首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heptahelical opioid receptors utilize Gi proteins to regulate a multitude of effectors including the classical adenylyl cyclases and the more recently discovered mitogen-activated protein kinases (MAPKs). The c-Jun NH2-terminal kinases (JNKs) belong to one of three subgroups of MAPKs. In NG108-15 neuroblastoma x glioma hybrid cells that endogenously express delta-opioid receptors, delta-agonist dose-dependently stimulated JNK activity in a pertussis toxin-sensitive manner. By using COS-7 cells transiently transfected with the cDNAs of delta-opioid receptor and hemagglutinin (HA)-tagged JNK, we delineated the signaling components involved in this pathway. Sequestration of Gbetagamma subunits by transducin suppressed the opioid-induced JNK activity. The possible involvement of the small GTPases was also examined. Expression of dominant negative mutants of Rac and Cdc42 blocked the opioid-induced JNK activation, and a partial inhibition was observed in the presence of the dominant negative mutant of Ras. In contrast, the dominant negative mutant of Rho did not affect the opioid-induced JNK activation. In addition, the receptor-mediated JNK activation was dependent on Src family tyrosine kinases, but independent of phosphatidylinositol-3 kinase and EGF receptor tyrosine kinases. Collectively, these results demonstrate functional regulation of JNK by the delta-opioid receptor, and this pathway requires Gbetagamma, Src kinases and the small GTPases Rac and Cdc42.  相似文献   

2.
The type 1 insulin-like growth factor receptor (IGF-IR) is a receptor-tyrosine kinase that plays a critical role in signaling cell survival and proliferation. IGF-IR binding to its ligand, insulin-like growth factor (IGF-I) activates phosphoinositide 3-kinase (PI3K), promotes cell proliferation by activating the mitogen-activated protein kinase (MAPK) cascade, and blocks apoptosis by inducing the phosphorylation and inhibition of proapoptotic proteins such as BAD. Apoptosis signal-regulating kinase 1 (ASK1) is a MAP kinase kinase kinase (MAPKKK) that is required for c-Jun N-terminal kinase (JNK) and p38 activation in response to Fas and tumor necrosis factor (TNF) receptor stimulation, and for oxidative stress- and TNFalpha-induced apoptosis. The results presented here indicate that ASK1 forms a complex with the IGF-IR and becomes phosphorylated on tyrosine residue(s) in a manner dependent on IGF-IR activity. IGF-IR signaling inhibited ASK1 irrespective of TNFalpha-induced ASK1 activation and resulted in decreased ASK1-dependent JNK1 stimulation. Signaling through IGF-IR rescued cells from ASK1-induced apoptotic cell death in a manner independent of PI3K activity. These results indicate that IGF-IR signaling suppresses the ASK-1-mediated stimulation of JNK/p38 and the induction of programmed cell death. The simultaneous activation of MAP kinases and the inhibition of the stress-activated arm of the cascade by IGF-IR may constitute a potent proliferative signaling system and is possibly a mechanism by which IGF-I can stimulate growth and inhibit cell death in a wide variety of cell types and biological settings.  相似文献   

3.
A number of G protein-coupled receptors have been shown to stimulate tuberin phosphorylation, which is critical for the regulation of translation and is apparently involved in neurotrophin-promoted survival of serum-deprived cells. Here, in HEK 293 cells transiently expressing the delta-, kappa-, or mu-opioid receptors, Western blotting analysis using a phosphospecific anti-tuberin antibody revealed a dose- and time-dependent increase in tuberin phosphorylation upon stimulation by specific opioid agonists. In NG108-15, PC12, and SH-SY5Y cells that endogenously express delta-, kappa-, and mu-opioid receptors, respectively, specific opioid agonists also stimulated tuberin phosphorylation in a dose- and time-dependent manner. Pretreatment of cells with pertussis toxin or PI3K inhibitor wortmannin blocked the opioid-stimulated tuberin phosphorylation, implicating the possible involvement of the G(i/o) proteins and the phosphatidylinositol-3 kinase/Akt pathway in opioid-induced tuberin phosphorylation. This is the first study that demonstrates the regulatory role of opioid receptors on tuberin.  相似文献   

