首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
In Caenorhabditis elegans, heterochronic genes constitute a developmental timer that specifies temporal cell fate selection. The heterochronic gene lin-42 is the C. elegans homolog of Drosophila and mammalian period, key regulators of circadian rhythms, which specify changes in behavior and physiology over a 24 hr day/night cycle. We show a role for two other circadian gene homologs, tim-1 and kin-20, in the developmental timer. Along with lin-42, tim-1 and kin-20, the C. elegans homologs of the Drosophila circadian clock genes timeless and doubletime, respectively, are required to maintain late-larval identity and prevent premature expression of adult cell fates. The molecular parallels between circadian and developmental timing pathways suggest the existence of a conserved molecular mechanism that may be used for different types of biological timing.  相似文献   

5.
In Arabidopsis thaliana, a set of type-A authentic response regulator (ARR) genes, consisting of 10 homologous members, is induced primarily in response to the phytohormone cytokinin. Among these, we found that the expression of ARR9 is uniquely regulated through the circadian clock in a cytokinin-independent manner. This finding appears to be compatible to the current idea that some ARR genes (namely, ARR3, ARR4, ARR8, and ARR9) are implicated in an additional level of regulation of the circadian clock. Hence, the result of this study provided us with a new insight into the complex molecular mechanisms underlying both the cytokinin signaling and circadian rhythm.  相似文献   

6.
The repetitive region of the circadian clock gene period in Drosophila pseudoobscura consists predominantly of a pentapeptide sequence whose consensus is NSGAD. In D. melanogaster, this region is replaced by a dipeptide Thr-Gly repeat, which plays a role in the thermal stability of the circadian phenotype. The Thr-Gly repeat has been shown to form a type II or III beta-turn, whose conformational monomer is (Thr-Gly)3. Here we report, using conformational analyses, that both an NSGAD pentapeptide, and a polymer of the same sequence, form type II beta-turns. Thus two peptide sequences, whose amino-acid composition is very different, nevertheless form the same secondary structure. The implications of these structures for clock function are discussed.  相似文献   

7.
8.
Orchestration of gene expression and physiology by the circadian clock   总被引:1,自引:0,他引:1  
Urs Albrecht   《Journal of Physiology》2006,100(5-6):243-251
  相似文献   

9.
10.
We have isolated a homologue of the period (per) gene from the Australian sheep blow fly, Lucilia cuprina, as part of a comparative approach to the analysis of dipteran circadian systems. Sequence analysis of the 4 kb per cDNA revealed the conservation of three functional domains, namely the PAS dimerization motif, and the nuclear and cytoplasmic localization domains. A fourth domain, the threonine-glycine (TG) repeat region, is also conserved in L. cuprina per but has been severely truncated. No length variation was found in the TG repeat of L. cuprina or L. sericata collected from several different latitudinal zones. Expression analysis indicated a diel oscillation in per mRNA in LD 12:12 with a period of 24 h and a peak at Zt 12. PER-immunoreactive protein oscillations were also demonstrated, with peak immunoreactivity lagging approximately 3 h behind peak mRNA levels. These results show the existence of a Drosophila-like circadian system in a calliphorid fly. They also provide evidence for the conservation of per function across the Diptera, and confirm the relevance of the Drosophila system as a model for fly circadian rhythms.  相似文献   

11.
12.
13.
Periodic expression of so-called clock genes is an essential part of the circadian clock. In Drosophila melanogaster the cyclic expression of per and tim through an autoregulatory feedback loop is believed to play a central role in circadian rhythm generation. However, it is still elusive whether this hypothesis is applicable to other insect species. Here it is shown that per gene plays a key role in the rhythm generation in the cricket Gryllus bimaculatus. Measurement of per mRNA levels in the optic lobe revealed the rhythmic expression of per in light cycles with a peak in the late day to early night, persisting in constant darkness. A single injection of per double-stranded RNA (dsRNA) into the abdomen of the final instar nymphs effectively knocked down the mRNA levels as adult to about 50% of control animals. Most of the per dsRNA-injected crickets completely lost the circadian locomotor activity rhythm in constant darkness up to 50 days after the injection, whereas those injected with DsRed2 dsRNA as a negative control clearly maintained it. The electrical activity of optic lobe efferents also became arrhythmic in the per dsRNA-injected crickets. These results not only suggest that per plays an important role in the circadian rhythm generation also in the cricket but also show that RNA interference is a powerful tool to dissect the molecular machinery of the cricket circadian clock.  相似文献   

