首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of dietary nickel (0, 25, 50, 75, 100, and 150 mg/kg) on the bone strength characteristics and performance parameters of male broilers were investigated. Broilers were housed in either cages or floor pens. At 6 wk of age, the shear fracture energy of the tibia from the caged birds increased when the basal diet was supplemented with 25 mg of dietary nickel per kilogram of feed. The shear force, stress, and fracture energy of the radius from the caged birds also increased at 25 mg/kg nickel. Dietary nickel had no effect on bird body weight, but the caged broilers (2161 g) were heavier than the floor birds (2005 g). Nickel had no effect on the strength characteristics of the tibia from the floor birds. Percent tibia bone ash, a measure of bone density, was not influenced by dietary nickel, but the tibia ash of the floor birds was greater than that of the caged birds. Overall, the data indicates that adding 25 mg/kg of dietary nickel to a poultry diet will have a positive influence on bone strength characteristics and performance.  相似文献   

2.
Female and male rats weighing about 170 g and 200 g, respectively, were fed diets (approximately 70 microg boron/kg) in a factorial arrangement with supplemental boron at 0 (deficient) and 3 (adequate) mg/kg and canola oil or palm oil at 75 g/kg of diet as variables. After 5 weeks, six females in each treatment were bred. Dams and pups continued on their respective dietary treatments through gestation, lactation and post-weaning. Thirteen weeks after weaning, plasma and bones were collected from 12 male and 12 female offspring in each treatment. Boron supplementation increased femur strength measured by the breaking variable bending moment; tibial calcium and phosphorus concentrations; and plasma alkaline phosphatase. Femur breaking stress was greatest in boron-supplemented rats fed canola oil, and lowest in boron-deprived females fed canola oil; this group also exhibited the lowest femur bending moment. Minerals associated with bone organic matrix, zinc and potassium, were increased by boron supplementation in tibia. Plasma phospholipids were decreased by boron deprivation in females, but not males. Plasma cholesterol was decreased in boron-supplemented males by replacing canola oil with palm oil. The findings suggest that a diet high in omega-3 alpha-linolenic acid promotes femur strength best when the dietary boron is adequate.  相似文献   

3.
An experiment was performed to determine whether boron deprivation would adversely affect vertebra (trabecular) bone microarchitecture, and whether any adverse effect would be modified by dietary fatty acid composition. Female rats were fed diets containing 0.1 mg (9 μmol) boron/kg in a factorial arrangement with variables of supplemental boron at 0 (boron-deprived) or 3 (boron-adequate) mg (278 μmol)/kg and fat sources of 75 g safflower oil/kg or 65 g fish (menhaden) oil/kg plus 10 g linoleic acid/kg. After 6 weeks, six females per treatment were bred. Dams and pups continued on their respective diets through gestation, lactation, and after weaning. At age 21 weeks, the microarchitecture of the fourth lumbar vertebrae from 12 randomly selected pups from each treatment was determined by microcomputed tomography. Boron deprivation decreased bone volume fraction and increased trabecular separation and structural model index. Boron deprivation decreased trabecular thickness when the dietary oil was safflower. A three-point bending test for bone strength found that boron deprivation decreased the maximum force needed to break the femur. Feeding fish oil instead of safflower oil decreased connectivity density in vertebrae of boron-deficient but not in boron-adequate rats. Fish oil instead of safflower oil increased the maximum force to break and the bending moment of the femur, especially in rats fed adequate boron. The findings confirm that boron and fish oil are beneficial to cortical bone strength, and show that nutritional intakes of boron are beneficial for trabecular bone microarchitecture and influence the beneficial effects of fish oil on bone.  相似文献   

