首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methanothermobacter marburgensis is a strictly anaerobic, thermophilic methanogenic archaeon that uses methanogenesis to convert H2 and CO2 to energy. M. marburgensis is one of the best-studied methanogens, and all genes required for methanogenic metabolism have been identified. Nonetheless, the present study describes a gene (Gene ID 9704440) coding for a putative NAD(P)H:quinone oxidoreductase that has not yet been identified as part of the metabolic machinery. The gene product, MmNQO, was successfully expressed, purified and characterized biochemically, as well as structurally. MmNQO was identified as a flavin-dependent NADH:quinone oxidoreductase with the capacity to oxidize NADH in the presence of a wide range of electron acceptors, whereas NADPH was oxidized with only three acceptors. The 1.50 Å crystal structure of MmNQO features a homodimeric enzyme where each monomer comprises 196 residues folding into flavodoxin-like α/β domains with non-covalently bound FMN (flavin mononucleotide). The closest structural homologue is the modulator of drug activity B from Streptococcus mutans with 1.6 Å root-mean-square deviation on 161 Cα atoms and 28% amino-acid sequence identity. The low similarity at sequence and structural level suggests that MmNQO is unique among NADH:quinone oxidoreductases characterized to date. Based on preliminary bioreactor experiments, MmNQO could provide a useful tool to prevent overflow metabolism in applications that require cells with high energy demand.  相似文献   

2.
The NADH:menaquinone oxidoreductase (Nqo) is one of the enzymes present in the respiratory chain of the thermohalophilic bacterium Rhodothermus marinus. The genes coding for the R. marinus Nqo subunits were isolated and sequenced, clustering in two operons [nqo1 to nqo7 (nqoA) and nqo10 to nqo14 (nqoB)] and two independent genes (nqo8 and nqo9). Unexpectedly, two genes encoding homologues of a NhaD Na+/H+ antiporter (NhaD) and of a pterin-4α-carbinolamine dehydratase (PCD) were identified within nqoB, flanked by nqo13 and nqo14. Eight conserved motives to harbour iron-sulphur centres are identified in the deduced primary structures, as well as two consensus sequences to bind nucleotides, in this case NADH and FMN. Moreover, the open-reading-frames of the putative NhaD and PCD were shown to be co-transcribed with the other complex I genes encoded by nqoB. The possible role of these two genes in R. marinus complex I is discussed.  相似文献   

3.
Structural and catalytic properties of bacterial Na+-translocating NADH: quinone oxidoreductases are briefly described. Special attention is given to studies on kinetics of the enzyme interaction with NADH and the role of sodium ions in this process. Based on the existing data, possible model mechanisms of sodium transfer by Na+-translocating NADH:quinone oxidoreductase are proposed.Translated from Biokhimiya, Vol. 70, No. 2, 2005, pp. 177–185.Original Russian Text Copyright © 2005 by Bogachev,Verkhovsky.This revised version was published online in April 2005 with corrections to the post codes.  相似文献   

4.
Investigation of the mechanism of sodium ion pumping enzymes requires methods to follow the translocation of sodium ions by the purified and reconstituted proteins in vitro. Here, we describe a protocol that allows following the accumulation of Na+ in proteoliposomes by the Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) from Vibrio cholerae using the sodium-sensitive fluorophor sodium green. In the presence of a regenerative system for its substrate NADH, the Na+-NQR accumulates Na+ in the proteoliposomes which is visible as a change in fluorescence.  相似文献   

5.
Studies were made on the mechanism of respiration in Fasciola hepatica (Trematoda). Respiration was found to be dependent on the oxygen tension. The respiratory enzyme systems, NADH-cytochrome c oxidoreductase (EC 1.6.2.1), succinate-cytochrome c oxidoreductase (EC 1.3.99.1) NADH oxidase and cytochrome c-oxygen oxidoreductase (EC 1.9.3.1) were detected in a mitochondrial preparation, the NADH oxidase activity being markedly stimulated by addition of mammalian cytochrome c. Amytal and rotenone inhibited NADH oxidase activity. Antimycin A inhibited succinoxidase activity only at relatively high concentrations. Azide was inhibitory at high concentrations. However, cyanide was found to stimulate respiration. Hydrogen peroxide was found to be an end product of respiration in F. hepatica.  相似文献   

