首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bacterium was isolated from the waste gas treatment plant at a fishmeal processing company on the basis of its capacity to use 2,3-diethyl-5-methylpyrazine (DM) as a sole carbon and energy source. The strain, designated strain DM-11, grew optimally at 25°C and had a doubling time of 29.2 h. The strain did not grow on complex media like tryptic soy broth, Luria-Bertani broth, or nutrient broth or on simple carbon sources like glucose, acetate, oxoglutarate, succinate, or citrate. Only on Löwenstein-Jensen medium was growth observed. The 16S rRNA gene sequence of strain DM-11 showed the highest similarity (96.2%) to Mycobacterium poriferae strain ATCC 35087T. Therefore, strain DM-11 merits recognition as a novel species within the genus Mycobacterium. DM also served as a sole nitrogen source for the growth of strain DM-11. The degradation of DM by strain DM-11 requires molecular oxygen. The first intermediate was identified as 5,6-diethyl-2-hydroxy-3-methylpyrazine (DHM). Its disappearance was accompanied by the release of ammonium into the culture medium. No other metabolite was detected. We conclude that ring fission occurred directly after the formation of DHM and ammonium was eliminated after ring cleavage. Molecular oxygen was essential for the degradation of DHM. The expression of enzymes involved in the degradation of DM and DHM was regulated. Only cells induced by DM or DHM converted these compounds. Strain DM-11 also grew on 2-ethyl-5(6)-methylpyrazine (EMP) and 2,3,5-trimethylpyrazine (TMP) as a sole carbon, nitrogen, and energy source. In addition, the strain converted many pyrazines found in the waste gases of food industries cometabolically.  相似文献   

2.
A bacterium, strain DP-45, capable of degrading 2,5-dimethylpyrazine (2,5-DMP) was isolated and identified as Rhodococcus erythropolis. The strain also grew on many other pyrazines found in the waste gases of food industries, like 2,3-dimethylpyrazine (2,3-DMP), 2,6-dimethylpyrazine (2,6-DMP), 2-ethyl-5(6)-dimethylpyrazine (EMP), 2-ethylpyrazine (EP), 2-methylpyrazine (MP), and 2,3,5-trimethylpyrazine (TMP). The strain utilized 2,5-DMP as sole source of carbon and nitrogen and grew optimally at 25°C with a doubling time of 7.6 h. The degradation of 2,5-DMP was accompanied by the growth of the strain and by the accumulation of a first intermediate, identified as 2-hydroxy-3,6-dimethylpyrazine (HDMP). The disappearance of HDMP was accompanied by the release of ammonium into the medium. No other metabolite was detected. The degradation of 2,5-DMP and HDMP by strain DP-45 required molecular oxygen. The expression of the first enzyme in the pathway was induced by 2,5-DMP and HDMP whereas the second enzyme was constitutively expressed. The activity of the first enzyme was inhibited by diphenyliodonium (DPI), a flavoprotein inhibitor, methimazole, a competitive inhibitor of flavin-containing monooxygenases, and by cytochrome P450 inhibitors, 1-aminobenzotriazole (ABT) and phenylhydrazine (PHZ). The activity of the second enzyme was inhibited by DPI, ABT, and PHZ. Sodium tungstate, a specific antagonist of molybdate, had no influence on growth and consumption of 2,5-DMP by strain DP-45. These results led us to propose that a flavin-dependent monooxygenase or a cytochrome P450-dependent monooxygenase rather than a molybdenum hydroxylase catalyzed the initial hydroxylation step and that a cytochrome P450 enzyme is responsible for the transformation of HDMP in the second step.  相似文献   

3.
The quaternary ammonium alcohols (QAAs) 2,3-dihydroxypropyl-trimethyl-ammonium (TM), dimethyl-diethanol-ammonium (DM) and methyl-triethanol-ammonium (MM) are hydrolysis products of their parent esterquat surfactants, which are widely used as softeners in fabric care. We isolated several bacteria growing with QAAs as the sole source of carbon and nitrogen. The strains were compared with a previously isolated TM-degrading bacterium, which was identified as a representative of the species Pseudomonas putida (Syst. Appl. Microbiol. 24 (2001) 252). Two bacteria were isolated with DM, referred to as strains DM 1 and DM 2, respectively. Based on 16S-rDNA analysis, they provided 97% (DM 1) and 98% (DM 2) identities to the closest related strain Zoogloea ramigera Itzigsohn 1868AL. Both strains were long, slim, motile rods but only DM 1 showed the floc forming activity, which is typical for representatives of the genus Zoogloea. Using MM we isolated a Gram-negative, non-motile rod referred to as strain MM 1. The 16S-rDNA sequence of the isolated bacterium revealed 94% identities (best match) to Rhodobacter sphaeroides only. The strains MM 1 and DM 1 exclusively grew with the QAA which was used for their isolation. DM 2 was also utilizing TM as sole source of carbon and nitrogen. However, all of the isolated bacteria were growing with the natural and structurally related compound choline.  相似文献   