4.
So far it is not known whether the growth hormone (GH) has an effect on the local blood circulation in bones. Using male rats we studied the local blood circulation in the tibia and the distal end of the femur (by means of the uptake of 85Sr-microspheres), the density and ash weight of the tibia, the urinary excretion of pyridinoline (PD) and deoxypyridinoline (DPD) as an indicator of bone resorption and the blood levels of IGF-I after the administration of human GH (4 mg/kg s.c. daily for 4 weeks) and/or bisphosphonate pamidronate (Aredia, CIBA-Geigy, administered in the dose of 3 mg/kg i.p. on day 1, 2, 9 and 10). The rats were divided into four groups: 1. controls, 2. GH, 3. pamidronate, 4. GH plus pamidronate. After the administration of GH, we observed a significant increase in bone blood flow (and in the uptake of 85Sr-microspheres), a decrease in the density and ash weight of the tibia and increased urinary excretion of PD and DPD; IGF-I levels in the blood were non-significantly elevated. Simultaneously administered pamidronate inhibited all significant effects of GH and it also decreased the IGF-I levels in rats treated with GH. After the administration of pamidronate itself the bone density and ash weight of the tibia were increased and urinary DPD excretion was decreased. In view of the known vascular effects of IGF-I, we assume that the increase in bone blood flow after the administration of GH and its reduction after simultaneous administration of pamidronate could be mediated by the changes of IGF-I blood levels, although the effect of pamidronate on IGF-I is still not clear. Regarding the role of blood circulation in rat bones, we consider that our present results are further evidence for the relationship between the blood circulation in bones and bone resorption, although these results do not show how active is bone blood circulation in the regulation of bone tissue metabolism.  相似文献   

5.
The reported beneficial effects of boron on mineralized tissues in animals and humans vary. Thus, a study was performed to assess whether the variability was the result of different forms of boron supplementation, method of supplementation, and increased adiposity of the rabbit experimental model.Thirty-one female New Zealand White rabbits, (aged 8 months, 2–2.5 kg weight) were fed a grain-based high energy diet containing 11.76 MJ/kg (2850 kcal/kg) and 3.88 mg boron/kg. The rabbits were randomly divided into four treatment groups: Control group was not supplemented with boron (n:7; C), and three groups supplemented with 30 mg boron/L in drinking water in the forms of borax decahydrate (Na2O4B7 10H2O, n:10; BD), borax anhydrous (Na2O4B7, n:7; Bah) or boric acid (H2BO3, n:7; BA). Cone beam micro computed tomographic (micro-CT), histological and elemental analysis was used to evaluate the bones/teeth.Results of the experiments demonstrated that boron supplementation had beneficial effects on mineralized tissue but varied with the type of treatment. Mineral density of the femur was increased by the Bah and BA treatments (p < 0.001), but only BA increased mineral density in the tibia (p = 0.015). In incisor teeth, mineral density of dentin was increased by all boron treatments (p < 0.001), and mineral density of enamel was increased by the BD and Bah treatments. Mineral analysis found that all boron treatments increased the boron concentration in tibia and femur. In the tibia, both the BD and Bah treatments decreased the iron concentration, and the BD treatment decreased the magnesium concentration. Sodium and zinc concentrations in the tibia were decreased by the Bah and BA treatments. The boron treatments did not significantly affect the calcium, copper, molybdenum, potassium phosphorus, and sulfur concentrations.The findings show that boron supplementation can have beneficial effects on mineralized tissues in an animal model with increased adiposity, which is a model of increased inflammatory stress. However, this effect varies with the form of boron supplemented, the method of supplementation, and the mineralized tissue examined.  相似文献   

6.
Genistein is a powerful antioxidant and plays a role in calcium and bone metabolism. We evaluated the efficacy of dietary supplementation with genistein on the nutrient use and mineral concentrations in tibia and serum of quails reared at high environmental temperature (34 degrees C). Two hundred and forty Japanese quails (10 days old) were randomly assigned to 8 treatment groups consisting of 10 replicates of 3 birds. The birds were kept in a temperature-controlled room at 22 degrees C (Thermoneutral, TN groups) or 34 degrees C (for 8 h/d; 09.00 am-05.00 pm; Heat stress, HS groups). Birds were fed either a basal diet (TN and HS) or the basal diet supplemented with 200, 400 or 800 mg of genistein/kg of diet. Heat exposure decreased apparent nutrient digestibility and bone mineralization when the basal diet was fed (P < 0.001). Apparent digestibility of dry matter (DM) (P < 0.05), crude protein (CP) (P < 0.05) and ash (P < 0.01) was significantly improved by genistein supplementation. However, this improvement was not in direct proportion to increased doses of supplement since there was no difference when diets included either 400 or 800 mg genistein/kg of diet (P < 0.05) in birds reared under heat stress. The amounts of Ca, P, Mg, Mn, Zn, Fe and Cu in the excreta decreased (P < 0.01), while Ca, P, Mg, Mn, Zn and Cu concentrations in tibia ash increased in quails reared under heat stress conditions (P < 0.01) with genistein supplementation. Ca and P concentrations in tibia ash were also increased in birds kept under thermoneutral conditions with genistein supplementation. Increased serum alkaline phosphatase activity (P < 0.01) was associated with increasing dietary genistein in all groups. In conclusion, genistein supplementation to the basal diet improved digestibility of CP, DM and ash and levels of Ca and P and bone mineralization in quails reared under heat stress conditions.  相似文献   

