首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently there has been intense and growing interest in the non-thermal biological effects of nanosecond electric pulses, particularly apoptosis induction. These effects have been hypothesized to result from the widespread creation of small, lipidic pores in the plasma and organelle membranes of cells (supra-electroporation) and, more specifically, ionic and molecular transport through these pores. Here we show that transport occurs overwhelmingly after pulsing. First, we show that the electrical drift distance for typical charged solutes during nanosecond pulses (up to 100 ns), even those with very large magnitudes (up to 10 MV/m), ranges from only a fraction of the membrane thickness (5 nm) to several membrane thicknesses. This is much smaller than the diameter of a typical cell (∼16 μm), which implies that molecular drift transport during nanosecond pulses is necessarily minimal. This implication is not dependent on assumptions about pore density or the molecular flux through pores. Second, we show that molecular transport resulting from post-pulse diffusion through minimum-size pores is orders of magnitude larger than electrical drift-driven transport during nanosecond pulses. While field-assisted charge entry and the magnitude of flux favor transport during nanosecond pulses, these effects are too small to overcome the orders of magnitude more time available for post-pulse transport. Therefore, the basic conclusion that essentially all transmembrane molecular transport occurs post-pulse holds across the plausible range of relevant parameters. Our analysis shows that a primary direct consequence of nanosecond electric pulses is the creation (or maintenance) of large populations of small pores in cell membranes that govern post-pulse transmembrane transport of small ions and molecules.  相似文献   

2.
The current responses of human erythrocyte and L-cell membranes being subject to rectangular voltage pulses of 150-700 mV amplitude and 5 X 10(-3)-10 s duration were recorded by means of the patch-clamp method. The behaviour of planar lipid bilayer membranes of oxidized cholesterol and UO2(2+)-modified bilayers of azolectin in a high electric field was investigated for comparison. The gradual growth in the conductance (reversible electrical breakdown) was found for both the cell membranes and lipid bilayers of the compositions studied, with the application of voltage pulses of sufficient duration, to be completed by its drastic enhancement (irreversible breakdown). The time interval preceding the irreversible breakdown and the rate of increase in conductance during the reversible breakdown are determined by the amplitude of the voltage applied. The recovery of the initial properties of the membrane following the reversible breakdown consists of the two stages, the latter substantially differing by their characteristic times. The first very rapid stage (tau much less than 1 ms) reflects the lowering of the conductance of small pores with decreasing voltage across the membrane. The diminishing of the number and mean radii of the pores resulting in their complete disappearance occurs only at the second stage of membrane healing, which lasts several seconds or even minutes. The phenomenological similarity of the cell and lipid membrane breakdown indicates that pores developed during the electrical breakdown of biological membranes arise in their lipid matrices. The structure and the properties of the pores are discussed.  相似文献   

3.
Nanosecond, megavolt-per-meter pulses--higher power but lower total energy than the electroporative pulses used to introduce normally excluded material into biological cells--produce large intracellular electric fields without destructively charging the plasma membrane. Nanoelectropulse perturbation of mammalian cells causes translocation of phosphatidylserine (PS) to the outer face of the cell, intracellular calcium release, and in some cell types a subsequent progression to apoptosis. Experimental observations and molecular dynamics (MD) simulations of membranes in pulsed electric fields presented here support the hypothesis that nanoelectropulse-induced PS externalization is driven by the electric potential that appears across the lipid bilayer during a pulse and is facilitated by the poration of the membrane that occurs even during pulses as brief as 3 ns. MD simulations of phospholipid bilayers in supraphysiological electric fields show a tight association between PS externalization and membrane pore formation on a nanosecond time scale that is consistent with experimental evidence for electropermeabilization and anode-directed PS translocation after nanosecond electric pulse exposure, suggesting a molecular mechanism for nanoelectroporation and nanosecond PS externalization: electrophoretic migration of the negatively charged PS head group along the surface of nanometer-diameter electropores initiated by field-driven alignment of water dipoles at the membrane interface.  相似文献   