6.
Two flavo-diiron proteins (FDPs), FprA1 and FprA2, are up-regulated when the strictly anaerobic solvent producer, Clostridium acetobutylicum, is exposed to dioxygen. These two FDPs were purified following heterologous overexpression in Escherichia coli as N-terminal Strep-tag fusion proteins. The recombinant FprA1 and FprA2 were found to be homodimeric and homotetrameric, respectively, and both FDPs functioned as terminal components of NADH oxidases (NADH:O2 oxidoreductases) when using C. acetobutylicum NADH:rubredoxin oxidoreductase (NROR) and rubredoxin (Rd) as electron transport intermediaries. Both FDPs catalyzed the four-electron reduction of molecular oxygen to water with similar specific activities. The results are consistent with these FDPs functioning as efficient scavengers of intracellular dioxygen under aerobic or microoxic growth conditions.  相似文献   

7.
Adrienne DeCorby  Leanne C. Sayles 《BBA》2007,1767(9):1157-1163
The NADH:ubiquinone oxidoreductase or complex I of the mitochondrial respiratory chain is an intricate enzyme with a vital role in energy metabolism. Mutations affecting complex I can affect at least three processes; they can impair the oxidation of NADH, reduce the enzyme's ability to pump protons for the generation of a mitochondrial membrane potential and increase the production of damaging reactive oxygen species. We have previously developed a nematode model of complex I-associated mitochondrial dysfunction that features hallmark characteristics of mitochondrial disease, such as lactic acidosis and decreased respiration. We have expressed the Saccharomyces cerevisiae NDI1 gene, which encodes a single subunit NADH dehydrogenase, in a strain of Caenorhabditis elegans with an impaired complex I. Expression of Ndi1p produces marked improvements in animal fitness and reproduction, increases respiration rates and restores mitochondrial membrane potential to wild type levels. Ndi1p functionally integrates into the nematode respiratory chain and mitigates the deleterious effects of a complex I deficit. However, we have also shown that Ndi1p cannot substitute for the absence of complex I. Nevertheless, the yeast Ndi1p should be considered as a candidate for gene therapy in human diseases involving complex I.  相似文献   

8.
The marine bacteriumVibrio alginolyticus was found to possess the respiratory Na+ pump that generates an electrochemical potential of Na+, which plays a central role in bioenergetics ofV. alginolyticus, as a direct result of respiration. Mutants defective in the Na+ pump revealed that one of the two kinds of NADH: quinone oxidoreductase requires Na+ for activity and functions as the Na+ pump. The Na+ pump composed of three subunits was purified and reconstituted into liposomes. Generation of membrane potential by the reconstituted proteoliposomes required Na+. The respiratory Na+ pump coupled to the NADH: quinone oxidoreductase was found in wide varieties of Gramnegative marine bacteria belonging to the generaAlcaligenes, Alteromonas, andVibrio, and showed a striking similarity in the mode of electron transfer and enzymic properties. Na+ extrusion seemed to be coupled to a dismutation reaction, which leads to the formation of quinol and quinone from semi-quinone radical.  相似文献   