4.
A new bacterial strain, Shinella zoogloeoides BC026, which utilizes pyridine as its sole carbon, nitrogen and energy source, was isolated from the activated sludge of a coking wastewater treatment plant. The BC026 strain completely degraded up to 1,806 mg/l of pyridine in 45.5 h. The optimum degradation conditions were pH 8.0 and temperature 30–35°C. According to product monitoring and genetic analysis, the pyridine ring was cleaved between C2 and N, resulting in 58% of pyridine-N being directly converted into ammonium. Providing glucose as the extra carbon source, the degradation of pyridine was not affected, while the growth of the strain was promoted, and 41% of pyridine-N was converted into ammonium with a C/N ratio of 35. The ammonium was utilized rapidly by the strain, and a portion of it was transformed into nitrate, then to nitrite, and finally to dinitrogen if enough extra carbon was provided. Considering these characteristics, this strain may accomplish heterotrophic nitrification and aerobic denitrification simultaneously.  相似文献   

5.
Pseudomonas sp. strain PH1 was isolated from soil contaminated with pharmaceutical and dye industry waste. The isolate PH1 could use m-aminophenol as a sole source of carbon, nitrogen, and energy to support the growth. PH1 could degrade up to 0.32 mM m-aminophenol in 120 h, when provided as nitrogen source at 0.4 mM concentration with citrate (0.5 mM) as a carbon source in the growth medium. The presence of ammonium chloride as an additional nitrogen source repressed the degradation of m-aminophenol by PH1. To identify strain PH1, the 16S rDNA sequence was amplified by PCR using conserved eubacterial primers. The FASTA program was used to analyze the 16S rDNA sequence and the resulting homology patterns suggested that PH1 is a Pseudomonas.  相似文献   

6.
Pseudomonas sp. strain 7-6, isolated from active sludge obtained from a wastewater facility, utilized a quaternary ammonium surfactant, n-dodecyltrimethylammonium chloride (DTAC), as its sole carbon, nitrogen, and energy source. When initially grown in the presence of 10 mM DTAC medium, the isolate was unable to degrade DTAC. The strain was cultivated in gradually increasing concentrations of the surfactant until continuous exposure led to high tolerance and biodegradation of the compound. Based on the identification of five metabolites by gas chromatography-mass spectrometry analysis, two possible pathways for DTAC metabolism were proposed. In pathway 1, DTAC is converted to lauric acid via n-dodecanal with the release of trimethylamine; in pathway 2, DTAC is converted to lauric acid via n-dodecyldimethylamine and then n-dodecanal with the release of dimethylamine. Among the identified metabolites, the strain precultivated on DTAC medium could utilize n-dodecanal and lauric acid as sole carbon sources and trimethylamine and dimethylamine as sole nitrogen sources, but it could not efficiently utilize n-dodecyldimethylamine. These results indicated pathway 1 is the main pathway for the degradation of DTAC.  相似文献   

7.
Information on bacterial thioamide metabolism has focused on transformation of the antituberculosis drug ethionamide and related compounds by Mycobacterium tuberculosis. To study this metabolism more generally, a bacterium that grew using thioacetamide as the sole nitrogen source was isolated via enrichment culture. The bacterium was identified as Ralstonia pickettii and designated strain TA. Cells grown on thioacetamide also transformed other thioamide compounds. Transformation of the thioamides tested was dependent on oxygen. During thioamide degradation, sulfur was detected in the medium at the oxidation level of sulfite, further suggesting an oxygenase mechanism. R. pickettii TA did not grow on thiobenzamide as a nitrogen source, but resting cells converted thiobenzamide to benzamide, with thiobenzamide S-oxide and benzonitrile detected as intermediates. Thioacetamide S-oxide was detected as an intermediate during thioacetamide degradation, but the only accumulating metabolite of thioacetamide was identified as 3,5-dimethyl-1,2,4-thiadiazole, a compound shown to derive from spontaneous reaction of thioacetamide and oxygenated thioacetamide species. This dead-end metabolite accounted for only ca. 12% of the metabolized thioacetamide. Neither acetonitrile nor acetamide was detected during thioacetamide degradation, but R. pickettii grew on both compounds as nitrogen and carbon sources. It is proposed that R. pickettii TA degrades thioamides via a mechanism involving consecutive oxygenations of the thioamide sulfur atom.  相似文献   