4.
Calcium bursts induced by nanosecond electric pulses   总被引:14,自引:0,他引:14  
We report here real-time imaging of calcium bursts in human lymphocytes exposed to nanosecond, megavolt-per-meter pulsed electric fields. Ultra-short (less than 30 ns), high-field (greater than 1 MV/m), electric pulses induce increases in cytosolic calcium concentration and translocation of phosphatidylserine (PS) to the outer layer of the plasma membrane in Jurkat T lymphoblasts. Pulse-induced calcium bursts occur within milliseconds and PS externalization within minutes. Caspase activation and other indicators of apoptosis follow these initial symptoms of nanosecond pulse exposure. Pulse-induced PS translocation is observed even in the presence of caspase inhibitors. Ultra-short, high-field, electroperturbative pulse effects differ substantially from those associated with electroporation, where pulses of a few tens of kilovolts-per-meter lasting a few tens of microseconds open pores in the cytoplasmic membrane. Nanosecond pulsed electric fields, because their duration is less than the plasma membrane charging time, develop voltages across intracellular structures without porating the cell.  相似文献   

5.
The charging of the plasmalemma is a necessary condition for permeabilization of the plasma membrane (electroporation) in response to external electric field exposure. Common theories explain this permeabilization by formation of pores in the lipid bilayer. Using pulsed laser fluorescence microscopy, we measured the charging process of the membrane during the application of an external electric field with a temporal resolution of 5 ns. Visualization of the charging process of protoplasts plasma membrane (Nicotiana tabacum Bright Yellow 2) was achieved by staining of the plasma membrane with the voltage-sensitive fluorescent dye ANNINE-6. Measurements on membranes exhibiting negligible membrane permeabilization confirm the sine-shaped azimuthal distribution of the membrane voltage predicted by the relation of Cole. At higher membrane voltages, enhanced pore formation allows for the exchange of charge carriers, leading to deviations from the sine-shaped curve progression, i.e., a saturation of the membrane voltage at membrane segments facing the electrodes. Additionally, measurements on protoplasts exposed to multiple successive pulses indicate that the recovery of the membrane seems to be a fast process, occurring within seconds after termination of the external electric field pulse.  相似文献   

6.
The behaviour of lipid bilayer membranes, made of oxidized cholesterol, and UO22+-modified azolectin membranes in a high electric field has been investigated using the voltage clamp method. When a voltage pulse is applied to the membrane of these compositions, the mechanical rupture of the membranes is preceded by a gradual conductance increase which remains quite reversible till a certain moment. The voltage drop at this reversible stage of breakdown leads to a very rapid (characteristic time of less than 5 μs) decrease in the membrane conductance. At repeated voltage pulses of the same amplitude with sufficient intervals between them (approx. 10 s), the current oscillograms reflecting the reversible resistance decrease are well reproduced on the same membrane. The time of attainment of the predetermined level of the membrane conductance is strongly dependent on voltage. At different stages of breakdown we have investigated changes in the conductance of UO22+-modified membrane after the application of two-step voltage pulses, the kinetics of development of the reversible decrease in the membrane resistance in solutions of univalent and divalent ions, and also the influence of sucrose and hemoglobin on the current evolution. The relationship between the reversible conductance increase, the reversible electrical breakdown [15] and the rupture of membrane in an electric field is discussed. We propose the general interpretation of these phenomena, based on the representation of the potential-dependent appearance in the membrane of pores, the development of which is promoted by an electric field.  相似文献   

7.
Cell permeabilization by electric pulses (EPs), or electroporation, has been well established as a tool to indiscriminately increase membrane flows of water solutes down the concentration and voltage gradients. However, we found that EPs of nanosecond duration (nsEPs) trigger formation of voltage-sensitive and inward-rectifying membrane pores. NsEP-treated cells remain mostly impermeable to propidium, suggesting that the maximum pore size is ∼1 nm. The ion-channel-like properties of nsEP-opened nanopores vanish if they break into larger, propidium-permeable “conventional” pores. However, nanopores can be stable for many minutes and significantly impact cell electrolyte and water balance. Multiple nsEPs cause fast cell swelling and blebbing, whereas opening of larger pores with digitonin abolishes swelling and causes blebs to implode. The lipid nature of nsEP-opened nanopores is confirmed by fast externalization of phosphatidylserine residues. Nanopores constitute a previously unexplored ion transport pathway that supplements classic ion channels but is distinctly different from them.  相似文献   

