首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The number of West Indian sweet potato weevils, Euscepes postfasciatus, being mass-reared in a facility for use in sterile insect technique (SIT) eradication programs has undergone a drastic reduction. A neogregarine protozoan pathogen Farinocystis sp. (an undescribed species) was detected in vivo in the mass-reared E. postfasciatus. We investigated the effects of this disease on the longevity and fecundity of host weevils and the incubation time of the disease in the host body under mass-rearing conditions. Our results demonstrated that infection by this Farinocystis sp. decreased both longevity and fecundity in E. postfasciatus. In particular, the pathogen severely limited the production of progeny by infected females compared to healthy females. Therefore, we consider this protozoan infection to be the major cause of the decreased E. postfasciatus production in the mass-rearing facility.  相似文献   

2.
It is necessary to establish an economical mass-rearing system for the West Indian sweet potato weevil Euscepes postfasciatus (Fairmaire) so that large numbers can be created for use in the sterile insect technique (SIT) to control wild infestations. Both the quality of offspring and the number of adult weevils produced are important. As an adult female with a dry weight of less than 1.4 mg has an extremely low rate of production of offspring, we investigated the effect of an inoculated dose of egg suspension on both yield rate and body size, in order to determine the appropriate dose to attain the maximum yield of productive females. The number of emerged weevils increased as the inoculated dose of egg suspension increased. In brief, both yield rate and female body size significantly decreased as the inoculated dose of egg suspension increased, perhaps as a result of density effects. We conclude that the appropriate dose of inoculated egg suspension to attain the maximum yield from productive females of E. postfasciatus in the current mass-rearing system is 3 mL (containing approximately 450 eggs) per rearing container.  相似文献   

3.
  • 1 The sterile insect technique (SIT) is widely used to suppress or eradicate target pest insect populations.
  • 2 The effectiveness of SIT depends on the ability of released sterile males to mate with and inseminate wild females. The use of gamma radiation to induce sterility, however, negatively affects both somatic cells as well as reproductive cells. Consequently, mating performance of sterilized individuals decreases drastically over time. The mating propensity of sterilized Euscepes postfasciatus (Fairmaire) males irradiated with a single dose of 150 Gy (the current standard of the Okinawa Prefecture SIT programme) is equal to that of non‐irradiated weevils for the first 6 days.
  • 3 Fractionated irradiation, in which a sterilizing dose is delivered over time in a series of smaller irradiations, reduces the damage of irradiation in insects. In the present study, we evaluated the effect of fractionated irradiation on male fertilization ability, longevity and mating propensity of E. postfasciatus for a period of 16 days after irradiation.
  • 4 Although fractionated irradiation totalling 150 Gy was found to induce full sterility regardless of the number of individual doses, the mating propensity of male weevils sterilized by fractionated irradiation was maintained for the first 12 days. These results demonstrate that fractionated irradiation can be highly advantageous in programmes aimed at eradication of E. postfasciatus.
  相似文献   

4.
The West Indian sweet potato weevil Euscepes postfasciatus (Fairmaire) is a troublesome pest insect of sweet potato that originally came from the Caribbean, but is now expanding its distribution into the Pacific Islands. Although sterile insect techniques have been used against this pest in a demonstration experiment on Kume Island [Ohno et al. (2006) Kontyu to Shizen 41:25–30], effective methods of monitoring E. postfasciatus are scarce. It is necessary to detect the weevils at an early stage of invasion in uninvaded areas, and an attractant trap can be used to achieve this. Thus, we developed an ultraviolet (UV) light-emitting diode trap, invented a method for diffusing the light to attract more insects, and investigated the attractiveness of the light trap to E. postfasciatus under laboratory conditions. Our results indicate that diffused UV light has a higher potential to attract E. postfasciatus than direct UV light. Furthermore, sweet potato is an effective bait to use to capture the weevils attracted by UV light. Thus, E. postfasciatus can be trapped using diffused UV light and sweet potato bait.  相似文献   

