首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of 7,8-diacetoxy-4-methylcoumarin (DAMC) has been studied on hepatic NADPH cytochrome C reductase-- an enzyme participating in the microsomal electron transport. The preincubation of liver microsomes with DAMC resulted in a time-dependent activation of NADPH cytochrome C reductase. The catalytic activity of the enzyme enhanced nearly 600% by 25 microM concentration of DAMC after 10 min of preincubation. The action of DAMC on the reductase resulted in enhanced v(max) while Km remained constant. A plot of 1/v(max) as a function of DAMC concentration resulted in a non-linear, but rectangular hyperbola indicative of hyperbolic activation. DAMC was also proved to be effective in significantly enhancing the activity of NADPH cytochrome C reductase in vivo. 7,8-Dihydroxy-4-methylcoumarin (DHMC), the deacetylated product of DAMC failed to irreversibly activate the enzyme. The activation effect of DAMC upon the enzyme was abolished by p-hydroxymercury benzoate. The role of a transacetylase in transferring the acetyl group of DAMC to the amino acid(s) of the active site of NADPH cytochrome C reductase causing irreversible enzyme activation is enunciated.  相似文献   

2.
Electrochemical and chemical oxidation of 7,8-hydroxy-4-methylcoumarin (DHMC 1) and 7,8-diacetoxy-4-methylcoumarin (DAMC 4) were studied to investigate the mechanisms occurring in their antioxidant activities in acetonitrile, under electron transfer and H-atom transfer conditions. Electrolysis and chemical reactions were followed on-line by monitoring the UV spectral changes with time.  相似文献   

3.
The enzymatic transfer of acetyl groups from acetylated xenobiotics to specific proteins is a relatively grey area in the evergreen field of biotransformation of foreign compounds. In this paper, we have documented evidence for the existence of a transacetylase in liver microsomes that catalyses the transfer of acetyl groups from 7,8-diacetoxy-4-methylcoumarin (DAMC) to glutathione S-transferase (GST), either purified or present in cytosol leading to the irreversible inhibition of GST. A simple procedure is described for the assay of transacetylase by preincubation of DAMC with liver microsomes and pure GST/liver cytosol, followed by the addition of 1-chloro-2,4-dinitrobenzene (CDNB) and reduced glutathione (GSH) in order to quantify GST activity by the conventional procedure. The extent of inhibition of GST by DAMC under the conditions of the assay is indicative of DAMC:protein transacetylase activity. Following the assay procedure described here, the transacetylase was shown to exhibit hyperbolic kinetics. The bimolecular nature of the transacetylase reaction was apparent by the demonstration of Km and vmax values. 7,8-Dihydroxy-4-methylcoumarin (DHMC), one of the products of transacetylase reaction was identified and quantified using the partially purified enzyme. The fact that p-hydroxymercuribenzoate (PHMB) and iodoacetamide abolished irreversible inhibition of GST upon the action of transacetylase on DAMC strongly characterized transacetylase as a protein containing thiol group at the active site. In addition, the relative specificities of acetoxy 4-methylcoumarins to transacetylase have been demonstrated.  相似文献   

4.
The purification and characterization of the buffalo liver microsomal transacetylase (TAase) catalyzing the transfer of acetyl groups from a model acetoxy drug: 7,8-diacetoxy-4-methylcoumarin (DAMC) to GST3-3 has been described here. The enzyme was routinely assayed using DAMC and cytosolic GST as the substrates and was partially purified from microsomes of the buffalo liver. The enzyme was found to have approximate molecular of weight 65 kDa. The action of TAase and DAMC on liver cytosolic GST resulted in the formation of monoacetoxymonohydroxy-4-methylcoumarin (MAMHC) and 7,8-dihydroxy-4-methylcoumarin (DHMC), although the former was the major metabolite. The buffalo liver microsomal TAase exhibited hyperbolic kinetics and yielded K(m) (1667 microM) and V(max) (192 units) when the concentration of DAMC was varied keeping the concentration of GST constant. After having characterized the nature of the substrates and a product of the TAase-catalyzed reaction, we set out to identify the acetylated protein which is another product of the reaction. GST3-3 was used as a model protein substrate for the action of TAase using DAMC as the acetyl donor. The subunit of control and modified GST3-3 were separated by SDS-polyacrylamide gel electrophoresis (PAGE) and digested with trypsin. The tryptic peptides were extracted from the gel pieces and analyzed by matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOFMS). The data search for calibrated and labeled mass peaks of peptides was performed on the Matrix Science Server using the search engine Mascot. The peptide maps so obtained covered 97% of the GST3-3 sequence. On comparison of MALDI peptide maps of modified and control GST, seven new peaks were recognized corresponding to the potentially acetylated peptides in peptide map. The mass value of each of them was 42 Da higher than the theoretical mass of a non-modified GST3-3 tryptic peptide, strongly suggesting acetylation. By examining the fragmentation patterns and by comparing experimental and predicted values for MS/MS daughter ions, the identity of the seven acetylated GST tryptic peptides could be confirmed by the application of LC/MS/MS. In the modified GST, N-terminal proline and six lysines (Lys(51), Lys(82), Lys(123), Lsy(181), Lys(191) and Lys(210)) were found to be acetylated. The structure of acetylated GST revealed that the lysines that underwent acetylation were peripheral in positions.  相似文献   