7.
An experiment was performed to determine the effect of a mild magnesium deprivation on calcium metabolism and bone composition, shape, and strength in rats, and whether nickel deprivation exacerbated or alleviated any changes caused by the magnesium deprivation. Weanling male rats were assigned to groups of 10 in a factorial arrangement, with variables being supplemental nickel at 0 and 1 mg/kg and magnesium at 250 and 500 mg/kg of diet. The basal diet contained about 30 ng Ni/g. Urine was collected for 24 h during wk 8 and 12, and rats were euthanized 13 wk after dietary treatments began. Mild magnesium deprivation decreased the urinary excretion of calcium and increased the tibia concentration of calcium but did not affect femur shape or strength (measured by a three-point bending test). Dietary nickel did not alter these effects of magnesium deficiency. Nickel deprivation increased the urinary excretion of phosphorus and the femur strength variables maximum force and moment of inertia. Strength differences might have been the result of changes in bone shape. Magnesium deprivation did not alter the effects of nickel deprivation on bone. The findings indicate that a mild magnesium deficiency affects calcium metabolism but that this does not markedly affect bone strength or shape, and these effects are not modified by dietary nickel. Also, nickel deprivation affects phosphorus metabolism and bone strength and shape; these effects apparently are not caused by changes in magnesium metabolism or utilization.  相似文献   

8.
Bone contact forces on the distal tibia during the stance phase of running   总被引:1,自引:0,他引:1  
Although the tibia is a common site of stress fractures in runners, the loading of the tibia during running is not well understood. An integrated experimental and modeling approach was therefore used to estimate the bone contact forces acting on the distal end of the tibia during the stance phase of running, and the contributions of external and internal sources to these forces. Motion capture and force plate data were recorded for 10 male runners as they ran at 3.5-4 m/s. From these data, the joint reaction force (JRF), muscle forces, and bone contact force on the tibia were computed at the ankle using inverse dynamics and optimization methods. The distal end of the tibia was compressed and sheared posteriorly throughout most of stance, with respective peak forces of 9.00+/-1.13 and 0.57+/-0.18 body weights occurring during mid stance. Internal muscle forces were the primary source of tibial compression, whereas the JRF was the primary source of tibial shear due to the forward inclination of the leg relative to the external ground reaction force. The muscle forces and JRF both acted to compress the tibia, but induced tibial shear forces in opposing directions during stance, magnifying tibial compression and reducing tibial shear. The superposition of the peak compressive and posterior shear forces at mid stance may contribute to stress fractures in the posterior face of the tibia. The implications are that changes in running technique could potentially reduce stress fracture risk.  相似文献   

9.
Laying hens often experience unbalanced calcium utilization which can cause deficiencies in bone and egg mineralization. Because melatonin has been shown to affect bone mineralization in other animals, we examined whether treating hens with melatonin would affect eggshell thickness and improve skeletal performance, thereby reducing skeletal and egg shell defects. Birds were given a diet containing either low (30 µg/kg), medium (300 µg/kg), or high (3 mg/kg) concentrations of melatonin, or control feed through approximately one laying cycle. We examined the weight, length, and strength of egg, femur, tibia, and keel. Hens treated with a high concentration of melatonin showed significant strengthening in their femur and tibia, as measured by maximum force sustained and breaking force, compared to controls. Egg weights from hens treated with melatonin were significantly greater than those from hens that were not treated with melatonin. Conversely, egg shell mass of hens treated with melatonin was significantly lower than those of hens not treated with melatonin. Our data suggest that melatonin may affect the allocation of calcium to bone at the expense of egg shell mineralization.  相似文献   

10.
The determination of the bone strengths of wild animals has many potential advantages, which include the ability to estimate age of animals; monitor strengths of bones as influenced by contaminants, particularly lead; provide appropriate data for design of capture, handling, and holding equipment to minimize the possibility for bone fracture in captured animals; and measure effects of nutrition on bone strength. The objectives of of this study were to provide data on the mechanical properties of limb bones of river otters and to consider effects of age and sex on the properties. Three-point bending and shear tests were conducted on the radius, ulna, tibia, and fibula. The three-point bending tests were first conducted on the bones loaded within their elastic limit. These tests were used to evaluate the modulii of elasticity of the bones. The data on the modulii indicated that age and sex did not have significant effects on the values. The four different bones tested had approximately the same modulus of elasticity, with an average value of 14. 1 gigapascal (GPa). The shear tests were conducted on the limb bones to failure in order to determine the maximum breaking force and strength of the bones. The shear force of the radius tended to increase with age and there was a significant (P < .001) age effect. The shear force of the ulna for males was significantly (P < .002) higher than that of the females. A similar trend was observed for the fibula (P < .03). The shear strength of the radius increased with age and there was a significant (P < .005) age effect. There was also a significant (P < .001) effect of sex on shear strength of the radius; values for females were higher. There were no significant effects of sex or age found on shear strengths of the ulnae, tibia, and fibulae.  相似文献   