14.
15.
生物节律基因period3的研究进展   总被引:1,自引:0,他引:1  
昼夜节律是所有真核生物和部分原核生物的基本特征,一组节律表达的生物钟基因形成24 h周期振荡的自主调节转录-翻译反馈回路。period(per)基因家族是生物钟反馈回路中重要组成成分,per3基因是period基因家族成员之一。人类的per3基因定位于染色体1p36,其编码区第18外显子中含有一个灵长类特有的串联重复序列(variable number tandem repeat,VNTR)。该VNTR包含一簇理论上的磷酸化位点,能影响PER3蛋白的磷酸化降解,影响PER3蛋白的功能。近年研究发现,per3基因多态性与睡眠结构、睡眠紊乱发病年龄、睡眠剥夺后次日清晨执行能力等密切相关。  相似文献   

16.
The influence of the mammalian retinal circadian clock on retinal physiology and function is widely recognized, yet the cellular elements and neural regulation of retinal circadian pacemaking remain unclear due to the challenge of long-term culture of adult mammalian retina and the lack of an ideal experimental measure of the retinal circadian clock. In the current study, we developed a protocol for long-term culture of intact mouse retinas, which allows retinal circadian rhythms to be monitored in real time as luminescence rhythms from a PERIOD2::LUCIFERASE (PER2::LUC) clock gene reporter. With this in vitro assay, we studied the characteristics and location within the retina of circadian PER2::LUC rhythms, the influence of major retinal neurotransmitters, and the resetting of the retinal circadian clock by light. Retinal PER2::LUC rhythms were routinely measured from whole-mount retinal explants for 10 d and for up to 30 d. Imaging of vertical retinal slices demonstrated that the rhythmic luminescence signals were concentrated in the inner nuclear layer. Interruption of cell communication via the major neurotransmitter systems of photoreceptors and ganglion cells (melatonin and glutamate) and the inner nuclear layer (dopamine, acetylcholine, GABA, glycine, and glutamate) did not disrupt generation of retinal circadian PER2::LUC rhythms, nor did interruption of intercellular communication through sodium-dependent action potentials or connexin 36 (cx36)-containing gap junctions, indicating that PER2::LUC rhythms generation in the inner nuclear layer is likely cell autonomous. However, dopamine, acting through D1 receptors, and GABA, acting through membrane hyperpolarization and casein kinase, set the phase and amplitude of retinal PER2::LUC rhythms, respectively. Light pulses reset the phase of the in vitro retinal oscillator and dopamine D1 receptor antagonists attenuated these phase shifts. Thus, dopamine and GABA act at the molecular level of PER proteins to play key roles in the organization of the retinal circadian clock.  相似文献   

17.
The clock mechanism for circatidal rhythm has long been controversial, and its molecular basis is completely unknown. The mangrove cricket, Apteronemobius asahinai, shows two rhythms simultaneously in its locomotor activity: a circatidal rhythm producing active and inactive phases as well as a circadian rhythm modifying the activity intensity of circatidal active phases. The role of the clock gene period (per), one of the key components of the circadian clock in insects, was investigated in the circadian and circatidal rhythms of A. asahinai using RNAi. After injection of double-stranded RNA of per, most crickets did not show the circadian modulation of activity but the circatidal rhythm persisted without a significant difference in the period from controls. Thus, per is functionally involved in the circadian rhythm but plays no role, or a less important role, in the circatidal rhythm. We conclude that the circatidal rhythm in A. asahinai is controlled by a circatidal clock whose molecular mechanism is different from that of the circadian clock.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号