4.
Receptors coupled to the inhibitory G protein Gi, such as that for lysophosphatidic acid (LPA), have been shown to activate MAP kinase through a RAS-dependent pathway. However, LPA (but not insulin) has now been shown to activate MAP kinase in a RAS-independent manner in CHO cells that overexpress a dominant-negative mutant of the guanine nucleotide exchange protein SOS (CHO-DeltaSOS cells). LPA also induced the activation of MAP kinase kinase (MEK), but not that of RAF1, in CHO-DeltaSOS cells. The RAS-independent activation of MAP kinase by LPA was blocked by inhibitors of phosphatidylinositol 3-kinase (PI3K) or by overexpression of a dominant-negative mutant of the gamma isoform of PI3K. Furthermore, LPA induced the activation of the atypical zeta isoform of protein kinase C (PKC-zeta) in CHO-DeltaSOS cells in a manner that was sensitive to wortmannin or to the dominant-negative mutant of PI3Kgamma, and overexpression of a dominant-negative mutant of PKC-zeta inhibited LPA-induced activation of MAP kinase. These observations indicate that Gi protein-coupled receptors induce activation of MEK and MAP kinase through a RAS-independent pathway that involves PI3Kgamma-dependent activation of atypical PKC-zeta.  相似文献   

5.
In SH-SY5Y cells, activation of delta-opioid receptors with [D-Pen(2,5)]-enkephalin (DPDPE; 1 microM) did not alter the intracellular free Ca(2+) concentration [Ca(2+)](i). However, when DPDPE was applied during concomitant Gq-coupled m3 muscarinic receptor stimulation by carbachol or oxotremorine-M, it produced an elevation of [Ca(2+)](i). The DPDPE-evoked increase in [Ca(2+)](i) was abolished when the carbachol-sensitive intracellular Ca(2+) store was emptied. There was a marked difference between the concentration-response relationship for the elevation of [Ca(2+)](i) by carbachol (EC(50) 13 microM, Hill slope 1) and the concentration-response relationship for carbachol's permissive action in revealing the delta-opioid receptor-mediated elevation of [Ca(2+)] (EC(50) 0.7 mM; Hill slope 1.8). Sequestration of free G protein beta gamma dimers by transient transfection of cells with a beta gamma binding protein (residues 495-689 of the C terminal tail of G protein-coupled receptor kinase 2) reduced the ability of delta opioid receptor activation to elevate [Ca(2+)](i). However, DPDPE did not elevate either basal or oxotremorine-M-evoked inositol phosphate production indicating that delta-opioid receptor activation did not stimulate phospholipase C. Furthermore, delta-opioid receptor activation did not result in the reversal of muscarinic receptor desensitization, membrane hyperpolarization or stimulation of sphingosine kinase. There was no coincident signalling between the delta-opioid receptor and the lysophosphatidic acid receptor which couples to elevation of [Ca(2+)](i) in SH-SY5Y cells by a PLC-independent mechanism. In SH-SY5Y cells the coincident signalling between the endogenously expressed delta-opioid and m3 muscarinic receptors appears to occur in the receptor activation-Ca(2+) release signalling pathway at a step after the activation of phospholipase C.  相似文献   

6.
I Timokhina  H Kissel  G Stella    P Besmer 《The EMBO journal》1998,17(21):6250-6262
The receptor tyrosine kinase Kit plays critical roles in hematopoiesis, gametogenesis and melanogenesis. In mast cells, Kit receptor activation mediates several cellular responses including cell proliferation and suppression of apoptosis induced by growth factor deprivation and gamma-irradiation. Kit receptor functions are mediated by kinase activation, receptor autophosphorylation and association with various signaling molecules. We have investigated the role of phosphatidylinositol 3'-kinase (PI 3-kinase) and Src kinases in Kit-mediated cell proliferation and suppression of apoptosis induced both by factor deprivation and irradiation in bone marrow-derived mast cells (BMMC). Analysis of Kit-/- BMMC expressing mutant Kit receptors and the use of pharmacological inhibitors revealed that both signaling pathways contribute to these Kit-mediated responses and that elimination of both pathways abolishes them. We demonstrate that the PI 3-kinase and Src kinase signaling pathways converge to activate Rac1 and JNK. Analysis of BMMC expressing wild-type and dominant-negative mutant forms of Rac1 and JNK revealed that the Rac1/JNK pathway is critical for Kit ligand (KL)-induced proliferation of mast cells but not for suppression of apoptosis. In addition, KL was shown to inhibit sustained activation of JNK induced by gamma-irradiation and concomitant irradiation-induced apoptosis.  相似文献   