5.
The purification and characterization of the buffalo liver microsomal transacetylase (TAase) catalyzing the transfer of acetyl groups from a model acetoxy drug: 7,8-diacetoxy-4-methylcoumarin (DAMC) to GST3–3 has been described here. The enzyme was routinely assayed using DAMC and cytosolic GST as the substrates and was partially purified from microsomes of the buffalo liver. The enzyme was found to have approximate molecular of weight 65 kDa. The action of TAase and DAMC on liver cytosolic GST resulted in the formation of monoacetoxymonohydroxy-4-methylcoumarin (MAMHC) and 7,8-dihydroxy-4-methylcoumarin (DHMC), although the former was the major metabolite. The buffalo liver microsomal TAase exhibited hyperbolic kinetics and yielded Km (1667 μM) and Vmax (192 units) when the concentration of DAMC was varied keeping the concentration of GST constant. After having characterized the nature of the substrates and a product of the TAase-catalyzed reaction, we set out to identify the acetylated protein which is another product of the reaction. GST3–3 was used as a model protein substrate for the action of TAase using DAMC as the acetyl donor. The subunit of control and modified GST3–3 were separated by SDS-polyacrylamide gel electrophoresis (PAGE) and digested with trypsin. The tryptic peptides were extracted from the gel pieces and analyzed by matrix assisted laser desorption/ionization–time of flight–mass spectrometry (MALDI-TOFMS). The data search for calibrated and labeled mass peaks of peptides was performed on the Matrix Science Server using the search engine Mascot. The peptide maps so obtained covered 97% of the GST3–3 sequence. On comparison of MALDI peptide maps of modified and control GST, seven new peaks were recognized corresponding to the potentially acetylated peptides in peptide map. The mass value of each of them was 42 Da higher than the theoretical mass of a non-modified GST3–3 tryptic peptide, strongly suggesting acetylation. By examining the fragmentation patterns and by comparing experimental and predicted values for MS/MS daughter ions, the identity of the seven acetylated GST tryptic peptides could be confirmed by the application of LC/MS/MS. In the modified GST, N-terminal proline and six lysines (Lys51, Lys82, Lys123, Lsy181, Lys191 and Lys210) were found to be acetylated. The structure of acetylated GST revealed that the lysines that underwent acetylation were peripheral in positions.  相似文献   

6.
The quantitative structure-activity relationship (QSAR) studies conducted by us earlier revealed the cardinal role of the pyran ring carbonyl group in the acetoxy polyphenolic compounds for the acetoxy polyphenol:protein transacetylase (TAase) activity. Hence, an attempt was made to examine whether such substrate analogues of benzopyran acetates which lack in the pyran ring carbonyl group, such as 7-acetoxy-2,3-dihydro-2,2-dimethylbenzopyran (BPA), cetachin pentaacetate (CPA) and hematoxylin pentaacetate (HPA) could inhibit the 7,8-diacetoxy-4-methylcoumarin (DAMC):protein (glutathione-S-transferase) transacetylase activity. These compounds were indeed found to remarkably inhibit the TAase activity in a concentration dependent manner and exerted their inhibitory action very rapidly. Further BPA, CPA and HPA were found to abolish the TAase mediated activation of NADPH cytochrome C reductase as well as the inhibition of liver microsome catalyzed aflatoxin B(1) (AFB(1))-DNA binding by DAMC very effectively. These results strongly suggest that the acetoxybenzopyrans merit as potent inhibitors of TAase.  相似文献   

