首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A little over a year ago, on January 25, 2021, the new Editor-in-Chief (EiC) of JCCS stated in his Editorial: “ICCNS and JCCS were the brainchildren of Bernard Perbal, and without his energy and drive, neither would exist, to the detriment of us who are driven to solve difficult problems in science, and not picking low-hanging fruit. All one has to do is examine all the editorials written in JCCS (and CCS!) to see evidence of this. It will be tough to fill those shoes.“I disagree with the assertion in the Editorial published on March 29, 2022 that G. Martin contributed “to the initial growth of the International CCN Society, and, ultimately, to the establishment of this journal.” My opinion is based on the evidence that the International CCN Society (ICCNS) and its official organ journal, the Journal of Cell Communication and Signaling (JCCS), were created by myself. Over a span of 21 years until the present, and in spite of his contribution to the early history of CTGF, we never heard from G. Martin being involved or interested in any aspect of the ICCNS and its biannual meetings, nor in any aspect in the growth of JCCS.In order to further clarify the confusion stemming from the Editorial in question and to give credit where it is due, I provide below detailed evidence that undoubtedly ascribes the true inception of both ICCNS and JCCS, and merit to the efforts of all those who trusted and supported us during the initial difficult creative moments.I am of the opinion that the Editorial, and the implications that it carries do not justice to the efforts of those who were really involved in the creation of both the ICCNS and JCCS.In the name of respectful scientific integrity, I will provide the evidence that correctly attributes the inception of ICCNS and JCCS.  相似文献   

2.
According to Chinese astrology, the Tiger is considered as the king of all animals. The Year of the Tiger 2022 was meant to symbolize determinism, vitality, strength, spontaneity and novelty, with the water element making it wiser and thoughtful. Often associated with the defeat of evil, a Water Tiger year occurs only every 60 years. The 2022 version was indeed a year of resilience, even in the time of conflict and the struggles that we have faced both in personal and professional realms. It was a good time to reflect in order to overcome all challenges and difficulties. The revamping of both the International CCN society (ICCNS) and the Journal of Cell Communication and Signaling (JCCS) that I had previously initiated and officially announced in 2019, are on track to becoming a successful reality and will be pursued over the coming years, thanks to the strong support of our colleagues, members of the JCCS Editorial board and representatives of other scientific societies who support our efforts to broaden the scope of the ICCNS and its communication organ. I will schematically draw below the guidelines that we intend to follow in the near future.  相似文献   

3.
In June 2015, Thomson Reuters informed our publisher Springer that the Journal of Cell Communication and Signaling, the official journal of the International CCN Society, « had been selected for coverage in Thomson Reuter’s products and services. Beginning with V. 1 (1) 2007, this publication would be indexed and abstracted in Science Citation Index Expanded (also known as SciSearch), Journal Citation Reports/Science Edition, Biological Abstracts and BIOSIS Previews ». In this fall editorial I briefly revisit a few milestones of the JCCS life since it was first created in 1988, with the deep and genuine willingness to help in the dissemination, in the highly competitive world of publishing, of the best quality science regarding the roles of CCN proteins in signaling.  相似文献   

4.
In celebration of the twentieth anniversary of the inception of the CCN society, and of the first post-Covid-19 live meeting, the executive board of the ICCNS had chosen Nice as the venue for the 11th International workshop on the CCN family of genes. On this occasion participation in the meeting was extended to colleagues from other cell signaling fields who were invited to present both an overview of their work and the future directions of their laboratory. Also, for the first time, the members of the JCCS Editorial Board were invited to participate in a JCCS special session during which all aspects of the journal « life » were addressed and opened to free critical discussion. The scientific presentations and the discussions that followed showed once more that an expansion of the session topics was beneficial to the quality of the meeting and confirmed that the ARBIOCOM project discussed last April in Nice was now on track to be launched in 2023. The participants unanimously welcomed Professor Attramadal’s proposition to organize the 2024, 12th International CCN workshop in Oslo, Norway.  相似文献   

