7.0 and 55° C, and for -mannanase were 9.0 and 65° C.  相似文献   

8.
A glucanase was isolated from a culture fluid of an Arthrobacter bacterium. The purified enzyme preparations consisted of the glucanase components having the same enzymatic activity. The enzyme was stable in a broad pH range, but lost its activity rapidly at above 60°C. Optimum pH values were found to be 5.5~6.5.

The glucanase attacked the following glucan preparations and liberated a relatively small amount of reducing power: Saccharomyces cerevisiae glucan, Candida albicans glucan, Saccharomyces fragilis glucan, pachyman, curdlan and laminaran. The most prominent sugar spot on the chromatogram of the digest from yeast glucan was identified with laminan-pentaose, and the other faint spots with a series of laminaridextrins. The β-1,6 glucosidic bonds in yeast glucan were not hydrolyzed and concentrated in a soluble fraction which was found near the origin of the chromatogram.  相似文献   

9.
Summary When culturing the cellulolytic-active Basidiomycete and brown-rot fungus Lenzites trabea A-419 in submerged culture with glucose and cellulose as a carbon source, the fungus only excreted -glucosidase (EC 3.2.1.21) and an endo-1,4--glucanase (EC 3.2.1.4).No evidence for C1 activity (EC 3.2.1.91) was found in the culture filtrate or in the ultra concentrate. -Glucosidase could be separated from endoglucanase by chromatography on Sepharose 6-B. Further fractionation of the -glucosidase on DEAE-Sephadex A-25 resulted in a 525-fold purification. The molecular weight of the isolated -glucosidase was determined by co-chromatography on Sephadex G-200 to be 320,000 daltons. The enzyme developed maximum activities at pH 4.5 and 75°C. The enzyme does not act on crystalline cellulose or CMC, but it hydrolyzes cellotriose,-tetraose, and-pentaose to cellobiose and glucose. -glucosidase activity was strongly inhibited by the reaction product, glucose. A Ki value of 2.7×10–3 (M) for noncompetitive inhibition was found.  相似文献   

10.
The production of an extracellular -D-xylosidase (-D-xyloside xylohydrolase, EC 3.2.1.37) by four Aspergillus strains (A. carbonarius, A. nidulans, A. niger and A. oryzae) grown on wheat bran medium was compared. The highest amount of the enzyme was found in the culture of A. carbonarius. The -D-xylosidase from A. carbonarius was purified to homogeneity by a rapid procedure, using hydrophobic interaction chromatography, chromatofocusing and affinity chromatography. The purified enzyme possessed not only -D-xylosidase activity, but also -L-arabinosidase activity. Mixed substrate experiments revealed that a single active centre was responsible for the splitting of the corresponding synthetic substrates. The molecular weight of the purified enzyme proved to be 100,000 Da, as estimated by SDS–PAGE. The isoelectric point was at pH 4.4. The pH and temperature optima were 4.0 and 60 °C, respectively. The enzyme remained stable over a pH range of 3.5–6.5 and up to 50 °C for 30 min. The Michaelis constant for p-nitrophenyl -D-xyloside was 0.198 mM. Kinetic studies demonstrated that the lack of the C-5 hydroxylmethyl group and the configuration of the C-4 hydroxyl group on the pyranoside ring play an important role in both substrate binding and splitting.  相似文献   

11.
Acidobacterium capsulatum, an acidophilic, mesophilic and chemoorganotrophic bacterium, produced an inducible, acidic β-glucosidase in the cellobiose medium. The enzyme was successively purified 109 times by CM-Sepharose, Sephacryl S-200 chromatography and preparative discontinuous polyacrylamide gel electrophoresis. Polyacrylamide gel electrophoresis of the purified enzyme gave a single band at pH 4.3. The enzyme had an optimum pH of 3.0 and optimum reaction temperature of 55°C, being stable from pH 1.5 to 6.0 and at temperatures from 20 to 45°C. No activity was detected above pH 6.5 or above 65°C. The molecular weight of 90,000 was estimated by gel filtration and the enzyme had an isoelectric point of 7.0. The enzyme hydrolyzed aryl-β-glycosides and β-linked disaccharides.  相似文献   