8.
A pure culture of an Agrobacterium sp. (deposited as ATCC 55002) that mineralizes the ferric chelate of EDTA (ferric-EDTA) was isolated by selective enrichment from a treatment facility receiving industrial waste containing ferric-EDTA. The isolate grew on ferric-EDTA as the sole carbon source at concentrations exceeding 100 mM. As the degradation proceeded, carbon dioxide, ammonia, and an unidentified metabolite(s) were produced; the pH increased, and iron was precipitated from solution. The maximum rate of degradation observed with sodium ferric-EDTA as the substrate was 24 mM/day. At a substrate concentration of 35 mM, 90% of the substrate was degraded in 3 days and 70% of the associated chemical oxygen demand was removed from solution. Less than 15% of the carbon initially present was incorporated into the cell mass. Significant growth of this strain was not observed with uncomplexed EDTA as the sole carbon source at comparable concentrations; however, the ferric chelate of propylenediaminetetraacetic acid (ferric-PDTA) did support growth.  相似文献   

9.
The nitrogen requirements of 96Gluconobacter, 55Acetobacter and 7Frateuria strains were examined. Only someFrateuria strains were able to grow on 0.5% yeast extract broth or 0.5% peptone broth. In the presence ofd-glucose ord-mannitol as a carbon source, ammonium was used as the sole source of nitrogen by all three genera. With ethanol, only a fewAcetobacter strains grew on ammonium as a sole nitrogen source. Singlel-amino acids cannot serve as a sole source of carbon and nitrogen for growth ofGluconobacter, Acetobacter orFrateuria. The singlel-amino acids which were used by most strains as a sole nitrogen source for growth are: asparagine, aspartic acid, glutamine, glutamic acid, proline and alanine. SomeAcetobacter andGluconobacter strains deaminated alanine, asparagine, glutamic acid, threonine, serine and proline. NoFrateuria strain was able to develop on cysteine, glycine, threonine or tryptophan as a sole source of nitrogen for growth. An inhibitory effect of valine may explain the absence of growth on this amino acid. No amino acid is “essential” forGluconobacter, Acetobacter orFrateuria.  相似文献   

10.
L Monna  T Omori    T Kodama 《Applied microbiology》1993,59(1):285-289
Staphylococcus auriculans DBF63, which can grow on dibenzofuran (DBF) or fluorene (FN) as the sole source of carbon and energy, was isolated. Salicylic acid and gentisic acid accumulated in the culture broth of this strain when DBF was supplied as a growth substrate. Also, the formation of 9-fluorenol, 9-fluorenone, 4-hydroxy-9-fluorenone, and 1-hydroxy-9-fluorenone was demonstrated, and accumulation of 1,1a-dihydroxy-1-hydro-9-fluorenone was observed when this strain grew on FN. On the basis of these results, the degradation pathways of DBF and FN were proposed. The analogous oxidation products of dibenzo-p-dioxin were obtained by incubation with DBF-grown S. auriculans DBF63 cells.  相似文献   

11.
Strain YAYA6 was isolated from a mixed microbial community that was growing on atrazine as a sole carbon source and formed quantitative amounts of chloride and nitrate. This strain was identified as a member of the true pseudomonad group (RNA group I) and was given the designation DMS 93-99. The growth yield when atrazine was the sole carbon and nitrogen source was 80 g (dry weight) of cells per mol of atrazine, and the cell doubling time was around 11 h. Approximately 20% of [U-ring 14C]atrazine was mineralized during primary degradation of atrazine. After atrazine disappeared from the culture supernatant, mineralization continued until the level of mineralization was more than 50%. Under different experimental conditions 10% of the atrazine supplied initially was converted to cyanuric acid and < 1% was converted to other s-triazines after prolonged incubation. Degradation proceeded via dechlorination and N-dealkylation. Atrazine was degraded until the concentration was circa 0.1 milligrams/liter. We obtained evidence showing that strain YAYA6 has specific uptake mechanisms for atrazine but less specific degradation mechanisms for s-triazines.  相似文献   