5.
On behalf of the Journal of Cell Communication and Signaling Editorial board it is my great pleasure to present through this message of peace and love our warmest wishes of health, happiness and professional success. We sincerely hope that 2017 will be a peaceful year worldwide and that solutions will be brought to resolve the great tensions that crystalized last year into terrible acts of violence which reflected the inability of the political powers to bring satisfactory solutions to human dispair and fear. The year 2017 will be the time for celebration of the 10th JCCS anniversary and 9th International Workshop on the CCN family of Genes. Both events should allow us to meet in a productive interactive way. I have had the opportunity to express several times in these columns my deep belief in the power of communication at all levels of human biological and social interactions. Indeed, « Communication is the key » at large.  相似文献   

6.
This year we’re coming upon the tenth anniversary of our biannual International Workshop on the CCN family of genes. It was during our very first meeting that the International CCN Society was conceived. This editorial provides us with the opportunity to briefly review how the need for a CCN meeting emerged and evolved, following the discovery of CTGF, CYR61, and NOV, the three founding members of the CCN family of proteins that in humans are known as as CCN1 (CTGF), CCN2 (CYR61), CCN3(NOV), CCN4(WISP1), CCN5 (WISP2) and CCN6 (WISP3).  相似文献   

7.
In this Editorial, I would like to provide our readers with a brief mid-year update about our activities and efforts to bring together researchers working on intercellular signaling proteins at international meetings. The roots emerged about 20 years ago in the discovery of three genes originally designated cyr61, ctgf, and nov. The proteins encoded by these genes were first proposed to constitute a family of proteins (CCN) which now comprises 6 members (CCN1, CCN2, CCN3, CCN4-6) including the wisp proteins. These proteins were recognized to share a striking structural organization and a high degree of identity although they exhibited quite distinct biological properties. After historical considerations regarding the reasons for using the CCN acronym, and how the ICCNS publishing landscape that drove the ICCNS from Cell Communication and Signaling to the Journal of Cell Communication and Signaling, this short update will focus on the 7th edition of the International Workshop on the CCN family of genes to be held in Nice, Oct 16–19, 2013.  相似文献   

8.
The CCN family of genes currently comprises six secreted proteins (designated CCN1-6 after Cyr61/CCN1; ctgf/CCN2; Nov/CCN3; WISP1/CCN4; WISP2/CCN5, WISP3/CCN6) with a similar mosaic primary structure. It is now well accepted that CCN proteins are not growth factors but matricellular proteins that modify signaling of other molecules, in particular those associated with the extracellular matrix. CCN proteins are involved in mitosis, adhesion, apoptosis, extracellular matrix production, growth arrest and migration of multiple cell types. Since their first identification as matricellular factors, the CCN proteins now figure prominently in a variety of major diseases and are now considered valid candidates for therapeutic targeting. Dissection of the molecular mechanisms governing the biological properties of these proteins is being actively pursued by an expanding network of scientists around the globe who will meet this year at the 5th International Workshop on the CCN family of Genes, organized by the International CCN Society ( http://ccnsociety.com ), home for an international cadre of collaborators working in the CCN field.  相似文献   

9.
The CCN family of genes currently comprises six secreted proteins (designated CCN1–6 after Cyr61/CCN1; ctgf/CCN2; Nov/CCN3; WISP1/CCN4; WISP2/CCN5, WISP3/CCN6) with a similar mosaic primary structure. It is now well accepted that CCN proteins are not growth factors but matricellular proteins that modify signaling of other molecules, in particular those associated with the extracellular matrix. CCN proteins are involved in mitosis, adhesion, apoptosis, extracellular matrix production, growth arrest and migration of multiple cell types. Since their first identification as matricellular factors, the CCN proteins now figure prominently in a variety of major diseases and are now considered valid candidates for therapeutic targeting. Dissection of the molecular mechanisms governing the biological properties of these proteins is being actively pursued by an expanding network of scientists around the globe who will meet this year at the 5th International Workshop on the CCN family of Genes, organized by the International CCN Society (http://ccnsociety.com), home for an international cadre of collaborators working in the CCN field.  相似文献   

