首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinational DNA repair was first detected in budding yeast Saccharomyces cerevisiaeand was also studied in fission yeast Schizosaccharomyces pombeover the recent decade. The discovery of Sch. pombehomologs of the S. cerevisiae RAD52genes made it possible not only to identify and to clone their vertebrate counterparts, but also to study in detail the role of DNA recombination in certain cell processes. For instance, recombinational repair was shown to play a greater role in maintaining genome integrity in fission yeast and in vertebrates compared with S. cerevisiae. The present state of the problem of recombinational double-strand break repair in fission yeast is considered in this review with a focus on comparisons between Sch. pombeand higher eukaryotes. The role of double-strand break repair in maintaining genome stability is discussed.  相似文献   

2.
Summary Cells of wild-type Schizosacharomyces pombe exposed to UV radiation in either G1 or G2 phase show enhanced inactivation of colony-forming ability if plated in the presence of caffeine. This UV-sensitization by caffeine is abolished in both G1 and G2 phase cells by the rad1 mutation; since both caffeine and the rad1 mutation markedly reduce recombinational events, this suggests that a recombinational repair process is active in cells irradiated either in G1 or G2 phase. A prereplicative or sister chromatid exchange recombinational process appears to account for caffeine-sensitive repair of UV-damage in G2 cells (which possess at the time of radiation exposure the duplicated genome necessary for recombination), since caffeine-sensitive repair begins immediately and is completed before resumption of DNA synthesis. In contrast, since caffeine-sensitive repair of UV-damage in G1 cells displays a considerable lag and then occurs concomitantly with DNA synthesis, it appears that G1 cells must acquire a second genome in order to accomplish a caffeine-sensitive recovery process. Since a duplicated genome is required for caffeinesensitive repair, all such repair would seem to involve a recombinational mechanism. In G1 cells the process may be a post-replication recombinational mechanism. Since G2 phase cells are considerably more UV-resistant than G1 phase cells, the prereplicative recombinational process appears to be a much more efficient process for dealing with UV-induced damage than the post-replication mechanism.UV-induced mutagenesis was examined in wildtype and rad mutants using a forward mutation system. Rad mutants which show higher UV-induced mutation rates than wild-type retain UV-sensitization by caffeine (and thus presumably retain the recombinational mechanism). In contrast, rad strains which are relatively UV-immutable compared to wild-type do not possess the caffeine-sensitive UV-repair process. The recombinational process therefore may be the major pathway responsible for UV-induced mutation.AECL Reference No. 6251; NRC Publication No. 16999  相似文献   

3.
In this paper we study the influence of non-homology between plasmid and chromosomal DNA on the efficiency of recombinational repair of plasmid double-strand breaks and gaps in yeast. For this purpose we used different combinations of plasmids and yeast strains carrying various deletions within the yeast LYS2 gene. A 400 by deletion in plasmid DNA had no effect on recombinational plasmid repair. However, a 400 by deletion in chromosomal DNA dramatically reduced the efficiency of this repair mechanism, but recombinational repair of plasmids linearized by a double-strand break with cohesive ends still remained the dominant repair process. We have also studied the competition between recombination and ligation in the repair of linearized plasmids. Our experimental evidence suggests that recombinational repair is attempted but aborted if only one recombinogenic end with homology to chromosomal DNA is present in plasmid DNA. This situation results in a decreased probability of non-recombinational (i.e. ligation) repair of linearized plasmid DNA.  相似文献   

4.
Repair of DNA double-strand break (DSB) is an evolutionary conserved Rad51-mediated mechanism. In yeasts, Rad51 paralogs, Saccharomyces cerevisiae Rad55-Rad57 and Schizosaccharomyces pombe Rhp55-Rhp57 are mediators of the nucleoprotein Rad51 filament formation. As shown in this work, a novel Rad51Sp-dependent pathway of DSB repair acts in S. pombe parallel to the pathway mediated by Rad51 paralogs. A new gene dds20 + that controls this pathway was identified. The overexpression of dds20 + partially suppresses defects of mutant rhp55Δ in DNA repair. Cells of dds20Δ manifest hypersensitivity to a variety of genotoxins. Epistatic analysis revealed that dds20 + is a gene of the recombinational repair group. The role of Dds20 in repair of spontaneous damages occurring in the process of replication and mating-type switching remains unclear. The results obtained suggest that Dds20 has functions beyond the mitotic S phase. The Dds20 protein physically interacts with Rhp51(Rad51Sp). Dds20 is assumed to operate at early recombinational stages and to play a specific role in the Rad51 protein filament assembly differing from that of Rad51 paralogs.__________Translated from Genetika, Vol. 41, No. 6, 2005, pp. 736–745.Original Russian Text Copyright © 2005 by Salakhova, Savchenko, Khasanov, Chepurnaya, Korolev, Bashkirov.  相似文献   

5.