7.
Calmodulin binding to G protein-coupling domain of opioid receptors.   总被引:5,自引:0,他引:5  
The ubiquitous intracellular Ca(2+) sensor calmodulin (CaM) regulates numerous proteins involved in cellular signaling of G protein-coupled receptors, but most known interactions between GPCRs and CaM occur downstream of the receptor. Using a sequence-based motif search, we have identified the third intracellular loop of the opioid receptor family as a possible direct contact point for interaction with CaM, in addition to its established role in G protein activation. Peptides derived from the third intracellular loop of the mu-opioid (OP(3)) receptor strongly bound CaM and were able to reduce binding interactions observed between CaM and immunopurified OP(3) receptor. Functionally, CaM reduced basal and agonist-stimulated (35)S-labeled guanosine 5'-3-O-(thio)triphosphate incorporation, a measure of G protein activation, in membranes containing recombinant OP(3) receptor. Changes in CaM membrane levels as a result of overexpression or antisense CaM suppression inversely affected basal and agonist-induced G protein activation. The ability of CaM to abolish high affinity binding sites of an agonist at OP(3) further supports the hypothesis of a direct interaction between CaM and opioid receptors. An OP(3) receptor mutant with a Lys(273) --> Ala substitution (K273A-OP(3)), an amino acid predicted to play a critical role in CaM binding based on motif structure, was found to be unaffected by changes in CaM levels but coupled more efficiently to G proteins than the wild-type receptor. Stimulation of both the OP(1) (delta-opioid) and OP(3) wild-type receptors, but not the K273A-OP(3) mutant, induced release of CaM from the plasma membrane. These results suggest that CaM directly competes with G proteins for binding to opioid receptors and that CaM may itself serve as an independent second messenger molecule that is released upon receptor stimulation.  相似文献   

8.
Recently, the involvement of the MAP kinase ERK in mitogenic signaling of cholecystokininB (CCK(B)) receptors has been shown. However, the intracellular effector systems involved in this signaling pathway are poorly defined. In this study, we used COS-7 cells transiently transfected with the human CCK(B) receptor to investigate cholecystokinin-induced MAP kinase activation. CCK-8 induced activation of ERK2 which is associated with its phosphorylation and localization in the nucleus. The CCK-8-dependent ERK stimulation is sensitive to wortmannin an inhibitor of phosphoinositide 3-kinases (PI3Ks) indicating the involvement of PI3K activity. To identify the PI3K species involved in mitogenic signaling of the CCK(B) receptor several dominant-negative mutants of PI3K regulatory and catalytic subunits were transiently expressed. Surprisingly, different catalytically inactive mutants of the G protein-sensitive PI3Kgamma did not affect ERK stimulation induced by CCK, whereas a dominant-negative mutant of the regulatory p85 subunit induced significant inhibition of CCK-dependent ERK activity. These results indicate an involvement of PI3K class 1A species alpha, beta or/and delta in signal transduction via CCK(B) receptors. In addition, protein kinase C (PKC)-dependent signaling pathways contribute to CCK(B)-mediated MAP kinase signaling as shown by inhibition of CCK-8-induced ERK activation by the PKC inhibitor bisindolylmaleimide.  相似文献   

9.
In previous studies we found that mu-opioids, acting via mu-opioid receptors, inhibit endothelin-stimulated C6 glioma cell growth. In the preceding article we show that the kappa-selective opioid agonist U69,593 acts as a mitogen with a potency similar to that of endothelin in the same astrocytic model system. Here we report that C6 cell treatment with mu-opioid agonists for 1 h results in the inhibition of kappa-opioid mitogenic signaling. The mu-selective agonist endomorphin-1 attenuates kappa-opioid-stimulated DNA synthesis, phosphoinositide turnover, and extracellular signal-regulated kinase phosphorylation. To investigate the role of receptor endocytosis in signaling, we have examined the effects of dynamin-1 and its GTPase-defective, dominant suppressor mutant (K44A) on opioid modulation of extracellular signal-regulated kinase phosphorylation in C6 cells. Overexpression of dynamin K44A in C6 cells does not affect kappa-opioid phosphorylation of extracellular signal-regulated kinase. However, it does block the inhibitory action on kappa-opioid signaling mediated by the kappa-opioid receptor. Our results are consistent with a growing body of evidence of the opposing actions of mu- and kappa-opioids and provide new insight into the role of opioid receptor trafficking in signaling.  相似文献   