12.
Anaerobic degradation of toluene by a denitrifying bacterium.   总被引:12,自引:11,他引:1       下载免费PDF全文
A denitrifying bacterium, designated strain T1, that grew with toluene as the sole source of carbon under anaerobic conditions was isolated. The type of agar used in solid media and the toxicity of toluene were determinative factors in the successful isolation of strain T1. Greater than 50% of the toluene carbon was oxidized to CO2, and 29% was assimilated into biomass. The oxidation of toluene to CO2 was stoichiometrically coupled to nitrate reduction and denitrification. Strain T1 was tolerant of and grew on 3 mM toluene after a lag phase. The rate of toluene degradation was 1.8 mumol min-1 liter-1 (56 nmol min-1 mg of protein-1) in a cell suspension. Strain T1 was distinct from other bacteria that oxidize toluene anaerobically, but it may utilize a similar biochemical pathway of oxidation. In addition, o-xylene was transformed to a metabolite in the presence of toluene but did not serve as the sole source of carbon for growth of strain T1. This transformation was dependent on the degradation of toluene.  相似文献   

13.
Anaerobic degradation of toluene by a denitrifying bacterium   总被引:12,自引:0,他引:12  
A denitrifying bacterium, designated strain T1, that grew with toluene as the sole source of carbon under anaerobic conditions was isolated. The type of agar used in solid media and the toxicity of toluene were determinative factors in the successful isolation of strain T1. Greater than 50% of the toluene carbon was oxidized to CO2, and 29% was assimilated into biomass. The oxidation of toluene to CO2 was stoichiometrically coupled to nitrate reduction and denitrification. Strain T1 was tolerant of and grew on 3 mM toluene after a lag phase. The rate of toluene degradation was 1.8 mumol min-1 liter-1 (56 nmol min-1 mg of protein-1) in a cell suspension. Strain T1 was distinct from other bacteria that oxidize toluene anaerobically, but it may utilize a similar biochemical pathway of oxidation. In addition, o-xylene was transformed to a metabolite in the presence of toluene but did not serve as the sole source of carbon for growth of strain T1. This transformation was dependent on the degradation of toluene.  相似文献   

14.
A bacterial strain able to use cyanide as the sole nitrogen source under alkaline conditions has been isolated. The bacterium was classified as Pseudomonas pseudoalcaligenes by comparison of its 16S RNA gene sequence to those of existing strains and deposited in the Coleccion Espanola de Cultivos Tipo (Spanish Type Culture Collection) as strain CECT5344. Cyanide consumption is an assimilative process, since (i) bacterial growth was concomitant and proportional to cyanide degradation and (ii) the bacterium stoichiometrically converted cyanide into ammonium in the presence of l-methionine-d,l-sulfoximine, a glutamine synthetase inhibitor. The bacterium was able to grow in alkaline media, up to an initial pH of 11.5, and tolerated free cyanide in concentrations of up to 30 mM, which makes it a good candidate for the biological treatment of cyanide-contaminated residues. Both acetate and d,l-malate were suitable carbon sources for cyanotrophic growth, but no growth was detected in media with cyanide as the sole carbon source. In addition to cyanide, P. pseudoalcaligenes CECT5344 used other nitrogen sources, namely ammonium, nitrate, cyanate, cyanoacetamide, nitroferricyanide (nitroprusside), and a variety of cyanide-metal complexes. Cyanide and ammonium were assimilated simultaneously, whereas cyanide strongly inhibited nitrate and nitrite assimilation. Cyanase activity was induced during growth with cyanide or cyanate, but not with ammonium or nitrate as the nitrogen source. This result suggests that cyanate could be an intermediate in the cyanide degradation pathway, but alternative routes cannot be excluded.  相似文献   

15.
The strains S3 and F11 which were isolated respectively from static and submerged tanks for vinegar production were identified as Acetobacter rancens. Neither strain grew in an ammonium defined medium containing ethanol, glucose, glycerol or organic acids as the sole carbon source. When casamino acids were added, they grew luxuriantly with lactate, ethanol or glycerol as the carbon source and less well with acetate or glucose. They grew, forming much acetic acid, in defined ethanol medium when alanine was supplied in place of casamino acids, but strain S3 showed a longer lag time than strain Fl1. This lag time could be shortened by addition of aspartate and glutamate. These amino acids could be replaced by succinate, fumarate, malate, lactate, pyruvate or propionate but not by glucose. Both strains required lactate or pyruvate in defined glucose medium but many other organic acids, which were effective in defined ethanol medium, were ineffective or slightly effective in glucose medium.  相似文献   