8.
Several reports have recently been published on effects of very short and intense electric pulses on cellular organelles; in a number of cases, the cell plasma membrane appeared to be affected less than certain organelle membranes, whereas with longer and less intense pulses the opposite is the case. The effects are the consequence of the voltages induced on the membranes, and in this article we investigate the conditions under which the induced voltage on an organelle membrane could exceed its counterpart on the cell membrane. This would provide a possible explanation of the observed effects of very short pulses. Frequency-domain analysis yields an insight into the dependence of the voltage inducement on the electric and geometric parameters characterizing the cell and its vicinity. We show that at sufficiently high field frequencies, for a range of parameter values the voltage induced on the organelle membrane can indeed exceed the voltage induced on the cell membrane. Particularly, this can occur if the organelle interior is electrically more conductive than the cytosol, or if the organelle membrane has a lower dielectric permittivity than the cell membrane, and we discuss the plausibility of these conditions. Time-domain analysis is then used to determine the courses of the voltage induced on the membranes by pulses with risetimes and durations in the nanosecond range. The particularly high resting voltage in mitochondria, to which the induced voltage superimposes, could contribute to the explanation why these organelles are the primary target of many observed effects.  相似文献   

9.
We present experimental and theoretical results of electroporation of small patches of planar lipid bilayers by means of linearly rising current. The experiments were conducted on ~120-μm-diameter patches of planar phospholipid bilayers. The steadily increasing voltage across the bilayer imposed by linearly increasing current led to electroporation of the membrane for voltages above a few hundred millivolts. This method shows new molecular mechanisms of electroporation. We recorded small voltage drops preceding the breakdown of the bilayer due to irreversible electroporation. These voltage drops were often followed by a voltage re-rise within a fraction of a second. Modeling the observed phenomenon by equivalent electric circuits showed that these events relate to opening and closing of conducting pores through the bilayer. Molecular dynamics simulations performed under similar conditions indicate that each event is likely to correspond to the opening and closing of a single pore of about 5 nm in diameter, the conductance of which ranges in the 100-nS scale. This combined experimental and theoretical investigation provides a better quantitative characterization of the size, conductance and lifetime of pores created during lipid bilayer electroporation. Such a molecular insight should enable better control and tuning of electroporation parameters for a wide range of biomedical and biotechnological applications.  相似文献   

10.
It is hypothesized that high frequency components of nanosecond pulsed electric fields (nsPEFs), determined by transient pulse features, are important for maximizing electric field interactions with intracellular structures. For monopolar square wave pulses, these transient features are determined by the rapid rise and fall of the pulsed electric fields. To determine effects on mitochondria membranes and plasma membranes, N1-S1 hepatocellular carcinoma cells were exposed to single 600 ns pulses with varying electric fields (0–80 kV/cm) and short (15 ns) or long (150 ns) rise and fall times. Plasma membrane effects were evaluated using Fluo-4 to determine calcium influx, the only measurable source of increases in intracellular calcium. Mitochondria membrane effects were evaluated using tetramethylrhodamine ethyl ester (TMRE) to determine mitochondria membrane potentials (ΔΨm). Single pulses with short rise and fall times caused electric field-dependent increases in calcium influx, dissipation of ΔΨm and cell death. Pulses with long rise and fall times exhibited electric field-dependent increases in calcium influx, but diminished effects on dissipation of ΔΨm and viability. Results indicate that high frequency components have significant differential impact on mitochondria membranes, which determines cell death, but lesser variances on plasma membranes, which allows calcium influxes, a primary determinant for dissipation of ΔΨm and cell death.  相似文献   

11.
Leukemic cell intracellular responses to nanosecond electric fields   总被引:13,自引:0,他引:13  
Intense, nanosecond (ns) pulsed electric fields (PEFs) are known to affect the intracellular structures of cells. The probability of preferentially inducing subcellular effects increases with decreasing pulse length while effects on the plasma membrane are diminished. This has been demonstrated by applying electrical pulses of 60 and 10 ns duration with electric field intensities of up to 6.5 MV/m to HL-60 cells. Using confocal microscopy, PEF-induced changes in the integrity of the plasma membrane and nucleus were measured by recording fluorescence changes with propidium iodide (PI) and acridine orange (AO), respectively. Results suggest that high voltage, nsPEFs target the nucleus and modify cellular functions while plasma membrane effects are delayed and become smaller as pulse duration is shortened. Cell viability was not affected by these pulses. In spite of the high pulsed electric fields, thermal effects can be neglected because of the ultrashort pulse duration. The results suggest application of this ultrashort pulse technology to modulate nuclear structure and function for potential therapeutic benefit.  相似文献   