9.
Summary Excised roots from aeroponic axenically 48 h dark-grown sunflower (Helianthus annuus L.) seedlings showed redox activities, being able to oxidize/reduce all the exogenously added electron donors/acceptors, that affected the H+/K+ net fluxes simultaneously measured in the medium. Trials were performed with in vivo and CN-poisoned roots; these showed null+/K+ net flux activity but still oxidized/reduced all the e donors/acceptors tested except NADH. NADH enhanced the rate of H+ efflux by in vivo roots, otherwise not changing any of the normal flux kinetic characteristics, suggesting that NADH donates e and H+ to the exocellular NADH oxidoreductase activity of a CN-sensitive redox chain in the plasmalemma of the root cells. K+ influx was not affected, probably because the NADH concentration was not very high. The e donor HFC(hexacyanoferrate)(II) activated the H+ efflux in a very different way: maximum H+ efflux rate was maintained, but both the maximum rate plateau and the optimal pH range were extended, and hence the total H+ efflux was significantly enhanced. At the same time, the K+ influx was doubled. The different H+-efflux kinetics, together with the small but significant HCF(II) oxidation by CN-poisoned roots, were taken as evidence that, besides the CN-sensitive redox chain, an alternative CN-resistant redox chain in the plasmalemma was involved in HCF(II) oxidation. The effect of the oxidized form HCF(III) on H+ and K+ fluxes was the opposite to that described for HCF(II), but the other H+ efflux kinetic characteristics were similar (the maximum rate plateau was extended so that total H+ efflux equaled that of the controls). It is proposed that HCF(III) accepts e only from the alternative CN-resistant redox chain. We could not measure the effect of HCI(hexachloroiridate)(IV) on H+ efflux, as the pH electrodes alone quickly reduced the compound. HCI(IV) promoted a rapid transitory K+ efflux, followed by recovery of K+ influx. The HCI(IV) reduction by in vivo or CN-poisoned roots was extremely rapid, following similar kinetics. Thus, only the CN-resistant redox chain was involved in both cases. The redox chain inhibitor cis-platinum(II) annulled ion fluxes in the presence of both NADH and HCF(III), and later even inverted them (a small H+ influx down the gradient would induce K+ efflux). Cis-platinum(II) did not affect HCF(III) reduction by in vivo roots, and only slightly depressed that by CN-poisoned roots. Overall, the effects of the exogenously added e donors/acceptors tested were consistent with the existence of a CN-resistant redox chain in the plasmalemma of the root cells which would donate/accept e even when the H+ and K+ fluxes were annulled by CN or even inverted by cis-platinum(II) treatments. Thus, in the plasmalemma of in vivo roots this chain would compete for electrons with the normal CN-sensitive one, as in plant mitochondria. The effects on the K+ flux were consistent with the current hypothesis that this contributes to counteracting the changes in membrane potential caused by redox activities and the H+ flux induced by the different redox compounds tested.Abbreviations cis-Pt(II) cis-platinum(II) diammine dichloride - HCF(II) hexacyanoferrate(II) (or ferrocyanide) potassium salt - HCF(III) hexacyanoferrate(III) (or ferricyanide) potassium salt - HCI(IV) hexachloroiridate(IV) - PMOR plasmalemma oxidoreductase complex  相似文献   

10.

Background

The ratio of NAD+/NADH is a key indicator that reflects the overall redox state of the cells. Until recently, there were no methods for real time NAD+/NADH monitoring in living cells. Genetically encoded fluorescent probes for NAD+/NADH are fundamentally new approach for studying the NAD+/NADH dynamics.

Methods

We developed a genetically encoded probe for the nicotinamide adenine dinucleotide, NAD(H), redox state changes by inserting circularly permuted YFP into redox sensor T-REX from Thermus aquaticus. We characterized the sensor in vitro using spectrofluorometry and in cultured mammalian cells using confocal fluorescent microscopy.

Results

The sensor, named RexYFP, reports changes in the NAD+/NADH ratio in different compartments of living cells. Using RexYFP, we were able to track changes in NAD+/NADH in cytoplasm and mitochondrial matrix of cells under a variety of conditions. The affinity of the probe enables comparison of NAD+/NADH in compartments with low (cytoplasm) and high (mitochondria) NADH concentration. We developed a method of eliminating pH-driven artifacts by normalizing the signal to the signal of the pH sensor with the same chromophore.

Conclusion

RexYFP is suitable for detecting the NAD(H) redox state in different cellular compartments.