16.
Aerobic vinyl chloride metabolism in Mycobacterium aurum L1.   总被引:3,自引:1,他引:2       下载免费PDF全文
Mycobacterium aurum L1, capable of growth on vinyl chloride as a sole carbon and energy source, was previously isolated from soil contaminated with vinyl chloride (S. Hartmans et al., Biotechnol. Lett. 7:383-388, 1985). The initial step in vinyl chloride metabolism in strain L1 is catalyzed by alkene monooxygenase, transforming vinyl chloride into the reactive epoxide chlorooxirane. The enzyme responsible for chlorooxirane degradation appeared to be very unstable and thus hampered the characterization of the second step in vinyl chloride metabolism. Dichloroethenes are also oxidized by vinyl chloride-grown cells of strain L1, but they are not utilized as growth substrates. Three additional bacterial strains which utilize vinyl chloride as a sole carbon and energy source were isolated from environments with no known vinyl chloride contamination. The three new isolates were similar to strain L1 and were also identified as Mycobacterium aurum.  相似文献   

17.
Mycobacterium aurum L1, capable of growth on vinyl chloride as a sole carbon and energy source, was previously isolated from soil contaminated with vinyl chloride (S. Hartmans et al., Biotechnol. Lett. 7:383-388, 1985). The initial step in vinyl chloride metabolism in strain L1 is catalyzed by alkene monooxygenase, transforming vinyl chloride into the reactive epoxide chlorooxirane. The enzyme responsible for chlorooxirane degradation appeared to be very unstable and thus hampered the characterization of the second step in vinyl chloride metabolism. Dichloroethenes are also oxidized by vinyl chloride-grown cells of strain L1, but they are not utilized as growth substrates. Three additional bacterial strains which utilize vinyl chloride as a sole carbon and energy source were isolated from environments with no known vinyl chloride contamination. The three new isolates were similar to strain L1 and were also identified as Mycobacterium aurum.  相似文献   

18.
Abstract Various soil samples were screened for the presence of microorganisms which have the ability to degrade polyurethane compounds. Two strains with good polyurethane degrading activity were isolated. The more active strain was tentatively identified as Comamonas acidovorans . This strain could utilize polyester-type polyurethanes but not the polyether-type polyurethanes as sole carbon and nitrogen sources. Adipic acid and diethylene glycol were probably the main degradation products when polyurethane was supplied as a sole carbon and nitrogen source. When ammonium nitrate was used as nitrogen source, only diethylene glycol was detected after growth on polyurethane.  相似文献   

19.
Information on bacterial thioamide metabolism has focused on transformation of the antituberculosis drug ethionamide and related compounds by Mycobacterium tuberculosis. To study this metabolism more generally, a bacterium that grew using thioacetamide as the sole nitrogen source was isolated via enrichment culture. The bacterium was identified as Ralstonia pickettii and designated strain TA. Cells grown on thioacetamide also transformed other thioamide compounds. Transformation of the thioamides tested was dependent on oxygen. During thioamide degradation, sulfur was detected in the medium at the oxidation level of sulfite, further suggesting an oxygenase mechanism. R. pickettii TA did not grow on thiobenzamide as a nitrogen source, but resting cells converted thiobenzamide to benzamide, with thiobenzamide S-oxide and benzonitrile detected as intermediates. Thioacetamide S-oxide was detected as an intermediate during thioacetamide degradation, but the only accumulating metabolite of thioacetamide was identified as 3,5-dimethyl-1,2,4-thiadiazole, a compound shown to derive from spontaneous reaction of thioacetamide and oxygenated thioacetamide species. This dead-end metabolite accounted for only ca. 12% of the metabolized thioacetamide. Neither acetonitrile nor acetamide was detected during thioacetamide degradation, but R. pickettii grew on both compounds as nitrogen and carbon sources. It is proposed that R. pickettii TA degrades thioamides via a mechanism involving consecutive oxygenations of the thioamide sulfur atom.  相似文献   

20.
A triazophos-degrading strain, Klebsiella sp. E6, was isolated by enrichment technology from soil that had been exposed long-term to triazophos. The strain grew well at pH 7.0-8.0 with a broad temperature profile ranging from 32 to 37 degrees C. It could keep good growth on methanol as carbon source and TAP as additional carbon source or nitrogen source. The experiment on the degradation activities of strain E6 showed that it utilized TAP more effectively when TAP was supplied as the sole nitrogen source, as opposed to additional carbon source. The intermediates of triazophos metabolism indicated that degradation occurred through a hydrolysis mechanism, one of the products of which, 1-phenyl-3-hydroxy-1,2,4-triazole, was also mineralized by strain E6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号