10.
The Fifth International Workshop on the CCN Family of Genes was held in Toronto October 18–22, 2008. This bi-annual workshop provides a unique opportunity for the presentation and discussion of cutting edge research in the CCN field. The CCN family members have emerged as extracellular matrix associated proteins which play a crucial role in cardiovascular and skeletal development, fibrosis and cancer. Significant progress has been made in the development of model systems to tease apart the CCN signalling pathways in these systems. Results presented at the conference suggest that targeting these pathways now shows real promise as a therapeutic strategy.  相似文献   

11.
In this report, chairs of the 7th International Workshop on the CCN family of Genes, review the progress made in understanding the biological functions of CCN proteins (CCN1, CCN2, CCN3, CCN4, CCN5 and CCN6) with a particular focus on their implications in various pathological conditions, including cancer, fibrosis, diabetes, and cardiovascular diseases.  相似文献   

12.
The gain of plasticity by a subset of cancer cells is a unique but common sequence of cancer progression from epithelial phenotype to mesenchymal phenotype (EMT) that is followed by migration, invasion and metastasis to a distant organ, and drug resistance. Despite multiple studies, it is still unclear how cancer cells regulate plasticity. Recent studies from our laboratory and others’ proposed that CCN5/WISP-2, which is found intracellularly (in the nucleus and cytoplasm) and extracellularly, plays a negative regulator of plasticity. It prevents the EMT process in breast cancer cells as well as pancreatic cancer cells. Multiple genetic insults, including the gain of p53 mutations that accumulate over the time, may perturb CCN5 expression in non-invasive breast cancer cells, which ultimately helps cells to gain invasive phenotypes. Moreover, emerging evidence indicates that several oncogenic lesions such as miR-10b upregulation and activation of TGF-β-signaling can accumulate during CCN5 crisis in breast cancer cells. Collectively, these studies indicate that loss of CCN5 activity may promote breast cancer progression; application of CCN5 protein may represent a novel therapeutic intervention in breast cancer and possibly pancreatic cancer.  相似文献   

13.
Dermal fibroblasts produce a collagen-rich extracellular matrix, which confers mechanical strength and resiliency to human skin. During aging, collagen production is reduced and collagen fragmentation is increased, which is initiated by matrix metalloproteinase-1 (MMP-1). This aberrant collagen homeostasis results in net collagen deficiency, which impairs the structural integrity and function of skin. Cysteine-rich protein 61 (CCN1), a member of the CCN family, negatively regulates collagen homeostasis, in primary human skin dermal fibroblasts. As replicative senescence is a form of cellular aging, we have utilized replicative senescent dermal fibroblasts to further investigate the connection between elevated CCN1 and aberrant collagen homeostasis. CCN1 mRNA and protein levels were significantly elevated in replicative senescent dermal fibroblasts. Replicative senescent dermal fibroblasts also expressed significantly reduced levels of type I procollagen and increased levels of MMP-1. Knockdown of elevated CCN1 in senescent dermal fibroblasts partially normalized both type I procollagen and MMP-1 expression. These data further support a key role of CCN1 in regulation of collagen homeostasis. Elevated expression of CCN1 substantially increased collagen lattice contraction and fragmentation caused by replicative senescent dermal fibroblasts. Atomic force microscopy (AFM) further revealed collagen fibril fragmentation and disorganization were largely prevented by knockdown of CCN1 in replicative senescent dermal fibroblasts, suggesting CCN1 mediates MMP-1-induced alterations of collagen fibrils by replicative senescent dermal fibroblasts. Given the ability of CCN1 to regulate both production and degradation of type I collagen, it is likely that elevated-CCN1 functions as an important mediator of collagen loss, which is observed in aged human skin.  相似文献   