General significance

RexYFP has several advantages over existing NAD+/NADH sensors such as smallest size and optimal affinity for different compartments. Our results show that normalizing the signal of the sensor to the pH changes is a good strategy for overcoming pH-induced artifacts in imaging.  相似文献   

11.
Jun Liu 《BBA》2008,1777(5):453-461
A putative Type II NADH dehydrogenase from Halobacillus dabanensis was recently reported to have Na+/H+ antiport activity (and called Nap), raising the possibility of direct coupling of respiration to antiport-dependent pH homeostasis. This study characterized a homologous type II NADH dehydrogenase of genetically tractable alkaliphilic Bacillus pseudofirmus OF4, in which evidence supports antiport-based pH homeostasis that is mediated entirely by secondary antiport. Two candidate type II NADH dehydrogenase genes with canonical GXGXXG motifs were identified in a draft genome sequence of B. pseudofirmus OF4. The gene product designated NDH-2A exhibited homology to enzymes from Bacillus subtilis and Escherichia coli whereas NDH-2B exhibited homology to the H. dabanensis Nap protein and its alkaliphilic Bacillus halodurans C-125 homologue. The ndh-2A, but not the ndh-2B, gene complemented the growth defect of an NADH dehydrogenase-deficient E. coli mutant. Neither gene conferred Na+-resistance on an antiporter-deficient E. coli strain, nor did they confer Na+/H+ antiport activity in vesicle assays. The purified hexa-histidine-tagged gene products were approximately 50 kDa, contained noncovalently bound FAD and oxidized NADH. They were predominantly cytoplasmic in E. coli, consonant with the absence of antiport activity. The catalytic properties of NDH-2A were more consistent with a major respiratory role than those of NDH-2B.  相似文献   

12.
It was reported that VDAC1 possesses an NADH oxidoreductase activity and plays an important role in the activation of xenobiotics in the outer mitochondrial membrane. In the present work, we evaluated the participation of VDAC1 and Cyb5R3 in the NADH-dependent activation of various redox cyclers in mitochondria. We show that external NADH oxidoreductase caused the redox cycling of menadione ≫ lucigenin>nitrofurantoin. Paraquat was predominantly activated by internal mitochondria oxidoreductases. An increase in the ionic strength stimulated and suppressed the redox cycling of negatively and positively charged acceptors, as was expected for the Cyb5R3-mediated reduction. Antibodies against Cyb5R3 but not VDAC substantially inhibited the NADH-related oxidoreductase activities. The specific VDAC blockers G3139 and erastin, separately or in combination, in concentrations sufficient for the inhibition of substrate transport, exhibited minimal effects on the redox cycler-dependent NADH oxidation, ROS generation, and reduction of exogenous cytochrome c. In contrast, Cyb5R3 inhibitors (6-propyl-2-thiouracil, p-chloromercuriobenzoate, quercetin, mersalyl, and ebselen) showed similar patterns of inhibition of ROS generation and cytochrome c reduction. The analysis of the spectra of the endogenous cytochromes b5 and c in the presence of nitrofurantoin and the inhibitors of VDAC and Cyb5R3 demonstrated that the redox cycler can transfer electrons from Cyb5R3 to endogenous cytochrome c. This caused the oxidation of outer membrane-bound cytochrome b5, which is in redox balance with Cyb5R3. The data obtained argue against VDAC1 and in favor of Cyb5R3 involvement in the activation of redox cyclers in the outer mitochondrial membrane.  相似文献   

13.
NfrA1 nitroreductase from the Gram-positive bacterium Bacillus subtilis is a member of the NAD(P)H/FMN oxidoreductase family. Here, we investigated the reactivity, the structure and kinetics of NfrA1, which could provide insight into the unclear biological role of this enzyme. We could show that NfrA1 possesses an NADH oxidase activity that leads to high concentrations of oxygen peroxide and an NAD+ degrading activity leading to free nicotinamide. Finally, we showed that NfrA1 is able to rapidly scavenge H2O2 produced during the oxidative process or added exogenously.

Structured summary

MINT-7990140: nfrA1 (uniprotkb:P39605) and nfrA1 (uniprotkb:P39605) bind (MI:0407) by X-ray crystallography (MI:0114)  相似文献   