7.
The antioxidative and/or prooxidative activity of 4-methylcoumanrin (MC), 7-hydroxy-4-methylcoumarin (HMC) and 7,8-dihydroxy-4-methylcoumarin (DHMC), respectively, in the peroxidation of human low-density lipoprotein (LDL) has been studied. The peroxidation was initiated either thermally by water-soluble initiator 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH), or photochemically by a triplet sensitizer benzophenone (BP) or its water-soluble analogue disodium 3,3'-disulfobenzophenonate (DSBP). The reaction kinetics were monitored by the uptake of oxygen and the depletion of alpha-tocopherol (TOH) present in the native LDL. Kinetic analysis of the peroxidation process demonstrated that DHMC is a good antioxidant for both the AAPH-initiated and BP- and DSBP-photosensitized peroxidation; HMC is a prooxidant for the AAPH-initiated and DSBP-photosensitized peroxidation, but an antioxidant for the BP-sensitized peroxidation; MC is a prooxidant in all of these initiation conditions. The antioxidative action of the coumarin derivatives may include trapping the initiating radicals, trapping the propagating lipid peroxyl radicals, recycling alpha-tocopherol and/or deactivating the excited photosensitizer.  相似文献   

8.
Goel A  Prasad AK  Parmar VS  Ghosh B  Saini N 《FEBS letters》2007,581(13):2447-2454
Coumarins have attracted intense interest in recent years because they have been identified from natural sources, especially green plants and have diverse pharmacological properties. In this study, we investigated whether 7,8-dihydroxy-4-methylcoumarin (DHMC) caused apoptosis in A549 human non-small cell lung carcinoma cells (NSCLC) and, if so, by what mechanisms. Here, we show that, in A549 human NSCLC cells, DHMC induces apoptosis through mitochondria-mediated caspase-dependent pathway. Although an increase in the levels of reactive oxygen species (ROS) was observed, pre-treatment with antioxidant showed no protective effect against DHMC-induced apoptosis. In addition, our immunoblot data revealed that DHMC treatment led to down-regulation of Bcl-xl, Bax, p21, Cox-2, p53 and upregulation of c-Myc. Results in the present study for the first time suggest that DHMC induces apoptosis in human lung A549 cells through partial inhibition of ERK/MAPK signaling.  相似文献   

9.
The antioxidant activity of eight synthetic 4-methylcoumarins was systematically studied. The antioxidant capacity was measured using: (i) a competition kinetic test, to measure the relative capacity to quench peroxyl radical; (ii) the in vitro oxidative modification of human low-density lipoprotein, initiated by AAPH or catalyzed by copper. In both models, the ortho-OH substitutes were found to be better antioxidant than the meta one. The most efficient antioxidant was the 7,8-dihydroxy-4-methylcoumarin and the corresponding diacetoxy-substituted was unexpectedly a good antioxidant. Finally, the presence of an ethoxycarbonylethyl substituent at the C-3 position increased the antioxidant capacity of both 7,8-dihydroxy-4-methylcoumarin and 7,8-diacetoxy-4-methylcoumarin.  相似文献   

10.
Alpha-tocopheryl quinone is a metabolite of alpha-tocopherol (TOH) in vivo. The antioxidant action of its reduced form, alpha-tocopheryl hydroquinone (TQH2), has received much attention recently. In the present study, the antioxidative activity of TQH2 was studied in various systems in vitro and compared with that of ubiquinol-10 (UQH2) or TOH to obtain the basic information on the dynamics of the antioxidant action of TQH2. First, their hydrogen-donating abilities were investigated in the reaction with galvinoxyl, a stable phenoxyl radical, and TQH2 was found to possess greater second-order rate constant (1.0 x 10(4) M(-1) s(-1)) than UQH2 (6.0 x 10(3) M(-1) s(-1)) and TOH (2.4 x 10(3) M(-1) s(-1)) at 25 degrees C in ethanol. The stoichiometric numbers were obtained as 1.9, 2.0, and 1.0 for TQH2, UQH2, and TOH, respectively, in reducing galvinoxyl. Second, their relative reactivities toward peroxyl radicals were assessed in competition with N,N'-diphenyl-p-phenylenediamine (DPPD) and found to be 6.0 (TQH2), 1.9 (UQH2), and 1.0 (TOH). Third, their antioxidant efficacies were evaluated in the oxidation of methyl linoleate in organic solvents and in aqueous dispersions. The antioxidant potency decreased in the order TOH > UQH2 > TQH2, as assessed by either the extent of the reduction in the rate of oxidation or the duration of inhibition period. The reverse order of their reactivities toward radicals and their antioxidant efficacies was interpreted by the rapid autoxidation of TQH2 and UQH2, carried out by hydroperoxyl radicals. Although neither TQH2 nor UQH2 acted as a potent antioxidant by itself, they acted as potent antioxidants in combination with TOH. TQH2 and UQH2 reduced alpha-tocopheroxyl radical to spare TOH, whereas TOH suppressed the autoxidation of TQH2 and UQH2. In the micelle oxidation, the antioxidant activities of TQH2, UQH2, and TOH were similar, whereas 2,2,5,7,8-pentamethyl-6-chromanol exerted much more potent efficacy than TQH2, UQH2, or TOH. These results clearly show that the antioxidant potencies against lipid peroxidation are determined not only by their chemical reactivities toward radicals, but also by the fate of an antioxidant-derived radical and the mobility of the antioxidant at the microenvironment.  相似文献   