Background  

DNA double-strand breaks (DSBs) are induced by exogenous insults such as ionizing radiation and chemical exposure, and they can also arise as a consequence of stalled or collapsed DNA replication forks. Failure to repair DSBs can lead to genomic instability or cell death and cancer in higher eukaryotes. The Schizosaccharomyces pombe fbh1 gene encodes an F-box DNA helicase previously described to play a role in the Rhp51 (an orthologue of S. cerevisiae RAD51)-dependent recombinational repair of DSBs. Fbh1 fused to GFP localizes to discrete nuclear foci following DNA damage.  相似文献   

6.
Collapse and repair of replication forks in Escherichia coli   总被引:19,自引:6,他引:13  
Single-strand interruptions in a template DNA are likely to cause collapse of replication forks. We propose a model for the repair of collapsed replication forks in Escherichia coli by the RecBCD recombinational pathway. The model gives reasons for the preferential orientation of Chi sites in the E. coli chromosome and accounts for the hyper-rec phenotype of the strains with increased numbers of single-strand interruptions in their DNA. On the basis of the model we offer schemes for various repeat-mediated recombinational events and discuss a mechanism for quasi-conservative DNA replication explaining the recombinational repair-associated mutagenesis.  相似文献   

7.
Bacteria can have multiple copies of a gene at separate locations on the same chromosome. Some of these gene families, including tuf (translation elongation factor EF‐Tu) and rrl (ribosomal RNA), encode functions critically important for bacterial fitness. Genes within these families are known to evolve in concert using homologous recombination to transfer genetic information from one gene to another. This mechanism can counteract the detrimental effects of nucleotide sequence divergence over time. Whether such mechanisms can also protect against the potentially lethal effects of mobile genetic element insertion is not well understood. To address this we constructed two different length insertion cassettes to mimic mobile genetic elements and inserted these into various positions of the tuf and rrl genes. We measured rates of recombinational repair that removed the inserted cassette and studied the underlying mechanism. Our results indicate that homologous recombination can protect the tuf and rrl genes from inactivation by mobile genetic elements, but for insertions within shorter gene sequences the efficiency of repair is very low. Intriguingly, we found that physical distance separating genes on the chromosome directly affects the rate of recombinational repair suggesting that relative location will influence the ability of homologous recombination to maintain homogeneity.  相似文献   

8.
Repair of DNA double-stranded breaks caused by ionizing radiation or cellular metabolization, homologous recombination, is an evolutionary conserved process controlled by RAD52 group genes. Genes of recombinational repair also play a leading role in the response to DNA damage caused by UV light. Cells with deletion in gene dds20 of recombinational repair were shown to manifest hypersensitivity to the action of UV light at lowered incubation temperature. Epistatic analysis revealed that dds20 + is not a member of the NER and UVER gene groups responsible for the repair of DNA damage induced by UV light. The Dds protein has functions in the Cds1-independent mechanism of UV damage tolerance of DNA.  相似文献   

9.
In this paper we study the influence of non-homology between plasmid and chromosomal DNA on the efficiency of recombinational repair of plasmid double-strand breaks and gaps in yeast. For this purpose we used different combinations of plasmids and yeast strains carrying various deletions within the yeast LYS2 gene. A 400 by deletion in plasmid DNA had no effect on recombinational plasmid repair. However, a 400 by deletion in chromosomal DNA dramatically reduced the efficiency of this repair mechanism, but recombinational repair of plasmids linearized by a double-strand break with cohesive ends still remained the dominant repair process. We have also studied the competition between recombination and ligation in the repair of linearized plasmids. Our experimental evidence suggests that recombinational repair is attempted but aborted if only one recombinogenic end with homology to chromosomal DNA is present in plasmid DNA. This situation results in a decreased probability of non-recombinational (i.e. ligation) repair of linearized plasmid DNA.  相似文献   