14.
The CCN family of proteins includes six members presently known as CCN1, CCN2, CCN3, CCN4, CCN5 and CCN6. These proteins were originally designated CYR61, CTGF, NOV, and WISP-1, WISP-2, WISP-3. Although these proteins share a significant amount of structural features and a partial identity with other large families of regulatory proteins, they exhibit different biological functions. A critical examination of the progress made over the past two decades, since the first CCN proteins were discovered brings me to the conclusion that most of our present knowledge regarding the functions of these proteins was predicted very early after their discovery. In an effort to point out some of the gaps that prevent us to reach a comprehensive view of the functional interactions between CCN proteins, it is necessary to reconsider carefully data that was already published and put aside, either because the scientific community was not ready to accept them, or because they were not fitting with the « consensus » when they were published. This review article points to avenues that were not attracting the attention that they deserved. However, it is quite obvious that the six members of this unique family of tetra-modular proteins must act in concert, either simultaneously or sequentially, on the same sites or at different times in the life of living organisms. A better understanding of the spatio-temporal regulation of CCN proteins expression requires considering the family as such, not as a set of single proteins related only by their name. As proposed in this review, there is enough convincing pieces of evidence, at the present time, in favor of these proteins playing a role in the coordination of multiple signaling pathways, and constituting a Centralized Communication Network. Deciphering the hierarchy of regulatory circuits involved in this complex system is an important challenge for the near future. In this article, I would like to briefly review the concept of a CCN family of proteins and critically examine the progress made over the past 10 years in the understanding of their biological functions and involvement in both normal and pathological processes.  相似文献   

15.
Oral squamous cell carcinoma (OSCC) is a common cancer with poor prognosis and high mortality. The role of CCN5 has attracted a great focus on the regulation of cancer progression. However, the biological function and mechanism of CCN5 in OSCC are still not well elucidated. The current study was designed to determine the effects of CCN5 on OSCC cell proliferation and apoptosis using two OSCC cell lines. Further, LY294002, a PI3K/AKT antagonist, was employed to explore the mechanism underlying the effects of CCN5 in the regulation of OSCC. The results showed that overexpression of CCN5 in TSCCa cells significantly reduced viable cell number, arrested cell cycle, and suppressed cell‐cycle regulators (cyclin D1, cyclin E, and CDK2). CCN5 overexpression increased the apoptotic ratio and Hoechst‐positive cell number, and altered the apoptotic‐related proteins (caspase‐3/9, Bax, and Bcl‐2). However, CCN5 silencing induced opposite effects on cell proliferation and apoptosis in Tca‐8113 cells. In addition, we observed that CCN5 knockdown increased the expression levels of PI3K (p85α and p110α) and phosphorylated AKT at serine 473 (p‐AKT Ser473) in Tca‐8113 cells. Inhibiting PI3K/AKT signaling with LY294002 rescued the apoptotic process in CCN5‐silenced OSCC cells. Finally, xenograft analysis showed that CCN5 represses tumorigenesis of OSCC cells. These findings together suggest that CCN5 functions as a tumor suppressor for OSCC cell development through inactivation of PI3K/AKT signaling pathway, providing a potential candidate for OSCC therapy.  相似文献   

16.
CCN proteins are key regulators of signaling pathways that are essential for the control of normal life, from birth to death. As such, they make use of their unique mosaic structure to interact with several other regulatory proteins and ligands that control the fate of living cells. The various functions attributed to the CCN proteins may sometimes appear contradictory, but this situation reflects the complexity of the multimolecular scaffolds in which CCN proteins are engaged and the critical impact of the microenvironment that dictates the bioavailability of the elementary building blocks. CCN3 is one of the best examples of a CCN protein showing biological properties which may at first glance appear opposite or contradictory. Indeed, CCN3 acts both as a tumor suppressor and is associated with higher metastatic potential. Furthermore, the physical interaction of CCN3 with VEGF and its potential antiangionenic activity in glioma cells are in apparent contradiction with its proangiogenic activity in rabbit cornea. In this communication, I am revisiting the observations that led us to these apparent contradictions. After pointing out how the methodologies that were employed might have contributed to the confusion, I briefly discuss the dual biological activities of CCN3 in the context of tumor cell engineering and survival prognosis.  相似文献   