5.
The sterile insect technique (SIT) is based on population and behavioral ecology and is widely used to suppress or eradicate target pest insect populations. The effectiveness of SIT depends on the ability of the released sterile males to mate with and inseminate wild females. The use of gamma‐radiation to induce sterility is, however, associated with negative impacts not only on reproductive cells but also on somatic cells. Consequently, irradiation for sterilization diminishes mating performance over time. In this study, we evaluated the balance between the irradiation dose and both fertility and mating propensity in Euscepes postfasciatus (Fairmaire) (Coleoptera: Curculionidae) for 22 days following irradiation. The mating propensity of males irradiated with a 150‐Gy dose, as currently used to induce complete sterility of E. postfasciatus in the SIT program in Okinawa Prefecture, was equal to that of non‐irradiated weevils for up to 6 days, and the mating propensity of males irradiated with a dose of 125 Gy was equal to that of non‐irradiated weevils for twice this period (12 days). The fertilization ability of weevils irradiated with a dose of 125 Gy was reduced by 4.6% in males and 0.6% in females, compared to the potential fertilization ability. We also discuss the possibility of the application of partially sterilized insects in eradication programs.  相似文献   

6.
The effectiveness of the sterile insect technique (SIT) depends on the ability of released sterile males to mate with and inseminate wild females, but the use of gamma radiation to induce sterility negatively affects both somatic and reproductive cells of the sterilized insects. Recently, the effectiveness of fractionated-dose irradiation (FI), in which a sterilizing dose is delivered over time in a series of small irradiations, has been demonstrated in the West Indian sweetpotato weevil Euscepes postfasciatus (Fairmaire). FI improves male mating propensity compared with acute irradiation; however, this renewed technique takes a long time (72 h in the present circumstances) compared with the traditional technique (approximately 20 min) using single-dose irradiation (150 Gy) to fully sterilize this weevil. The extra time required by FI might negatively affect the quality of released sterile males, because weevils expend limited resources, such as metabolic energy or sperm, in mating freely in this period. We evaluated whether the temporal storage of weevils at low temperature (5°C and 15°C) improves the quality of sterile males compared with the normal condition (25°C). Temporal storage at low temperature in FI improves male mating propensity. For example, the sexually active phase of males exposed to 15°C was 18 days at least after irradiation. This period was longer than that of normal males (14 days). Meanwhile, this manner delayed male reproductive development and temporarily reduced mating competitiveness ability. If considering the long active phase of sterile males exposed to 15°C, these disadvantage would be cancelled out. We discuss the advantage of FI with temporal storage at low temperature in the eradication program using SIT for E. postfasciatus.  相似文献   

7.
The sweetpotato weevil Cylas formicarius (Fabricius) (Coleoptera: Brentidae) and West Indian sweetpotato weevil Euscepes postfasciatus (Fairmaire) (Coleoptera: Curculionidae) are major pests of sweet potato Ipomoea batatas (L.) Lam., in tropical and subtropical regions. Effects of intra‐ and inter‐specific competition on the number of progeny (fecundity), body weight and developmental time of C. formicarius and E. postfasciatus were examined in single‐ and mixed‐species treatments under laboratory conditions. Cylas formicarius tended to outcompete E. postfasciatus, whereas E. postfasciatus rather than C. formicarius tolerated higher conspecific densities. We discuss the implications of the results for pest management and resource partitioning of pestiferous weevils.  相似文献   

8.
Gamma radiation from isotopic sources has been used in sterile insect technique (SIT) programs worldwide, but it might be difficult to continue using these sources in future SIT programs because of social issues. Therefore, an alternative sterilization source to gamma rays, such as X-rays, needs to be developed. The physical properties of radiation are different between gamma rays and X-rays: for example, X-rays have a shorter penetration depth than gamma rays. Therefore, X-rays may not fully confer male sterility, depending on the target pest insects. The present study investigated whether the West-Indian sweetpotato weevil Euscepes postfasciatus (Fairmaire) and the sweetpotato weevil Cylas formicarius (Fabricius) are sterilized by X-rays generated in a low-energy X-ray irradiator, without deterioration of male mating ability, at the doses currently used in the eradication programs for E. postfasciatus (150 Gy) and C. formicarius (200 Gy) using gamma rays at Okinawa, Japan. The results demonstrated that it is possible to use X-rays in future SIT programs for E. postfasciatus and C. formicarius, because X-ray irradiated males were almost completely sterilized without deterioration of their mating ability.  相似文献   