10.
Previous studies in rat bile canalicular membrane vesicles and WIF-B9 cells revealed that cAMP-induced trafficking of ATP-binding cassette (ABC) transporters to the canalicular membrane and their activation require phosphoinositide 3-kinase (PI3-K) products. In the present studies, canalicular secretion of fluorescein isothiocyanate-glycocholate in WIF-B9 cells was increased by cAMP and a decapeptide that enhances PI3-K activity; these effects were inhibited by wortmannin. To determine the mechanism(s) whereby cAMP activates PI3-K, we examined signal transduction pathways in WIF-B9 and COS-7 cells. cAMP activated PI3-K in both cell lines in a phosphotyrosine-independent manner. PI3-K activity increased in association with p110 beta in both cell lines. The effect of cAMP was KT-5720 sensitive, suggesting involvement of protein kinase A. Expression of a dominant-negative beta-adrenergic receptor kinase COOH terminus (beta-ARKct), which blocks G beta gamma signaling, decreased PI3-K activation in both cell lines. cAMP increased GTP-bound Ras in COS-7 but not WIF-B9 cells. Expression of dominant-negative Ras abolished cAMP-mediated PI3-K, which suggests that the effect is downstream of Ras and G beta gamma. These data indicate that cAMP activates PI3-K in a cell type-specific manner and provide insight regarding mechanisms of PI3-K activation required for bile acid secretion.  相似文献   

11.
To define receptor subdomains important for protein interaction and identify components of novel signal transduction complexes for the mu- and delta-opioid receptors (mu-OR, delta-OR), we generated glutathione S-transferase fusion proteins of the carboxyl-termini of the mu-opioid receptor (mu-CT), the delta- (delta-CT), and the third intracellular loop of the delta-opioid receptor (delta-i3L) to search for interactive proteins. Results from pull down experiments have demonstrated for the first time that Gbetagamma complexes, derived from the heterotrimeric Galphatbeta1gamma1, purified Gbeta1gamma1, or Gbeta endogenously present in cell lysates and rat striatal extracts, interact with all mu- and delta-opioid receptor subdomains. On the other hand, the C-terminal peptides of the delta- and the mu-ORs exhibit differential profiles for Galpha subunit binding. Indeed, while mu-CT was unable to bind any form of Galpha, both the delta-CT and the delta-i3L displayed interactive regions for heterotrimeric Galphatbeta1gamma1, inactive Galpha(GDP) and active Galpha(GTPgammaS). Regulators of G protein signaling (RGS) proteins are another class of proteins that can modulate G protein signaling events. We demonstrate for the first time that RGS4 directly interacts with the mu-CT, the delta-CT as well as delta-i3L in a dose dependent manner. Moreover, RGS4 modulates mu-OR signaling and can form stable heterotrimeric complexes with the activated Galpha. Collectively, our data demonstrate that the C-termini of the mu- and delta-ORs provide direct physical scaffolding in which G protein subunits and RGS4 protein can be bound.  相似文献   

12.
Key participants in G protein-coupled receptor (GPCR) signaling are the mitogen-activated protein kinase (MAPK) signaling cascades. The mechanisms involved in the activation of the above cascades by GPCRs are not fully elucidated. A prototypic GPCR that has been widely used to study these signaling mechanisms is the receptor for gonadotropin-releasing hormone (GnRHR), which serves as a key regulator of the reproductive system. Here we expressed GnRHR in COS7 cells and found that GnRHR transmits its signals to MAPKs mainly via G alpha i, EGF receptor without the involvement of Hb-EGF, and c-Src, but independently of PKCs. The main pathway that leads to JNK activation downstream of the EGF receptor involves a sequential activation of c-Src and phosphatidylinositol 3-kinase (PI3K). ERK activation by GnRHR is mediated by the EGF receptor, which activates Ras either directly or via c-Src. Besides the main pathway, the dissociated G beta gamma and beta-arrestin may initiate additional, albeit minor, pathways that lead to MAPK activation in the transfected COS7 cells. The pathways detected are significantly different from those in other cell lines bearing GnRHR, indicating that GnRH can utilize various signaling mechanisms for the activation of MAPK cascades. The unique pathway elucidated here in which c-Src and PI3K are sequentially activated downstream of the EGF receptor may serve as a prototype of signaling mechanisms by GnRHR and by additional GPCRs in various cell types.  相似文献   