14.
Synaptic plasma membranes (SPMV) decrease the steady state ascorbate free radical (AFR) concentration of 1 mM ascorbate in phosphate/EDTA buffer (pH 7), due to AFR recycling by redox coupling between ascorbate and the ubiquinone content of these membranes. In the presence of NADH, but not NADPH, SPMV catalyse a rapid recycling of AFR which further lower the AFR concentration below 0.05 μM. These results correlate with the nearly 10-fold higher NADH oxidase over NADPH oxidase activity of SPMV. SPMV has NADH-dependent coenzyme Q reductase activity. In the presence of ascorbate the stimulation of the NADH oxidase activity of SPMV by coenzyme Q1 and cytochrome c can be accounted for by the increase of the AFR concentration generated by the redox pairs ascorbate/coenzyme Q1 and ascorbate/cytochrome c. The NADH:AFR reductase activity makes a major contribution to the NADH oxidase activity of SPMV and decreases the steady-state AFR concentration well below the micromolar concentration range.  相似文献   

15.
Thermotoga hypogea is an extremely thermophilic anaerobic bacterium capable of growing at 90°C. It was found to be able to grow in the presence of micromolar molecular oxygen (O2). Activity of NADH oxidase was detected in the cell-free extract of T. hypogea, from which an NADH oxidase was purified to homogeneity. The purified enzyme was a homodimeric flavoprotein with a subunit of 50 kDa, revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It catalyzed the reduction of O2 to hydrogen peroxide (H2O2), specifically using NADH as electron donor. Its catalytic properties showed that the NADH oxidase had an apparent Vmax value of 37 mol NADH oxidized min–1 mg–1 protein. Apparent Km values for NADH and O2 were determined to be 7.5 M and 85 M, respectively. The enzyme exhibited a pH optimum of 7.0 and temperature optimum above 85°C. The NADH-dependent peroxidase activity was also present in the cell-free extract, which could reduce H2O2 produced by the NADH oxidase to H2O. It seems possible that O2 can be reduced to H2O by the oxidase and peroxidase, but further investigation is required to conclude firmly if the purified NADH oxidase is part of an enzyme system that protects anaerobic T. hypogea from accidental exposure to O2.  相似文献   

16.
The NADH:ubiquinone oxidoreductase (complex I) is the first enzyme of the respiratory chain and the entry point for most electrons. Generally, the bacterial complex I consists of 14 core subunits, homologues of which are also found in complex I of mitochondria. In complex I preparations from the hyperthermophilic bacterium Aquifex aeolicus we have identified 20 partially homologous subunits by combining MALDI-TOF and LILBID mass spectrometry methods. The subunits could be assigned to two different complex I isoforms, named NQOR1 and NQOR2. NQOR1 consists of subunits NuoA2, NuoB, NuoD2, NuoE, NuoF, NuoG, NuoI1, NuoH1, NuoJ1, NuoK1, NuoL1, NuoM1 and NuoN1, with an entire mass of 504.17?kDa. NQOR2 comprises subunits NuoA1, NuoB, NuoD1, NuoE, NuoF, NuoG, NuoH2, NuoI2, NuoJ1, NuoK1, NuoL2, NuoM2 and NuoN2, with a total mass of 523.99?kDa. Three Fe-S clusters could be identified by EPR spectroscopy in a preparation containing predominantly NQOR1. These were tentatively assigned to a binuclear center N1, and two tetranuclear centers, N2 and N4. The redox midpoint potentials of N1 and N2 are ?273?mV and ?184?mV, respectively. Specific activity assays indicated that NQOR1 from cells grown under low concentrations of oxygen was the more active form. Increasing the concentration of oxygen in the bacterial cultures induced formation of NQOR2 showing the lower specific activity.  相似文献   

17.
Fast inactivating Shaker H4 potassium channels and nonconducting pore mutant Shaker H4 W434F channels have been used to correlate the installation and recovery of the fast inactivation of ionic current with changes in the kinetics of gating current known as “charge immobilization” (Armstrong, C.M., and F. Bezanilla. 1977. J. Gen. Physiol. 70:567–590.). Shaker H4 W434F gating currents are very similar to those of the conducting clone recorded in potassium-free solutions. This mutant channel allows the recording of the total gating charge return, even when returning from potentials that would largely inactivate conducting channels. As the depolarizing potential increased, the OFF gating currents decay phase at −90 mV return potential changed from a single fast component to at least two components, the slower requiring ∼200 ms for a full charge return. The charge immobilization onset and the ionic current decay have an identical time course. The recoveries of gating current (Shaker H4 W434F) and ionic current (Shaker H4) in 2 mM external potassium have at least two components. Both recoveries are similar at −120 and −90 mV. In contrast, at higher potentials (−70 and −50 mV), the gating charge recovers significantly more slowly than the ionic current. A model with a single inactivated state cannot account for all our data, which strongly support the existence of “parallel” inactivated states. In this model, a fraction of the charge can be recovered upon repolarization while the channel pore is occupied by the NH2-terminus region.  相似文献   