9.
10.
The sterile insect technique (SIT) is widely used to suppress or eradicate target pest insect populations. Although the effectiveness of SIT depends on the ability of released sterile males to mate with and inseminate wild females, the use of gamma radiation to induce sterility negatively impacts reproductive cells as well as somatic cells. Consequently, sterilization by irradiation drastically diminishes mating performance over time. In the current study, we evaluated the effect of irradiation dose intensity on fertility, mating propensity, and mating competitiveness in sweetpotato weevil, Cylas formicarius elegantulus (Summers) (Coleoptera: Curculionidae), for 16 d after irradiation. Although the mating propensity of males irradiated with 200 Gy, the dose currently used to induce complete sterility of C. f. elegantulus in the SIT program in Okinawa Prefecture, was equal to that of nonirradiated weevils for the first 6 d, the mating propensity of males irradiated with doses between of 75 and 150 Gy was maintained for the first 12 d. The potential fertilization ability of weevils was highly depressed compared with the control weevils, even in those treated with 75 Gy. Mating performance was severely compromised in weevils that were irradiated with a dose of 100 Gy or more. These results demonstrate that partial sterilization can be highly advantageous in eradication programs for the sweetpotato weevil. We discuss the advantages of the application of partial irradiation in insect eradication programs.  相似文献   

11.
Irradiation has been widely used in suppression or eradication programs that use the sterile insect technique (SIT) or in studying sperm competition. Although it is well known that irradiation has negative impacts on reproductive (sperm) cells, previous studies have assumed that sperm from irradiated males behave identically to normal sperm in the female reproductive tract after mating. In this study, we used the West Indian sweetpotato weevil Euscepes postfasciatus to investigate the effect of irradiation on the abundance and viability of sperm in female spermatheca for 14 days after copulation. The abundance of sperm in females did not change throughout the experimental period, and sperm viability gradually decreased regardless of irradiation. In this weevil, irradiated sperm appear to behave identically to normal sperm in females for 14 days following irradiation/copulation. Therefore, the effect of irradiation on sperm viability within the female spermatheca is considered to be insignificant.  相似文献   

12.
The sterile insect technique (SIT) is widely used for suppressing or eradicating target pest insect populations. The effectiveness of SIT depends on the ability of released sterile males to mate with and inseminate wild females. Irradiation not only damages the reproductive cells but the somatic cells as well. The mating behavior of irradiated males may be altered over time due to the depressed metabolic activity brought about by sterilization. In this study, we evaluated the mating behavior (copulation behavior, mating performance, and ability of sperm transfer) of irradiated males in Euscepes postfasciatus (Fairmaire) (Coleoptera: Curculionidae) for 16 days after irradiation in the laboratory. The mating performance of males irradiated with a 150 Gy dose, as currently used in the SIT program in Okinawa prefecture for E. postfasciatus, decreased compared to that of control after day 7. As a result, we considered that irradiation had no major effect on male mating behavior for approximately 1 week after irradiation.  相似文献   

13.
Selection for genetic adaptation might occur whenever an animal colony is maintained in the laboratory. The laboratory adaptation of behavior such as foraging, dispersal ability, and mating competitiveness often causes difficulties in the maintenance of biological control agents and other beneficial organisms used in procedures such as the sterile insect technique (SIT). Sweet potato weevil, Cylas formicarius (Summers) (Coleoptera: Brentidae), is an important pest in sub‐tropical and tropical regions. An eradication program targeting C. formicarius using SIT was initiated in Japan with weevils being mass‐reared for 95 generations to obtain sufficient sterile males. The mass‐reared strain of C. formicarius exhibits weaker female resistance to male mating attempts compared with the wild strain. This could affect the success of SIT programs because mating persistence of mass‐reared males might be expected to decrease in response to weak female resistance. We show that high success of sperm transfer to mass‐reared females was due to weak female resistance to male mating attempts. However, the mating behavior of mass‐reared males did not change. In C. formicarius, the trait of male persistence to mate was not correlated with the female resistance traits. Our results suggest that mass‐rearing conditions do not have negative effects on the mating ability of the sterile males of this species, and thus that the current mass‐rearing procedures are suitable for production of sterile males for the weevil eradication program.  相似文献   