12.
Nonelectrolytes such as polyethylene glycols (PEG) and dextrans (i) promote the association of S. aureus α-toxin with liposomes (shown by Coomassie staining) and (ii) enhance the rate and extent of calcein leakage from calcein-loaded liposomes; such leakage is inhibited by H+, Zn2+ and Ca2+ to the same extent as that of nonPEG-treated liposomes. Incubation of liposomes treated with α-toxin in the presence of PEG with the hydrophobic photo-affinity probe 3-(trifluoromethyl)-3-m-[125I]iodophenyl)diazirine(125I-TID) labels monomeric and—predominantly—hexameric forms of liposome-associated α-toxin; in the absence of PEG little labeling is apparent. At high concentrations of H+ and Zn2+ but not of Ca2+—all of which inhibit calcein leakage—the distribution of label between hexamer and monomer is perturbed in favor of the latter. In α-toxin-treated planar lipid bilayers from which excess toxin has been washed away, PEGs and dextrans strongly promote the appearance of ion-conducting pores. The properties of such pores are similar in most regards to pores induced in the absence of nonelectrolytes; they differ only in being more sensitive to ``closure' by voltage (as are pores induced in cells). In both systems, the stimulation by nonelectrolytes increases with concentration and with molecular mass up to a maximum around 2,000 Da. We conclude (i) that most of the α toxin that becomes associated with liposome or planar lipid bilayers does not form active pores and (ii) that the properties of α-toxin-induced pores in lipid bilayers can be modulated to resemble those in cells. Received: 2 October 1995/Revised: 3 November 1995  相似文献   

13.
The change in the membrane potential of Jurkat cells in response to nanosecond pulsed electric fields was studied for pulses with a duration of 60 ns and maximum field strengths of approximately 100 kV/cm (100 V/cell diameter). Membranes of Jurkat cells were stained with a fast voltage-sensitive dye, ANNINE-6, which has a subnanosecond voltage response time. A temporal resolution of 5 ns was achieved by the excitation of this dye with a tunable laser pulse. The laser pulse was synchronized with the applied electric field to record images at times before, during, and after exposure. When exposing the Jurkat cells to a pulse, the voltage across the membrane at the anodic pole of the cell reached values of 1.6 V after 15 ns, almost twice the voltage level generally required for electroporation. Voltages across the membrane on the side facing the cathode reached values of only 0.6 V in the same time period, indicating a strong asymmetry in conduction mechanisms in the membranes of the two opposite cell hemispheres. This small voltage drop of 0.6-1.6 V across the plasma membrane demonstrates that nearly the entire imposed electric field of 10 V/mum penetrates into the interior of the cell and every organelle.  相似文献   

14.
N Kami-ike  S Kudo    H Hotani 《Biophysical journal》1991,60(6):1350-1355
The bacterial flagellar motor is the only molecular rotary machine found in living organisms, converting the protonmotive force, i.e., the membrane voltage and proton gradients across the cell membrane, into the mechanical force of rotation (torque). We have developed a method for holding a bacterial cell at the tip of a glass micropipette and applying electric pulses through the micropipette. This method has enabled us to observe the dynamical responses of flagellar rotation to electric pulses that change the membrane voltage transiently and repeatedly. We have observed that acceleration and deceleration of motor rotation are induced by application of these electric pulses. The change in the rotation rate occurred within 5 ms after pulse application.  相似文献   

15.
The dynamical translocation of lipids from one leaflet to another due to membrane permeabilization driven by nanosecond, high-intensity (> 100 kV/cm) electrical pulses has been probed. Our simulations show that lipid molecules can translocate by diffusion through water-filled nanopores which form following high voltage application. Our focus is on multiple pulsing, and such simulations are relevant to gauge the time duration over which nanopores might remain open, and facilitate continued lipid translocations and membrane transport. Our results are indicative of a N½ scaling with pulse number for the pore radius. These results bode well for the use of pulse trains in biomedical applications, not only due to cumulative behaviors and in reducing electric intensities and pulsing hardware, but also due to the possibility of long-lived thermo-electric physics near the membrane, and the possibility for pore coalescence.  相似文献   