11.
The acute and chronic effects of whey proteins on calcium metabolism and bone were evaluated. In acute studies, 8-week-old male rats were gavaged with 50 mg whey protein concentrate (WPC) and 25 mg calcium. 45Ca was administered intravenously or orally. Kinetic studies were performed, and femurs were harvested. Four of seven WPCs significantly increased femur uptake of 45Ca compared with controls. One WPC at 50 mg enhanced calcium absorption over a range of calcium intakes from 35.1 +/- 9.4% to 42.4 +/- 14.0% (P < 0.01). Three of the most effective WPCs were tested further in a chronic feeding study. One hundred 3-week-old rats were randomly divided into four adequate dietary calcium (ADC; 0.4% Ca) groups (control of 20% casein and three WPC groups with 1% substitution of casein with each of three WPCs) and two low calcium (LC; 0.2% Ca) groups (control of 20% casein and one WPC group with 1% substitution of casein with one WPC). After 8 weeks, there was no effect of WPCs on femur uptake of 45Ca among ADC groups and there was no effect of WPCs on calcium retention, femur breaking force, femur bone mineral density, or total femur calcium at either dietary calcium intake. However, whole body bone mineral content (BMC) was significantly higher (P < 0.05) in the three whey protein concentrate ADC groups compared with the ADC control group. Total BMC at the proximal tibia in whey protein ADC groups was increased, as shown by peripheral quantitative computed tomography. Our results indicate that the acute calcium absorption-enhancing effect of whey proteins did not persist through long-term feeding in rats. However, the initial enhancement of calcium absorption by whey protein was sufficient to increase BMC.  相似文献   

12.
OBJECTIVE: The objective of this study was to consider the effects of boron (B) and calcium (Ca) supplementation on mechanical properties of bone tissues and mineral content of the selected bones in rats. METHODS: Adult male Sprague Dawley rats underwent three different treatments with boron and calcium in their drinking water, while taking diet ad libitum for 4 weeks. Rats in the three treatment groups received 2 mg B/d, 300 mg Ca/d, and a combination of 2 mg B+ 300 mg Ca/d, respectively. After the experimental period body weights were recorded and bone mechanical properties were determined on the tibiae, femurs, and fifth lumbar vertebral bones and the mineral contents of these bones was calculated as the ash percentage. RESULTS: Better measurement of bone mechanical properties were observed for boron supplementation. The stiffness of the lumbar vertebral bones tended to increase in all groups and was significant for Ca supplementation. The significant maximal load obtained for boron in all bones indicates higher strength and less strength for apparently a high level of calcium, while this negative defect in the case of lumbar vertebral bones was corrected in the presence of boron. Highest mean energy to maximal load was shown with boron supplementation, demonstrating significant values with Ca group, and lower energy for the lumbar vertebral bones in Ca group in comparison with the controls. Less deformation at the yield points was shown in Ca group. There were no significant differences in ash weights among the four groups. CONCLUSIONS: Additional and longer studies are warranted to further determine the effects of supplemental boron with different calcium levels and possibly other minerals involved in bone mechanical properties in rats.  相似文献   

13.
Postmenopausal women may benefit from dietary interventions in order to increase bone strength and prevent fractures. Dietary boron (B) may be beneficial for optimal calcium metabolism and, as a consequence, optimal bone metabolism. The present study evaluated the effects of boron, in the form of boric acid, with or without 17β-estradiol (E2) supplementation (via subcutaneous implant), in ovariectomized (OVX) aged 13-mo-old F-344 rats. Boric acid was administered by gavage at a subtoxic dose (8.7 mg B/kg/d) for 40 d. Results indicate that serum level of minerals as well as osteocalcin (a marker of bone resorption) are dependent to a greater extent on the hormonal status of the animals than on boron supplementation. Boron treatment increased the E2-induced elevation of urinary calcium and magnesium. Bone mineral density (BMD) of the L5 vertebra and proximal femur was highest in the E2-treated groups; no increase in BMD was conferred by boron treatment. By histomorphometry of the proximal tibial metaphysis, osteoblastic, osteoid, and eroded surfaces were significantly suppressed by E2 treatment, but not by boron treatment. In biomechanical testing of femur and vertebra, neither E2 nor boron treatment significantly increased bone strength. At the levels given, boron alone provided no protection against OVX-induced osteopenia. In addition, combination therapy (B + E2) provided no additional benefits over those of 17β-estradiol treatment alone in this aged rat model.  相似文献   