14.
Weevils constitute the most species-rich animal group with over 60,000 described species, many of which possess specialized symbiotic organs and harbor bacterial endosymbionts. Among the diverse microbial associates of weevils, Nardonella spp. represent the most ancient and widespread endosymbiont lineage, having co-speciated with the host weevils for over 125 million years. Thus far, however, no empirical work on the role of Nardonella for weevil biology has been reported. Here we investigated the biological role of the Nardonella endosymbiont for the West Indian sweet potato weevil, Euscepes postfasciatus. This insect is an experimentally tractable pest insect that can easily be reared on a natural diet of sweet potato root as well as on an agar-based artificial diet. By larval feeding on an antibiotic-containing artificial diet, Nardonella infection was effectively eliminated from the treated insects. The antibiotic-treated insects exhibited significantly lighter body weight and lower growth rate than the control insects. Then, the antibiotic-treated insects and the control insects were respectively allowed to mate and oviposit on fresh sweet potatoes without the antibiotic. The offspring of the antibiotic-treated insects, which were all Nardonella-negative, exhibited significantly lighter body weight, smaller body size, lower growth rate and paler body color in comparison with the offspring of the control insects, which were all Nardonella-positive. In conclusion, the Nardonella endosymbiont is involved in normal growth and development of the host weevil. The biological role of the endosymbiont probably underlies the long-lasting host-symbiont co-speciation in the evolutionary course of weevils.  相似文献   

15.
When sweet potato root tissues were infested by the larvae of sweet potato weevil, Cylas formicarius and West Indian sweet potato weevil, Euscepes postfasciatus, furano-terpenoids and coumarins were produced in brown necrotic layer formed during the infestation.

The larval homogenates of both weevils also induced in the tissue the production of furano-terpenoids and coumarins, as well as the formation of necrotic layer. The larval homogenate of sweet potato weevil induced also ethylene formation, the marker of injury in the tissue. Investigations on the furano-terponoid inducing factor demonstrated that the factor was 20 mm KCl-soluble, non-dialyzable, acetone-precipitable, (NH4)2SO4-precipitable, heat-unstable, passing through Sephadex G–25 column without sieving and partially inactivated by pronase, indicating that the factor was a high molecular weight compound, perhaps of a proteinacious property. It is likely that the factor causes injury or death to sweet potato root tissue, leading to the formation of ethylene and necrotic layer, and then to production of furano-terpenoids and coumarins.  相似文献   

16.
Persistent mating attempts by males (sexual harassment) are frequently observed among animals. For females, resisting persistent males can be costly because vigorous resistance increases both energy expenditure and the possibility of injury. Although one tactic for coping with male harassment is to cease resistance and mate with the persistent partner, the females of several species are able to prevent the fertilization of their egg(s) despite copulation. In this study, we used three different sex ratios to investigate whether a male’s mating persistence affects his mating success in the West Indian sweet potato weevil Euscepes postfasciatus, in which males mount females both before and after copulation. Consistent with our predictions, we found that female weevils resist and manipulate sperm transfer either before or during copulation according to their preferences. Female weevils were able to reject the sperm of persistent males despite having copulated with them. However, neither copulation and/or post-copulatory mounting affected insemination success. We speculate that the intensive resistance shown by females before copulation may induce mechanical sterility in E. postfasciatus.  相似文献   

17.
The relationship between temperature and the development of the West Indian sweet potato weevil, Euscepes postfasciatus, on an artificial larval diet containing powdered sweet potato root, was examined at different fixed temperatures from 22 to 31°C. The developmental periods for egg, larvae, and pupae stages shortened in correlation with increased temperature. The thermal constant was 769.2 degree-days and the developmental zero for female and male was 11.1 and 11.7°C, respectively. Although we can rear this weevil at temperatures ranging from 22 to 31°C, rearing temperatures should be kept between 25 and 28°C because the developmental stages were too long at 22°C and the larval period was delayed at 31°C. The basis for these developmental data will be a useful key factor in designing a plan to eradicate the weevil by using a mass-rearing system and SIT.  相似文献   