16.
Modeling and experimental studies have shown that pulsed electric fields of nanosecond duration and megavolt per meter amplitude affect subcellular structures but do not lead to the formation of large pores in the outer membrane. This "intracellular electromanipulation" requires the use of pulse generators which provide extremely high power but low energy pulses. In this study, we describe the concept of the required pulsed power sources, their design, operation, and the necessary diagnostics. Two types of pulse generators based on the Blumlein line principle have been developed and are described here. One system is designed to treat a large number of cells in cuvettes holding volumes from 0.1 to 0.8 ml. Pulses of up to 40 kV amplitude, with a duration of 10 ns and a rise time close to 1 ns can be applied to the cuvette. For an electrode gap of 1 mm this voltage corresponds to an average electric field of 40 MV/m. The second system allows for real time observation of individual cells under a microscope. It generates pulses of 10-300 ns duration with a rise time of 3.5 ns and voltage amplitudes up to 1 kV. Connected to a microreactor with an electrode gap of 100 microm, electric fields up to 10 MV/m are applied.  相似文献   

17.
Intense nanosecond pulsed electric fields (nsPEFs) interact with cellular membranes and intracellular structures. Investigating how cells respond to nanosecond pulses is essential for a) development of biomedical applications of nsPEFs, including cancer therapy, and b) better understanding of the mechanisms underlying such bioelectrical effects. In this work, we explored relatively mild exposure conditions to provide insight into weak, reversible effects, laying a foundation for a better understanding of the interaction mechanisms and kinetics underlying nsPEF bio-effects. In particular, we report changes in the nucleus of Jurkat cells (human lymphoblastoid T cells) exposed to single pulses of 60 ns duration and 1.0, 1.5 and 2.5 MV/m amplitudes, which do not affect cell growth and viability. A dose-dependent reduction in alkaline comet-assayed DNA migration is observed immediately after nsPEF exposure, accompanied by permeabilization of the plasma membrane (YO-PRO-1 uptake). Comet assay profiles return to normal within 60 minutes after pulse delivery at the highest pulse amplitude tested, indicating that our exposure protocol affects the nucleus, modifying DNA electrophoretic migration patterns.  相似文献   

18.
The mechanism of reversible electric breakdown of lipid membranes is studied. The following stages of the process of pore development are substantiated. Hydrophobic pores are formed in the lipid bilayer by spontaneous fluctuations. If these water-filled defects extend to a radius of 0.3 to 0.5 nm, a hydrophilic pore is formed by reorientation of the lipid molecules. This process is favoured by a potential difference across the membrane. The conductivity of the pores depends on membrane voltage, and the type of this dependence changes with the radius of the pore. Hydrophilic pores of an effective radius of 0.6 up to more than 1 nm are formed, which account for the membrane conductivity increase observed. The characteristic times of changes in average radius and number of pores during the voltage pulse and after it are investigated.  相似文献   

19.
Electropermeabilisation is a well established physical method, based on the application of electric pulses, which induces the transient permeabilisation of the cell membrane. External molecules, otherwise nonpermeant, can enter the cell. Electropermeabilisation is now in use for the delivery of a large variety of molecules, as drugs and nucleic acids. Therefore, the method has great potential in the fields of cancer treatment and gene therapy. However many open questions about the underlying physical mechanisms involved remain to be answered or fully elucidated. In particular, the induced changes by the effects of the applied field on the membrane structure are still far from being fully understood. The present review focuses on questions related to the current theories, i.e. the basic physical processes responsible for the electropermeabilisation of lipid membranes. It also addresses recent findings using molecular dynamics simulations as well as experimental studies of the effect of the field on membrane components. Presented at the joint biannual meeting of the SFB-GEIMM-GRIP, Anglet France, 14–19 October, 2006.  相似文献   

20.
The mechanism of reversible electric breakdown of lipid membranes is studied. The following stages of the process of pore development are substantiated. Hydrophobic pores are formed in the lipid bilayer by spontaneous fluctuations. If these water-filled defects extend to a radius of 0.3 to 0.5 nm, a hydrophilic pore is formed by reorientation of the lipid molecules. This process is favoured by a potential difference across the membrane. The conductivity of the pores depends on membrane voltage, and the type of this dependence changes with the radius of the pore. Hydrophilic pores of an effective radius of 0.6 up to more than 1 nm are formed, which account for the membrane conductivity increase observed. The characteristic times of changes in average radius and number of pores during the voltage pulse and after it are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号