13.
Polymorphonuclear leukocytes (neutrophils) respond to lipopolysaccharide (LPS) through the up-regulation of several pro-inflammatory mediators. We have recently shown that LPS-stimulated neutrophils express monocyte chemoattractant protein 1 (MCP-1), an AP-1-dependent gene, suggesting that LPS activates the c-Jun N-terminal kinase (JNK) pathway in neutrophils. Previously, we have shown the activation of p38 MAPK, but not JNK, in suspended neutrophils stimulated with LPS but have recently shown activation of JNK by TNF-alpha in an adherent neutrophil system. We show here that exposure to LPS activates JNK in non-suspended neutrophils and that LPS-induced MCP-1 expression, but not tumor necrosis factor-alpha (TNF-alpha) or interleukin-8 (IL-8), is dependent on JNK activation. In addition, LPS stimulation of non-suspended neutrophils activates Syk and phosphatidylinositol 3-kinase (PI3K). Inhibition of Syk with piceatannol or PI3K with wortmannin inhibited LPS-induced JNK activation and decreased MCP-1 expression after exposure to LPS, suggesting that both Syk and PI3K reside in a signaling pathway leading to LPS-induced JNK activation in neutrophils. This Syk- and PI3K-dependent pathway leading to JNK activation after LPS exposure in non-suspended neutrophils is specific for JNK, because inhibition of neither Syk nor PI3K decreased p38 activation after LPS stimulation. Furthermore we show that PI3K inhibition decreased LPS-induced Syk activation suggesting that PI3K resides upstream of Syk in this pathway. Finally, we show that Syk associates with Toll-like receptor 4 (TLR4) upon LPS stimulation further implicating Syk in the LPS-induced signaling pathway in neutrophils. Overall our data suggests that LPS induces JNK activation only in non-suspended neutrophils, which proceeds through Syk- and PI3K-dependent pathways, and that JNK activation is important for LPS-induced MCP-1 expression but not for TNF-alpha or IL-8 expression.  相似文献   

14.
G protein-coupled receptor (GPCR) kinases (GRKs) are key regulators of GPCR function. Here we demonstrate that activation of epidermal growth factor receptor (EGFR), a member of receptor tyrosine kinase family, stimulates GRK2 activity and transregulates the function of G protein-coupled opioid receptors. Our data showed that EGF treatment promoted DOR internalization induced by DOR agonist and this required the intactness of GRK2-phosphorylation sites in DOR. EGF stimulation induced the association of GRK2 with the activated EGFR and the translocation of GRK2 to the plasma membrane. After EGF treatment, GRK2 was phosphorylated at tyrosyl residues. Mutational analysis indicated that EGFR-mediated phosphorylation occurred at GRK2 N-terminal tyrosyl residues previously shown as c-Src phosphorylation sites. However, c-Src activity was not required for EGFR-mediated phosphorylation of GRK2. In vitro assays indicated that GRK2 was a direct interactor and a substrate of EGFR. EGF treatment remarkably elevated DOR phosphorylation in cells expressing the wild-type GRK2 in an EGFR tyrosine kinase activity-dependent manner, whereas EGF-stimulated DOR phosphorylation was greatly decreased in cells expressing mutant GRK2 lacking EGFR tyrosine kinase sites. We further showed that EGF also stimulated internalization of mu-opioid receptor, and this effect was inhibited by GRK2 siRNA. These data indicate that EGF transregulates opioid receptors through EGFR-mediated tyrosyl phosphorylation and activation of GRK2 and propose GRK2 as a mediator of cross-talk from RTK to GPCR signaling pathway.  相似文献   

15.
G-protein-coupled receptors (GPCRs) typically activate c-Jun N-terminal kinase (JNK) through the G protein betagamma subunit (Gbetagamma), in a manner dependent on Rho family small GTPases, in mammalian cells. Here we show that JNK activation by the prototypic Gq-coupled alpha1B-adrenergic receptor is mediated by the alpha subunit of Gq (Galphaq), not by Gbetagamma, using a transient transfection system in human embryonic kidney cells. JNK activation by the alpha1B-adrenergic receptor/Galphaq was selectively mediated by mitogen-activated protein kinase kinase 4 (MKK4), but not MKK7. Also, MKK4 activation by the alpha1B-adrenergic receptor/Galphaq required c-Src and Rho family small GTPases. Furthermore, activation of the alpha1B-adrenergic receptor stimulated JNK activity through Src family tyrosine kinases and Rho family small GTPases in hamster smooth muscle cells that natively express the alpha1B-adrenergic receptor. Together, these results suggest that the alpha1B-adrenergic receptor/Galphaq may up-regulate JNK activity through a MKK4 pathway dependent on c-Src and Rho family small GTPases in mammalian cells.  相似文献   