14.
Two experiments were conducted with weanling Sprague–Dawley rats to determine whether changes in S-adenosylmethionine utilization or metabolism contribute to the diverse responses to boron deprivation. In both experiments, four treatment groups of 15 male rats were fed ground corn-casein based diets that contained an average of 0.05 mg (experiment 1) or 0.15 mg (experiment 2) boron/kg. In experiment 2, some ground corn was replaced by sucrose and fructose to increase oxidative stress. The dietary variables were supplemental 0 (boron-deprived) or 3 (boron-adequate) mg boron/kg and different fat sources (can affect the response to boron) of 75 g corn oil/kg or 65 g fish (menhaden) oil/kg plus 10 linoleic acid/kg. When euthanized at age 20 (experiment 1) and 18 (experiment 2) weeks, rats fed the low-boron diet were considered boron-deprived because they had decreased boron concentrations in femur and kidney. Boron deprivation regardless of dietary oil increased plasma cysteine and homocysteine and decreased liver S-adenosylmethionine, S-adenosylhomocysteine, and spermidine. Plasma concentration of 8-iso-prostaglandin F (indicator of oxidative stress) was not affected by boron, but was decreased by feeding fish oil instead of corn oil. Fish oil instead of corn oil decreased S-adenosylmethionine, increased spermidine, and did not affect S-adenosylhomocysteine concentrations in liver. Additionally, fish oil versus corn oil did not affect plasma homocysteine in experiment 1, and slightly increased it in experiment 2. The findings suggest that boron is bioactive through affecting the formation or utilization of S-adenosylmethionine. Dietary fatty acid composition also affects S-adenosylmethionine formation or utilization, but apparently through a mechanism different from that of boron.  相似文献   

15.
The effects of dietary boric acid on bone strength in rats   总被引:4,自引:0,他引:4  
The effects of dietary boron (B) (from boric acid [BA]) on bone strength were evaluated using male F344 rats. B was administered by dietary admixture of BA to NIH-07 feed at concentrations of 200, 1000, 3000, and 9000 ppm. The latter two levels were found in previous studies to be reproductively toxic to both males and the developing fetus. The first two levels are below and just at, respectively, the levels for producing fetal malformations, and are below the dose required to produce male reproductive toxicity. Resistance to destructive testing was measured on femora, tibiae, and lumbar vertebrae. Although femur and tibia resistance to bending force were not affected by any amount of dietary B, vertebral resistance to a crushing force was increased by ≈10%, at all dose levels (200-9000 ppm). These data show that even levels of BA that are not reproductively toxic can affect the strength of the axial skeleton in rats.  相似文献   

16.
The aim of this study was to investigate the effects of different levels of cadmium supplementation (0, 5, 10, 20, 40 and 80 mg/kg) in the diet on performance, egg quality, tibia biomechanical properties and eggshell and bone mineral contents in laying quails. In this 10-week trial, a total of 96 laying quails, aged 21 weeks, were randomly distributed among six experimental groups. Each experimental group contained four replicates of four birds each. The performance parameters were adversely affected quadratically when cadmium was added to the diets in the concentrations of 20 mg/kg and above (P<0.01). The specific gravity and eggshell weight were maximal with the addition of 20 mg/kg cadmium to the diet. The biomechanical properties of the tibia were negatively affected by cadmium supplementation in quails (P<0.05). The eggshell boron content decreased linearly (P<0.001) with cadmium supplementation to the diet. The cadmium content in bone increased when cadmium was added to the diets (P<0.001). The bone boron concentration decreased as dietary cadmium supplementation was increased (P<0.001).  相似文献   