12.
The -galactosidase (EC 3.2.1.32) of Corynebacterium murisepticum (inducible by lactose and galactose) was purified by successive column chromatography on Sephadex G-200, DEAE-Sephadex A-50 and DEAE-cellulose (DE52). The enzyme was found to be a dimer of identical subunits of molecular mass 100,000 daltons. The K m values of the enzyme for the substrates lactose and o-nitrophenyl--d-galactopyranoside (ONPG) are 16.7 mM and 4.4 mM, respectively, indicating, its low affinity for the substrates. The Ouchterlony immunodiffusion method exhibited immunological homogeneity of the enzyme preparation. The catalytic site of the enzyme does not take part in antigen-antibody reaction.  相似文献   

13.
A collection of 60 non-Saccharomyces yeasts isolated from grape musts in Uruguayan vineyards was screened for beta-glucosidase activity and Metschnikowia pulcherrima was the best source of this enzyme activity. Its major beta-glucosidase was successfully purified to homogeneity by ion-exchange chromatography on amino-agarose gel. The enzyme exhibited an optimum catalytic activity at 50 degrees C and pH 4.5 and was active against (1 --> 4)-beta and (1 --> 2)-beta glycosidic linkages. In spite of preserving 100% of its activity and stability in the presence of 12% (v/v) ethanol and 5 g glucose/l, the enzyme was unstable below pH 4. We characterized the beta-glucosidase from M. pulcherrima with a view to its potential applications in wine-making.  相似文献   

14.
Using the rabbit reticulocyte cell-free translation system, the relative proportions of in vitro translatable mRNAs of three proteins in three human pheochromocytomas: tyrosine hydroxylase (TH), dopamine β-hydroxylase (DBH) and proenkephalin A have been compared.TH expression appeared rather constant in the three tumors. In contrast, those of DBH and proenkephalin A were more variable. Though the actual level of each mRNA was not determined, the identical value of DBH/proenkephalin A mRNAs ratio in the three tumors could suggest a coordination in the expression of these two proteins.  相似文献   

15.
As a first step in the development of a reporter system for gene expression in halophilic archaea, a β-galactosidase was purified 140-fold from Haloferax alicantei (previously phenon K, strain Aa2.2). An overproducing mutant was first isolated by UV mutagenesis and screening on agar plates containing X-Gal substrate. Cytoplasmic extracts of the mutant contained 25-fold higher enzyme levels than the parent. Purification of the active enzyme was greatly facilitated by the ability of sorbitol to stabilise enzyme activity in the absence of salt, which allowed conventional purification methods (e.g., ion-exchange chromatography) to be utilised. The enzyme was optimally active at 4 M NaCl and was estimated to be 180±20 kDa in size, consisting of two monomers (each 78±3 kDa). It cleaves several different β-galactoside substrates such as ONP-Gal, X-Gal and lactulose, but not lactose, and also has β-d-fucosidase activity. No β-glucosidase, β-arabinosidase or β-xylosidase activity could be detected. The amino-acid sequence at the N-terminus and of four proteolytic products has been determined.  相似文献   

16.
The conversion of β-carotene to retinal by a recombinant β-carotene 15,15′-dioxygenase (Blh protein) from an unculturable marine bacterium was optimized in aqueous solution. Toluene was optimal solvent for the dissolution of β-carotene and the optimal solution for the conversion reaction contained 2.4% (w/v) Tween 20, 0.15 U enzyme/ml, and 350 mg β-carotene/l. Under these conditions, the enzyme produced 181 mg retinal/l after 20 h. This is the highest reported value for the retinal concentration from β-carotene.  相似文献   