17.
The wide array of biological properties attributed to the CCN family of proteins (Perbal in Lancet 363(9402):62–64, 2004) led me to reconsider the possible relationship and roles that these proteins may play as a team, instead of acting on their own as individual regulators in various signaling pathways. The dynamic model which I present in this review stems from the contribution of the biological properties that we established for CCN3, one of the three founding members of the CCN family, which was identified by our group as the first CCN protein showing growth inhibitory properties (1992), expressed mainly in quiescent cells (1996), and showing anti-tumor activities in several cellular models both ex vivo and in vivo. At the present time CCN3 is the only member of the family that has been reported to negatively act on the progression of the cell cycle. The unique dual localisation of CCN3 in the nucleus and outside cells, either at the membrane or in the extracellular matrix, that I first established in 1999, and that now appears to be shared by several other CCN proteins, is a unique essential feature which can no longer be ignored. Based on the structural and functional properties of CCN3, shared by most of the CCN family members, I propose an « all in one » concept in which CCN proteins are team members with specific functions that are aimed at the same goal. This model accounts both for the functional specificity of the various CCN proteins, their sequential and opposite or complementary effects in various biological context, and for the biological consequences of their physical interaction and biological cross-regulation.  相似文献   

18.
The matricellular protein connective tissue growth factor (CCN2) is considered a faithful marker of fibroblast activation in wound healing and in fibrosis. CCN2 is induced during activation of hepatic stellate cells (HSC). Here, we investigate the molecular basis of CCN2 gene expression in HSC. Fluoroscence activated cell sorting was used to investigate CCN2 expression in HSC in vivo in mice treated with CCl(4). CCN2 and TGF-beta mRNA expression were assessed by polymerase chain reaction as a function of culture-induced activation of HSC. CCN2 promoter/reporter constructs were used to map cis-acting elements required for basal and TGFbeta-induced CCN2 promoter activity. Real-time polymerase chain reaction analysis was used to further clarify signaling pathways required for CCN2 expression in HSC. CCl(4) administration in vivo increased CCN2 production by HSC. In vitro, expression of CCN2 and TGF-beta mRNA were concommitantly increased in mouse HSC between days 0 and 14 of culture. TGFbeta-induced CCN2 promoter activity required the Smad and Ets-1 elements in the CCN2 promoter and was reduced by TGFbeta type I receptor (ALK4/5/7) inhibition. CCN2 overexpression in activated HSC was ALK4/5/7-dependent. As CCN2 overexpression is a faithful marker of fibrogenesis, our data are consistent with the notion that signaling through TGFbeta type I receptors such as ALK5 contributes to the activation of HSC and hence ALK4/5/7 inhibition would be expected to be an appropriate treatment for liver fibrosis.  相似文献   

19.
CCN2/connective tissue growth factor (CTGF) is a matricellular protein essential for skeletal development during embryogenesis. In adulthood, aberrant CCN2 expression is associated with many malignancies and fibrosis of virtually every organ. Despite its prominent expression in endothelial cells in the vasculature, the role of CCN2 in vessel development was unknown. In a recent study, Hall-Glenn et al. (PLoS ONE 7:e30562) have revealed the role of CCN2 in developmental angiogenesis through a detailed analysis of how CCN2 mediates the interaction between vascular endothelial cells and pericytes. In addition, CCN2 also regulates endothelial basement membrane formation during vessel formation. Here I compare the angiogenic activities of CCN2 during embryogenesis to those of its homologous family member CCN1 (CYR61), which is essential for cardiovascular development. Understanding the angiogenic actions of CCN1 and CCN2 may have implication in the development of therapeutic strategies targeting these proteins for the treatment of diseases such as cancer and fibrosis.  相似文献   

20.
The potent profibrotic cytokine TGFβ induces connective tissue growth factor (CCN2/CTGF) is induced in fibroblasts in a fashion sensitive to SB-431542, a specific pharmacological inhibitor of TGFβ type I receptor (ALK5). In several cell types, TGFβ induces CCN1 but suppresses CCN3, which opposes CCN1/CCN2 activities. However, whether SB-431542 alters TGFβ-induced CCN1 or CCN3 in human foreskin fibroblasts in unclear. Here we show that TGFβ induces CCN1 but suppresses CCN3 expression in human foreskin fibroblasts in a SB-431542-sensitive fashion. These results emphasize that CCN1/CCN2 and CCN3 are reciprocally regulated and support the notion that blocking ALK5 or addition of CCN3 may be useful anti-fibrotic approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号