17.
The present study was aimed at estimate, based on the rat model of human moderate and relatively high chronic exposure to cadmium (Cd), whether zinc (Zn) supplementation may prevent Cd-induced weakening in the bone biomechanical properties. For this purpose, male Wistar rats were administered Cd (5 or 50 mg/l) or/and Zn (30 or 60 mg/l) in drinking water for 6 and 12 months. Bone mineral density (BMD) and biomechanical properties (yield load, ultimate load, post-yield load, displacement at yield and at ultimate, stiffness, work to fracture, yield stress, ultimate stress and Young modulus of elasticity) of the femoral distal end and femoral diaphysis were examined. Biomechanical properties of the distal femur were estimated in a compression test, whereas those of the femoral diaphysis -- in a three-point bending test. Exposure to Cd, in a dose and duration dependent manner, decreased the BMD and weakened the biomechanical properties of the femur at its distal end and diaphysis. Zn supplementation during Cd exposure partly, but importantly, prevented the weakening in the bone biomechanical properties. The favorable Zn influence seemed to result from an independent action of this bioelement and its interaction with Cd. However, Zn supply at the exposure to Cd had no statistically significant influence on the BMD at the distal end and diaphysis of the femur. The results of the present paper suggest that Zn supplementation during exposure to Cd may have a protective influence on the bone tissue biomechanical properties, and in this way it can, at least partly, decrease the risk of bone fractures. The findings seem to indicate that enhanced dietary Zn intake may be beneficial for the skeleton in subjects chronically exposed to Cd.  相似文献   

18.
Bone mineralization was studied in rats. Animals were divided into three feeding groups: LCP - diet with 13.5% crude protein in DM (5% of gluten, 10% of casein), HCP - diet with 21.2% CP in DM (8% of gluten, 10% of casein), and LSM - diet based on grain meals and meat-bone meal (21% CP in DM). After 28 days feeding, animals were euthanased by cervical dislocation and femur bones were collected, weighed and kept frozen until analyses. Diets with 21% protein (HCP, LSM) significantly increased weight of femur bones. Despite of the substantially higher ash level (7.1%) in the LSM diet than in the LCP diet (3.4%), rats of both groups had the similar bone concentration of Ca (15.7 +/- 1.1 vs. 17.4 +/- 1.1 g/kg) and Zn (178.7 +/- 7.9 vs. 173.0 +/- 8.5 mg/kg). However bone density in LSM rats was significantly higher than in LCP ones. Although rats fed HCP diet had intermediate bone density, the bone concentration of Ca (11.4 +/- 0.5 g/kg) and Zn (145.1 +/- 2.9 mg/kg) was significantly lower, than in animals fed LCP and LSM diets. This was related to the very wide protein/calcium (37:1 g/g) and protein/zinc (5.3:1 g/mg) ratios in HCP diet. Those ratios were narrowest in the LSM diet: 16.2:1 (CP/Ca) and 2.6:1 (CP/Zn). It can be conluded that protein/mineral ratio in a diet is a very important factor in bone development, besides dietary protein and ash contents itselves.  相似文献   

19.
The safety and effectiveness were examined of the spirulina alga on bone metabolism in ovariectomized estrogen-deficient rats and hindlimb-unloaded mice. The dosage range was from an amount equal to that recommended in so-called health foods for humans (0.08 g/kg BW/day) to a 100-fold higher dose. The bone mineral density (BMD) of the whole femur and tibia of ovariectomized rats in the any spirulina-treated groups was not significantly different from that of the ovariectomized group, although BMD of the distal femur and proximal tibia was significantly lower in the spirulina-treated groups than in the ovariectomized group after a 6 week-experimental period. BMD of the femur and tibia was not affected by treatment with any dose of spirulina in hindlimb-unloaded mice. These results suggest that the intake of spirulina decreased BMD in the trabecular bone of rodents under estrogen-deficient conditions.  相似文献   

20.
The effects of relatively low (1, 10, and 50 mg/kg) and high (100 and 200 mg/kg) dietary concentrations of tin (added as stannous chloride) on iron status of rats were determined. After feeding the diets for 28 d, feed intake and body weights were not significantly affected. Iron concentrations in plasma, spleen, and tibia as well as percentage transferrin saturation were decreased in rats fed the diets supplemented with 100 or 200 mg tin/kg. In rats fed the diet containing 200 mg tin/kg, group mean hemoglobin, hematocrit, and red blood cell count were slightly lowered but total iron binding capacity was not affected. Iron status was not influenced by dietary tin concentrations lower than 100 mg/kg. If these results can be extrapolated to humans, then it may be concluded that tin concentrations in the human diet, which range from 2 to 76 mg/kg dry diet, do not influence iron status in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号