17.
Aims: To purify and characterize an exo‐acting chitinolytic enzyme produced from a Gram‐negative bacterium Pseudomonas fluorescens JK‐0412. Methods and Results: A chitinolytic bacterial strain that showed confluent growth on a minimal medium containing powder chitin as the sole carbon source was isolated and identified based on a 16S ribosomal DNA sequence analysis and named Ps. fluorescens JK‐0412. From the culture filtrates of this strain, a chito‐oligosaccharides‐degrading enzyme was purified to apparent homogeneity with a molecular mass of 50 kDa on SDS–PAGE gels. The kinetics, optimum pH and temperature, and substrate specificity of the purified enzyme (named as NagA) were determined. Conclusions: An extracellular chitinolytic enzyme was purified from the Ps. fluorescens JK‐0412 and shown to be an exo‐type β‐N‐acetylglucosaminidase yielding GlcNAc as the final product from the natural chito‐oligosaccharides, (GlcNAc)n, n = 2–5. Significance and Impact of the Study: As NagA is secreted extracellularly in the presence of colloidal chitin, Ps. fluorescens JK‐0412 can be recognized as a potent producer for industry‐level and cost‐effective production of chitinolytic enzyme. This enzyme appears to have potential applications as an efficient tool for the degradation of chitinous materials and industry‐level production of GlcNAc. To the best of our knowledge, this is the first report on an exo‐type chitinolytic enzyme of Pseudomonas species.  相似文献   

18.
  • 1.1. Several mollusc glycosidases have been studied for their activities towards natural substrates. α-l-Fucosidases from Chamelea gallina, Tapes rhomboideus and Mytilus edulis hydrolyze oligosaccharides (di, tri and pentasaccharides) with α1 → 2, α1 → 3 and α1 → 4 bonds, fucose-containing glycopeptides from bovine thyroglobulin and the porcine submandibular mucin (devoid of sialic acid); α-l-fucosidase from Littorina littorea hydrolyzes fucose-containing glycopeptides from bovine thyroglobulin.
  • 2.2. β-d-Glucuronidase from L. littorea hydrolyzes hyaluronic acid, chondroitin 4-sulfate and heparin with a very low activity; however, it is much more active on oligosaccharides (from the above-mentioned macromolecules) containing non-reducing terminal glucuronyl residues.
  • 3.3. β-N-Acetylhexosaminidase from Helicella ericetorum acts mainly with an endo-hydrolase activity on β1 → 4N-acetylhexosamine linkages of ovalbumin, ovomucoid, chitin, hyaluronic acid and chondroitin
  • 4.4-sulfate; it has also a secondary exo-hydrolase activity on these substrates.
  相似文献   

19.
 β-Fructofuranosidase was purified from commercial alkaline protease (Aspergillus oryzae origin). The optimal pH of its transfructosylating activity was more alkaline (pH 8) than that of its hydrolyzing activity (pH 5). In the case of a 24-h reaction with sucrose, the hydrolysis and transfructosylation reaction were optimal at pH 4–5 and pH 8, respectively. In the reaction at pH 8 1-kestose and nystose were the main fructooligosaccharides produced. The transfer ratio was hardly different between pH 5 and pH 8 early in the reaction, but the transfer products (1-kestose and nystose) were decreased at pH 5 as the reaction proceeded because of their hydrolysis. Received: 18 January 1995/Received last revision: 23 August 1995/Accepted: 13 September 1995  相似文献   

20.
Xanthophylls are oxygenated carotenoids that perform critical roles in plants. -carotene hydroxylases (-hydroxylases) add hydroxyl groups to the -rings of carotenes and have been cloned from several bacteria and plants, including Arabidopsis. The lut1 mutation of Arabidopsis disrupts -ring hydroxylation and has been suggested to identify a related carotene hydroxylase that functions specifically on -ring structures. We have used library screening and genomics-based approaches to isolate a second -hydroxylase genomic clone and its corresponding cDNA from Arabidopsis. The encoded protein is 70% identical to the previously reported Arabidopsis -hydroxylase 1. Phylogenetic analysis indicates a common origin for the two proteins, however, their different chromosomal locations, intron positions and intron sizes suggest their duplication is not recent. Although both hydroxylases are expressed in all Arabidopsis tissues analyzed, -hydroxylase 1 mRNA is always present at higher levels. Both cDNAs encode proteins that efficiently hydroxylate the C-3 position of -ring containing carotenes and are only weakly active towards -ring containing carotenes. Neither -hydroxylase cDNA maps to the LUT1 locus, and the genomic region encompassing the LUT1 locus does not contain a third related hydroxylase. These data indicate that the LUT1 locus encodes a protein necessary for -ring hydroxylation but unrelated to -hydroxylases at the level of amino acid sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号