11.
The existence of a novel microsomal deacetylase in rat liver catalysing deacetylation of diacetoxy 4-methylcoumarins has been reported. A simple method is outlined for the enzyme assay based upon the quantification of the dihydroxy derivative by measuring the UV absorption of its complex with ADP and Fe3+ at 600 nm. The enzyme can be routinely assayed using 7,8-diacetoxy-4-methylcoumarin (DAMC) as the substrate and demonstrated hyperbolic kinetics and yielded Km and vmax values of 1250 microM and 500 units, respectively. The pH optima was found to be 7.5 for the enzyme. No DAMC deacetylase activity was found in hepatic cytosol and the enzyme activity was not discernible in extrahepatic tissues.  相似文献   

12.
The protein acetyltransferase (MTAase) function of glutamine synthetase of Mycobacterium smegmatis was established earlier. In this paper, studies were undertaken to examine MTAase function of recombinant glutamine synthetase (rGlnA1) of Mycobacterium tuberculosis, which showed >80% similarity with M. smegmatis GlnA. The specificity of MTAase to several acyl derivative of coumarins was examined. The results clearly indicated that MTAase exhibited differential specificities to several acyloxycoumarins. Further, MTAase was also found capable of transferring propionyl and butyryl groups from propoxy and butoxy derivatives of 4-methylcoumarin. These observations characterized MTAase in general as a protein acyltransferase. MTAase catalyzed acetylation of GST by 7,8-diacetoxy-4-methylcoumarin (DAMC), a model acetoxy coumarin was confirmed by MALDI-TOF-MS as well as western blot analysis using acetylated lysine polyclonal antibody. In order to validate the active site of rGlnA1 for TAase activity, effect of DAMC and L-methionine-S-sulfoximine (MSO) on GS and TAase activity of rGlnA1 were studied. The results indicated that the active sites of GS and TAase were found different. Acetyl CoA, a universal biological acetyl group donor, was also found to be a substrate for MTAase. These results appropriately characterize glutamine synthetase of Mtb exhibiting transacylase action as a moonlighting protein.  相似文献   

13.
The singlet oxygen quenching rate constants (kq) for a range of hydroxycinnamic acids in acetonitrile and D2O solutions were measured using time resolved near infrared phosphorescence in order to establish their antioxidant activity. The magnitude of kq observed depends on both the nature of the substituent groups and solvent polarity. The variations in kq depend on the energy of the hydroxycinnamic acid/molecular oxygen charge transfer states, (O2delta- ...HCAdelta+). In D2O the values of kq range from 4x10(7) M(-1) s(-1) to 4x10(6) M(-1) s(-1) for caffeic acid and o-coumaric acid respectively. In acetonitrile, the charge transfer energy levels are raised and this is reflected in lower singlet oxygen quenching rate constants with a kq value of 5x10(6) M(-1) s(-1) for caffeic acid. The phenoxyl radical spectra derived from the hydroxycinnamic acids were determined using pulse radiolysis of aqueous solutions and the reduction potentials were found to range from 534 to 596 mV. A linear correlation is observed between reduction potential, and hence free energy for electron transfer, and log kq. These correlations suggest a charge transfer mechanism for the quenching of singlet oxygen by the hydroxycinnamic acids.  相似文献   