18.
Steady-state kinetics of the bovine heart NADH:coenzyme Q oxidoreductase reaction were analyzed in the presence of various concentrations of NADH and coenzyme Q with one isoprenoid unit (Q1). Product inhibitions by NAD+ and reduced coenzyme Q1 were also determined. These results show an ordered sequential mechanism in which the order of substrate binding and product release is Q1–NADH–NAD+–Q1H2. It has been widely accepted that the NADH binding site is likely to be on the top of a large extramembrane portion protruding to the matrix space while the Q1 binding site is near the transmembrane moiety. The rigorous controls for substrate binding and product release are indicative of a strong, long range interaction between NADH and Q1 binding sites.  相似文献   

19.
Rubredoxin:oxygen oxidoreductase (ROO) is the terminal oxidase of a soluble electron transfer chain found in Desulfovibrio gigas. This protein belongs to the flavodiiron family and was initially described as an oxygen reductase, converting this substrate to water and acting as an oxygen-detoxifying system. However, more recent studies evidenced also the ability for this protein to act as a nitric oxide reductase, suggesting an alternative physiological role. To clarify the apparent bifunctional nature of this protein, we performed molecular dynamics simulations of the protein, in different redox states, together with O2 and NO molecules in aqueous solution. The two small molecules were parameterized using free-energy calculations of the hydration process. With these simulations we were able to identify specific protein paths that allow the diffusion of both these molecules through the protein towards the catalytic centers. Also, we have tried to characterize the preference of ROO towards the presence of O2 and/or NO at the active site. By using free-energy simulations, we did not find any significant preference for ROO to accommodate both O2 and NO. Also, from our molecular dynamics simulations we were able to identify similar diffusion profiles for both O2 and NO molecules. These two conclusions are in good agreement with previous experimental works stating that ROO is able to catalyze both O2 and NO. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Apoptosis-inducing factor (AIF) and AMID (AIF-homologous mitochondrion-associated inducer of death) are flavoproteins. Although AIF was originally discovered as a caspase-independent cell death effector, bioenergetic roles of AIF, particularly relating to complex I functions, have since emerged. However, the role of AIF in mitochondrial respiration and redox metabolism has remained unknown. Here, we investigated the redox properties of human AIF and AMID by comparing them with yeast Ndi1, a type 2 NADH:ubiquinone oxidoreductase (NDH-2) regarded as alternative complex I. Isolated AIF and AMID containing naturally incorporated FAD displayed no NADH oxidase activities. However, after reconstituting isolated AIF or AMID into bacterial or mitochondrial membranes, N-terminally tagged AIF and AMID displayed substantial NADH:O2 activities and supported NADH-linked proton pumping activities in the host membranes almost as efficiently as Ndi1. NADH:ubiquinone-1 activities in the reconstituted membranes were highly sensitive to 2-n-heptyl-4-hydroxyquinoline-N-oxide (IC50 = ∼1 μm), a quinone-binding inhibitor. Overexpressing N-terminally tagged AIF and AMID enhanced the growth of a double knock-out Escherichia coli strain lacking complex I and NDH-2. In contrast, C-terminally tagged AIF and NADH-binding site mutants of N-terminally tagged AIF and AMID failed to show both NADH:O2 activity and the growth-enhancing effect. The disease mutant AIFΔR201 showed decreased NADH:O2 activity and growth-enhancing effect. Furthermore, we surprisingly found that the redox activities of N-terminally tagged AIF and AMID were sensitive to rotenone, a well known complex I inhibitor. We propose that AIF and AMID are previously unidentified mammalian NDH-2 enzymes, whose bioenergetic function could be supplemental NADH oxidation in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号