18.
The sterile insect technique (SIT) requires production of large quantities of sterile males able to successfully compete with wild males for wild females. During eradication of a pest population, the release of fertile insects or capture of non‐marked released flies can have deleterious effects and trigger costly control measures. These perceived risks encourage program managers to apply high radiation doses and high doses of marking dye. In addition, mass rearing factories are strategically located away from release areas to prevent escape of fertile individuals within eradicated areas, raising the need for lengthy transport. Such is the case for Anastrepha obliqua Macquart (Diptera: Tephritidae) released in mango producing areas of Mexico under an SIT‐based eradication campaign. Here, we examined several standard quality‐control parameters for mass‐reared A. obliqua subjected to various time periods under hypoxia during transport, marked with different doses of fluorescent dye, and subjected to different radiation doses. Such factors were evaluated in isolation and in conjunction. Overall, long periods of hypoxia, high marking doses, and high radiation doses reduced the number of flying adults and increased the number of non‐emerged pupae. Some quality‐control parameters such as number of deformed adults, part‐emerged pupae, and non‐flying adults provided less informative guidance or redundant information of fly performance. Some tests such as mortality under stress and mating propensity in small cages were useless in detecting differences in quality among treatments for parameters evaluated during experiments. We discuss the quantity/safety‐quality/performance conflict during eradication using SIT, propose different strategies according to different stages during eradication (management, suppression, eradication, outbreaks in free areas), where males irradiated at low doses and marked with low doses of dye can be released during early suppression, and examine the pertinence of carrying out different quality‐control tests.  相似文献   

19.
1 The sterile insect technique (SIT) involves the release of large numbers of sterile or partially‐sterile insects into a wild pest population to dilute the number of successful wild matings, with the eventual aim of eradication or area‐wide suppression. General population models, encompassing a wide range of SIT types, were used to derive principles for optimizing the success of SIT, with particular emphasis on the application of partial sterility leading to inherited sterility in the F1 population. 2 The models show that inherited sterility can only be guaranteed to be more effective than complete sterility if matings between irradiated‐lineage partners are unsuccessful. This is widely assumed but rarely examined experimentally. 3 The models allow the critical overflooding ratio, φc, to be calculated for a particular target species, suggesting the release rate required to prevent population increase. Successful eradication using SIT alone should aim for a substantially higher release rate than suggested by φc. 4 The models show that pest populations may continue to increase in the first few generations of SIT releases, regardless of release rate, as irradiated‐lineage individuals infiltrate the population. This does not necessarily imply that the SIT programme will be unsuccessful in the longer term. 5For pests with overlapping generations, the models suggest that frequent small releases may be more effective than less frequent large releases, particularly when the average release rate is close to the critical threshold for success.  相似文献   

20.
The sterile insect technique (SIT), based on the principles of population and behavioral ecology, is widely used to suppress or eradicate target pest insect populations. The effectiveness of SIT depends on the ability of released sterile males to mate with and inseminate wild females; however, the use of gamma radiation to induce sterility negatively affects both somatic cells as well as reproductive cells. Consequently, sterilization by irradiation drastically diminishes mating performance over time. It is well known that fractionated‐dose irradiation, in which a sterilizing dose is delivered via a series of smaller irradiations, reduces radiation damage. In the present study, we evaluated the effect of fractionated‐dose irradiation on fertility, longevity, and mating propensity in Cylas formicarius (Summers) (Coleoptera: Brentidae) for 16 days after irradiation. Fractionated‐dose irradiation with 200 Gy induced full sterility regardless of the number of radiation doses. Although the mating propensity of males sterilized by a single 200 Gy dose (the current standard of the Okinawa Prefecture SIT program) was equal to that of non‐irradiated weevils for the first 6 days, the mating propensity of males sterilized by a series of three doses was maintained for at least the first 12 days. These results demonstrated that fractionated‐dose irradiation can be highly advantageous in C. formicarius eradication programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号