14.
The reactions between Trolox C, a water-soluble vitamin E analogue, and several oxidizing free radicals including the hydroxyl radical and various peroxy radicals were examined by using the pulse-radiolysis technique. The results demonstrate that Trolox C may undergo rapid one-electron-transfer reactions as well as hydrogen-transfer processes; the resulting phenoxyl radical is shown to be relatively stable, in common with the phenoxyl radical derived from vitamin E. The reactions between the Trolox C phenoxyl radical and a variety of biologically relevant reducing compounds were examined by using both pulse radiolysis and e.s.r. The results demonstrate that the Trolox C phenoxyl radical is readily repaired by ascorbate (k = 8.3 x 10(6) dm3.mol-1.s-1) and certain thiols (k less than 10(5) dm3.mol-1.s-1) but not by urate, NADH or propyl gallate. Evidence from e.s.r. studies indicates that thiol-containing compounds may also enter into similar repair reactions with the alpha-tocopherol phenoxyl radical. Kinetic evidence is presented that suggests that Trolox C may 'repair' proteins that have been oxidized by free radicals.  相似文献   

15.
Well known antioxidants-coumarins (7,8-dihydroxy-4-methyl coumarin-DHMC and 7,8-diacetoxy-4-methyl coumarin-DAMC) and flavonoids (quercetin-Q and quercetin penta-acetate-QPA) were investigated for their pro-oxidant effects in two human tumor cell lines. The breast carcinoma cell line (MDA-MB-468) was found to be more sensitive to treatment by the drugs-DAMC, Q and QPA at 10 microM than the glioma cell line (U-87MG), while DHMC was non toxic in both cell lines at this concentration. In MDA-MB-468 distinct growth inhibition was observed by 48 hr post treatment. Paradoxically, an increase in the formazan production was revealed by MTT assay at this time indicating an increase in the production of free radicals. An increase in the levels of reactive oxygen species (ROS) was also confirmed by DCFH-DA assay. In cells treated with DAMC, Q and QPA an increase in the percentage of cells with the hypodiploid DNA content was suggestive of apoptotic cell death. Taken together, these results suggest that an increase in oxidative stress caused by the pro-oxidant action of these drugs is responsible for cell death.  相似文献   

16.
The chain-breaking antioxidant activities of eight coumarins [7-hydroxy-4-methylcoumarin (1), 5,7-dihydroxy-4-methylcoumarin (2), 6,7-dihydroxy-4-methylcoumarin (3), 6,7-dihydroxycoumarin (4), 7,8-dihydroxy-4-methylcoumarin (5), ethyl 2-(7,8-dihydroxy-4-methylcoumar-3-yl)-acetate (6), 7,8-diacetoxy-4-methylcoumarin (7) and ethyl 2-(7,8-diacetoxy-4-methylcoumar-3-yl)-acetate (8)] during bulk lipid autoxidation at 37 °C and 80 °C in concentrations of 0.01–1.0 mM and their radical scavenging activities at 25 °C using TLC–DPPH test have been studied and compared. It has been found that the o-dihydroxycoumarins 36 demonstrated excellent activity as antioxidants and radical scavengers, much better than the m-dihydroxy analogue 2 and the monohydroxycoumarin 1. The substitution at the C-3 position did not have any effect either on the chain-breaking antioxidant activity or on the radical scavenging activity of the 7,8-dihydroxy- and 7,8-diacetoxy-4-methylcoumarins 6 and 8. The comparison with DL-α-tocopherol (TOH), caffeic acid (CA) and p-coumaric acid (p-CumA) showed that antioxidant efficiency decreases in the following sequence:  相似文献   

17.
Extensive research carried out in our group on polyphenolic acetates (PAs) substantiated the potential role of PAs in causing diverse biological and pharmacological actions. Our earlier investigations firmly established the calreticulin transacetylase (CRTAase) catalyzed activation of nitric oxide synthase (NOS) by PAs. In this report, we have studied the effect of 7,8-diacetoxy-4-methylcoumarin (DAMC, a model PA) and other acetoxy coumarins on the thioredoxin and VEGF expression in human peripheral blood mononuclear cells (PBMCs), with a view to substantiate our earlier observation that DAMC was a superb inducer of angiogenesis. Real time RT-PCR analysis revealed the enhanced expression of thioredoxin reductase (TRXR) and diminished expression of thioredoxin interacting protein (TRXIP) leading to the increased expression and activity of thioredoxin (TRX) in PBMCs due to the the action of DAMC. The fact that TRX activity of PBMCs was enhanced by various acetoxy coumarins in tune with their affinity to CRTAase as substrate, suggested the possible activation of TRX due to acetylation. The overexpression of thioredoxin was found to correlate with that of VEGF as proved by real time RT-PCR and VEGF -ELISA results, apart from the DAMC-caused enhanced production of NO acting as an inducer of VEGF. Moreover, the intracellular ROS levels were also found to be reduced drastically, by DAMC thus reducing the oxidative stress in cells. These observations strongly evidenced the crucial role of TRX in DAMC-induced tissue angiogenesis with the involvement of VEGF.  相似文献   