10.
Mechanism of DNA double-strand break repair by non-homologous end joining   总被引:14,自引:0,他引:14  
The repair of DNA double-strand breaks (DSBs) is critical for maintaining genome stability. Although the non-homologous end joining (NHEJ) pathway frequently results in minor changes in DNA sequence at the break site and occasionally the joining of previously unlinked DNA molecules, it is a major contributor to cell survival following exposure of mammalian cells to agents that cause DSBs. This repair mechanism is conserved in lower eukaryotes and in some prokaryotes although the majority of DSBs are repaired by recombinational repair pathways in these organisms. Here we will describe the biochemical properties of NHEJ factors from bacteria, Saccharomyces cerevisiae and mammals, and how physical and functional interactions among these factors co-ordinate the repair of DSBs.  相似文献   

11.
This work provides evidence that the product of the RDH54 gene participates in the coordination of some repair pathways of DNA lesions. The unique point mutation rdh54–29 described in our previous works confers the phenotype markedly differing from that of the strain with a full deletion of gene RDH54. The epistatic type of interaction between mutations rdh 54–29 and apn 1Δ allowed the product of gene RDH54 to be attributed to the base excision repair pathway. However, a pleiotropic effect of mutation rdh54–29 manifested as sensitivity to a wide spectrum of DNA-damagi ng agents suggests that Rdh54 is involved in the regulation of several DNA repair pathways. To verify this hypothesis, the direct influence of mutation rdh54–29 on recombination and mutagenesis was evaluated. The results obtained led to the assumption that, in addition to the involvement in base excision repair, Rdh54p may play a certain role in the coordination of DNA lesion repair by various systems, including recombinational and mutagenic repair pathways or nucleotide excision repair. This function supposedly is mediated through modification of chromatin structure at the location of DNA lesion, in particular, by alleviation of DNA-hi stone bonds, thus rendering DNA more susceptible to the action of various repair proteins.  相似文献   

12.
Summary Recombinational repair is the means by which DNA double-strand breaks (DSBs) are repaired in yeast. DNA divergence between chromosomes was shown previously to inhibit repair in diploid G1 cells, resulting in chromosome loss at low nonlethal doses of ionizing radiation. Furthermore, 15–20% divergence prevents meiotic recombination between individual pairs of Saccharomyces cerevisiae and S. carlsbergensis chromosomes in an otherwise S. cerevisiae background. Based on analysis of the efficiency of DSB-induced chromosome loss and direct genetic detection of intragenic recombination, we conclude that limited DSB recombinational repair can occur between homoeologous chromosomes. There is no difference in loss between a repair-proficient Pms+ strain and a mismatch repair mutant, pms1. Since DSB recombinational repair is tolerant of diverged DNAs, this type of repair could lead to novel genes and altered chromosomes. The sensitivity to DSB-induced loss of 11 individual yeast artificial chromosomes (YACs) containing mouse or human (chromosome 21 or HeLa) DNA was determined. Recombinational repair between a pair of homologous HeLa YACs appears as efficient as that between homologous yeast chromosomes in that there is no loss at low radiation doses. Single YACs exhibited considerable variation in response, although the response for individual YACs was highly reproducible. Based on the results with the yeast homoeologous chromosomes, we propose that the potential exists for intra- YAC recombinational repair between diverged repeat DNA and that the extent of repair is dependent upon the amount of repeat DNA and the degree of divergence. The sensitivity of YACs containing mammalian DNA to ionizing radiation-induced loss may thus be an indicator of the extent of repeat DNA.  相似文献   

13.
Recombinational repair was first detected in budding yeast Saccharomyces cerevisiae and was also studied in fission yeast Schizosaccharomyces pombe over the recent decade. The discovery of Sch. pombe homologs of the S. cerevisiae RAD52 genes made it possible not only to identify and to clone their vertebrate counterparts, but also to study in detail the role of DNA recombination in certain cell processes. For instance, recombinational repair was shown to play a greater role in maintaining genome integrity in fission yeast and in vertebrates compared with S. cerevisiae. The present state of the problem of recombinational double-strand break repair in fission yeast is considered with a focus on comparisons between Sch. pombe and higher eukaryotes. The role of double-strand break repair in maintaining genome stability is discussed.  相似文献   