16.
17.
Many G protein coupled receptors (GPCRs) cause phosphorylation of MAP kinases through transactivation of the epidermal growth factor receptor (EGF-R), leading to increased cell survival and growth, motility, and migration. Phosphoinositide 3-kinase (PI3K) is one of the important cell survival signaling molecules activated by EGF-R stimulation. However, the extent to which EGF-R transactivation is essential for GPCR agonist-stimulated PI3K activation is not known. Here we examined the mechanism of PI3K activation that elicits GPCR-mediated ERK1/2 activation by pathways dependent and/or independent of EGF-R transactivation in specific cell types. Immortalized hypothalamic neurons (GT1-7 cells) express endogenous gonadotropin-releasing hormone receptors (GnRH-R) and their stimulation causes marked phosphorylation of ERK1/2 and Akt (Ser 473) through transactivation of the EGF-R and recruitment of PI3K. In C9 hepatocytes, agonist activation of AT1 angiotensin II (AT1-R), lysophosphatidic acid (LPA), and EGF receptors caused phosphorylation of Akt through activation of the EGF-R in a PI3K-dependent manner. However, ERK1/2 activation by these agonists in these cells was independent of PI3K activation. In contrast, agonist stimulation of HEK 293 cells stably expressing AT1-R caused ERK1/2 phosphorylation that was independent of EGF-R transactivation but required PI3K activation. LPA signaling in these cells showed partial and complete dependence on EGF-R and PI3K, respectively. These data indicate that GPCR-induced ERK1/2 phosphorylation is dependent or independent of PI3K in specific cell types, and that the involvement of PI3K during ERK1/2 activation is not dependent solely on agonist-induced transactivation of the EGF-R.  相似文献   

18.
Aldosterone induces expression and activation of the GTP-dependent signaling switch K-Ras. This small monomeric G protein is both necessary and sufficient for activation of the epithelial Na(+) channel (ENaC). The mechanism by which K-Ras enhances ENaC activity, however, is uncertain. We demonstrate here that K-Ras activates human ENaC reconstituted in Chinese hamster ovary cells in a GTP-dependent manner. K-Ras influences ENaC activity most likely by affecting open probability. Inhibition of phosphoinositide 3-OH kinase (PI3K) abolished K-Ras actions on ENaC. In contrast, inhibition of other K-Ras effector cascades, including the MAPK and Ral/Rac/Rho cascades, did not affect K-Ras actions on ENaC. Activation of ENaC by K-Ras, moreover, was sensitive to co-expression of dominant negative p85(PI3K). The G12:C40 effector-specific double mutant of Ras, which preferentially activates PI3K, enhanced ENaC activity in a manner sensitive to inhibition of PI3K. Other effector-specific mutants preferentially activating MAPK and RalGDS signaling had no effect. Constitutively active PI3K activated ENaC independent of K-Ras with the effects of PI3K and K-Ras on ENaC not being additive. We conclude that K-Ras activates ENaC via the PI3K cascade.  相似文献   

19.
Certain G protein-coupled receptors (GPCRs) stimulate the activities of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), members of the MAPK family. We investigated the role of JNK and p38 MAPK activation induced by the alpha1B-adrenergic receptor in the proliferation of human embryonic kidney 293T cells. Activation of the alpha1B-adrenergic receptor resulted in inhibition of cell proliferation. This receptor-induced inhibition of proliferation was blocked by a kinase-deficient MKK4 and by the p38 MAPK inhibitor SB203580. Additionally, transfection of constitutively activated Galphaq into cells also led to inhibition of proliferation in a JNK- and p38 MAPK-dependent manner. These results demonstrate that the alpha1B-adrenergic receptor/Galphaq signaling inhibits cell proliferation through pathways involving JNK and p38 MAPK.  相似文献   

20.
Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号