18.
Our earlier investigations have identified a unique enzyme in the endoplasmic reticulum (ER) termed Acetoxy Drug: Protein Transacetylase (TAase) catalyzing the transfer of acetyl group from polyphenolic acetates (PA) to certain receptor proteins (RP). An elegant assay procedure for TAase was developed based on the inhibition of glutathione S-transferase (GST) due to acetylation by a model acetoxycoumarin, 7, 8-Diacetoxy-4-methylcoumarin (DAMC). TAase purified from various mammalian tissue microsomes to homogeneity exhibited a molecular weight (M.wt) of 55 kDa. Further, by N-terminal sequencing TAase was identified as Calreticulin (CR), a multifunctional Ca2+-binding protein in ER lumen. The identity of TAase with CR was evidenced by proteomics studies such as immunoreactivity with anti-CR antibody and mass spectrometry. This function of CR was termed Calreticulin transacetylase (CRTAase). CRTAase was also found to mediate the transfer of acetyl group from DAMC to RP such as NADPH Cytochrome c Reductase (CYPR) and Nitric Oxide Synthase (NOS). The autoacetylation of purified human placental CRTAase concomitant with the acetylation of RP by DAMC was observed. CRTAase activity was found to be inhibited by Ca2+. Our investigations on the individual domains (N, P and C) of CR from a nematode Haemonchus contortus revealed that the P-domain alone was found to possess CRTAase activity. Based on the observation that the autoacetylated CR was a stable intermediate in the CRTAase catalyzed protein acetylation by PA, a putative mechanism was proposed. Further, CRTAase was also found capable of transferring propionyl group from a propoxy derivative of polyphenol, 7,8-Dipropoxy-4-methylcoumarin (DPMC) to RP and concomitant autopropionylation of CR was encountered. Hence, CRTAase was assigned the general term Calreticulin Transacylase. Also, CRTAase was found to act upon the biological acyl group donors, acetyl CoA and propionyl CoA. CRTAase mediated modulation of specific functional proteins by way of acylation was exploited to elicit the biological applications of PA.  相似文献   

19.
The synthesis and antioxidant evaluation of some novel benzimidazole derivatives (10-24) are described. Antioxidant properties of the compounds were investigated employing various in vitro systems viz., microsomal NADPH-dependent inhibition of lipid peroxidation (LP), interaction of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and scavenging of superoxide anion radical. Compounds 12 and 13 showed very good antioxidant capacity and were 17-18-fold more potent than BHT (IC50 2.3 x 10(-4) M) with 1.3 x 10(-5) M and 1.2 x 10(-5) M IC50 values, respectively, by interaction of the stable DPPH free radical.  相似文献   

20.
Shi Y  Lin W  Fan B  Jia Z  Yao S  Kang J  Wang W  Zheng R 《Biochimica et biophysica acta》1999,1472(1-2):115-127
DNA damaged by oxygen radicals has been implicated as a causative event in a number of degenerative diseases, including cancer and aging. So it is very significant to look for ways in which either oxygen radicals are scavenged prior to DNA damage or damaged DNA is repaired to supplement the cells' inadequate repair capacity. The repair activities and reaction mechanism of phenylpropanoid glycosides (PPGs) and their derivatives, isolated from Chinese folk medicinal herbs, towards both dGMP-OH* adducts and dAMP-OH* adducts were studied with the pulse radiolytic technique. On pulse irradiation of nitrous oxide saturated 2 mM dGMP or dAMP aqueous solution containing one of the PPGs or their derivatives, the transient absorption spectra of the hydroxyl adduct of dGMP or dAMP decayed with the formation of that of phenoxyl radicals of PPGs or their derivatives within several decades of microseconds after electron pulse irradiation. The result indicated that dGMP or dAMP hydroxyl adducts can be repaired by PPGs or their derivatives. The rate constants of the repair reactions were deduced to be 0.641-1.28 x 10(9) M(-1) s(-1) for dGMP-OH* and 0.2-0.491 x 10(9) M(-1) s(-1) for dAMP-OH*, which positively correlated to the number of phenolic hydroxyl groups in the glycoside structure. A deeper understanding of this new repair mechanism may help researchers to design strategies to prevent and/or intervene more effectively in free radical related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号