14.
Caffeine potentiates the lethal effects of ultraviolet and ionising radiation on wild-type Schizosaccharomyces pombe cells. In previous studies this was attributed to the inhibition by caffeine of a novel DNA repair pathway in S. pombe that was absent in the budding yeast Saccharomyces cerevisiae. Studies with radiation-sensitive S. pombe mutants suggested that this caffeine-sensitive pathway could repair ultraviolet radiation damage in the absence of nucleotide excision repair. The alternative pathway was thought to be recombinational and to operate in the G2 phase of the cell cycle. However, in this study we show that cells held in G1 of the cell cycle can remove ultraviolet-induced lesions in the absence of nucleotide excision repair. We also show that recombination-defective mutants, and those now known to define the alternative repair pathway, still exhibit the caffeine effect. Our observations suggest that the basis of the caffeine effect is not due to direct inhibition of recombinational repair. The mutants originally thought to be involved in a caffeine-sensitive recombinational repair process are now known to be defective in arresting the cell cycle in S and/or G2 following DNA damage or incomplete replication. The gene products may also have an additional role in a DNA repair or damage tolerance pathway. The effect of caffeine could, therefore, be due to interference with DNA damage checkpoints, or inhibition of the DNA damage repair/tolerance pathway. Using a combination of flow cytometric analysis, mitotic index analysis and fluorescence microscopy we show that caffeine interferes with intra-S phase and G2 DNA damage checkpoints, overcoming cell cycle delays associated with damaged DNA. In contrast, caffeine has no effect on the DNA replication S phase checkpoint in reponse to inhibition of DNA synthesis by hydroxyurea. Received: 16 June 1998 / Accepted: 13 July 1998  相似文献   

15.
In eukaryotes, recombinational repair is choreographed by multiprotein complexes that are organized into focal assemblies. These foci are highly dynamic giga-dalton structures capable of simultaneously repairing multiple DNA lesions. Moreover, the composition of these repair centers depends on the nature of the DNA lesion and is tightly coordinated with progression of the cell cycle. Components of DNA repair centers are regulated by post-translational modifications such as phosphorylation, ubiquitination and sumoylation. Repair foci progress through four distinct stages: first, DNA damage recognition and binding of DNA ends by the Mre11 complex and Ku70/80; second, end-processing and binding of single-stranded DNA by replication protein A, which recruits checkpoint proteins; third, recombinational repair during S and G(2) phase; and fourth, disassembly of foci and resumption of the cell cycle.  相似文献   

16.
Some phages survive irradiation much better upon multiple than upon single infection, a phenomenon known as multiplicity reactivation (MR). Long ago MR of UV-irradiated λ red phage in E. coli cells was shown to be a manifestation of recA-dependent recombinational DNA repair. We used this experimental model to assess the influence of helicase II on the type of recombinational repair responsible for MR. Since helicase II is encoded by the SOS-inducible uvrD gene, SOS-inducing treatments such as irradiating recA+ or heating recA441 cells were used. We found: i) that MR was abolished by the SOS-inducing treatments; ii) that in uvrD background these treatments did not affect MR; and iii) that the presence of a high-copy plasmid vector carrying the uvrD+ allele together with its natural promoter region was sufficient to block MR. From these results we infer that helicase II is able to antagonize the type of recA-dependent recombinational repair acting on multiple copies of UV-damaged λ DNA and that its antirecombinogenic activity is operative at elevated levels only.  相似文献   

17.
ST0838 (designed stRad55B) is one of the four RadA paralogs (or Rad55 homologues) in the genome of the hyperthermophilic crenarchaeon Sulfolobus tokodaii. The gene is induced by UV irradiation, suggesting that it is involved in DNA recombinational repair in this organism. However, this protein could not be expressed normally in vitro. In this study, thermostable and soluble stRad55B was obtained by co-expression with S. tokodaii RadA (stRadA) in E. coli, and the enzymatic properties were examined. It was found that stRad55B bound ssDNA preferentially and had a very weak ATPase activity that was not stimulated by DNA. The recombinant protein inhibited the strand exchange activity promoted by stRadA, indicating that stRad55B might be an inhibitor to the homologous recombination in this archaeon. The results will be helpful for further functional and interaction analysis of RadA paralogs and for the understanding of the mechanism of recombinational repair in archaea. Supported by the National Basic Research Program of China (Grant No. 2004CB719604) and National Natural Science Foundation of China (Grant Nos. 30470386 and 30700011)  相似文献   

18.
Summary Treatment of bacteriophage T4 by ethyl methanesulfonate (EMS)1 caused more than a doubling in recombination between two rII markers. The functions of genes 47, 46, 32, 30, uvsX and y are known to be required for genetic recombination, and mutants defective in these genes were found to be more sensitive to inactivation by EMS than wild-type phage. This suggests that a recombinational pathway involving the products of these genes may be employed in repairing EMS induced lethal lesions. Genes 45 and denV are apparently not involved in recombination, and mutants defective in these genes were not EMS-sensitive. Gene 47, 46 and y mutants which were defective in the repair of EMS induced lethal lesions had no detectable deficiency in their ability to undergo EMS-induced mutation. This implies that recombinational repair of EMS lesions does not contribute substantially to EMS mutatenesis. The results obtained here with EMS are in general similar to the results reported in the preceding paper with MNNG, suggesting that the lesions caused by both of these monofunctional alkylating agents may be eliminated by similar recombinational repair processes.  相似文献   

19.
Summary We examined the possibility that the ssb-1 and ssb-113 mutants exert some of their effects by interfering with the normal function of wild-type RecF protein. Consistent with this possibility, we found that recA803, which partially suppresses recF mutations, also partially suppresses both ssb mutations, as detected by an increase in UV resistance. No evidence was obtained for suppression of the defect in lexA regulon inducibility caused by the ssb mutations. Consequently we suggest that suppression occurs by increasing recombinational repair. In vitro tests of Ssb mutant and wild-type proteins revealed that the single-stranded DNA dependent ATPase activity of RecA protein is more susceptible to inhibition than the joint-molecule-forming activity. All three Ssb proteins inhibit the ATPase activity of RecA wild-type protein almost completely while under similar conditions they inhibit the joint-molecule-forming activity only slightly. Both activities of RecA803 protein were found to be less inhibited by the three Ssb proteins than those of RecA wild-type protein. This is consistent with the suppressing ability of recA803. We found no evidence to contradict the previously proposed hypothesis that ssb-1 affects recombinational repair by acting as a weaker form of Ssb protein. We found, however, only very weak evidence that Ssb-113 protein interferes directly with recombinational repair so that the possibility that it interferes with a normal function of RecF protein must remain open.  相似文献   

20.
    
Summary UV- or -irradiated G2 phase cells of rad + Schizosaccharomyces pombe show increased inactivation if incubated post-irradiation, in liquid growth medium containing caffeine, before being plated on normal agar medium. The following, however, do not show such caffeine-induced lethality: G1 phase rad + cells; ascospores of a rad + strain; either G2 or G1 phase cells of the recombination-deficient rad1 strain; unirradiated rad + cells. Of the above, only the G2 phase rad + cells possess, at the time of radiation exposure, the capability for recombination. These results indicate that a recombinational process is responsible for caffeine-induced lethality after exposure to UV or ionizing radiation.Similarly, the negative liquid holding effect (a progressive inactivation seen if UV- or -irradiated cells are incubated in non-nutritive medium such as buffer before being plated) is manifested only in G2 phase rad + cells, and not in either G1 phase rad + cells or rad1 cell (whether G2 or G1 phase). Both the negative liquid holding effect and caffeine-induced lethality therefore are seen only in cells which fulfill all of the following conditions: (a) they must be genetically recombination-proficient; (b) they must possess at the time of irradiation the necessary two DNA copies with which to perform recombinational repair (for a haploid cell, this means they must be in G2 phase); (c) their DNA must be damaged, such as by UV or -ray exposure, thus requiring that recombinational repair capability be exercised in order to maintain viability; and (d) they must be incubated under conditions that fail to support the normal progress of recombinational repair. The exercising of recombinational repair capability has been shown to require an incubation medium capable of supporting growth. The incubation conditions that give rise to further inactivation of irradiated cells (non-nutritive liquid holding medium in the case of the negative liquid holding effect and exposure to caffeine in the case of caffeine-induced lethality) have been demonstrated not to support recombinational repair.AECL Reference No. 7182  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号