首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We investigated the effects of Fe and Cu status of pea (Pisum sativum L.) seedlings on the regulation of the putative root plasma-membrane Fe(III)-chelate reductase that is involved in Fe(III)-chelate reduction and Fe2+ absorption in dicotyledons and nongraminaceous monocotyledons. Additionally, we investigated the ability of this reductase system to reduce Cu(II)-chelates as well as Fe(III)-chelates. Pea seedlings were grown in full nutrient solutions under control, -Fe, and -Cu conditions for up to 18 d. Iron(III) and Cu(II) reductase activity was visualized by placing roots in an agarose gel containing either Fe(III)-EDTA and the Fe(II) chelate, Na2bathophenanthrolinedisulfonic acid (BPDS), for Fe(III) reduction, or CuSO4, Na3citrate, and Na2-2,9-dimethyl-4,7-diphenyl-1, 10-phenanthrolinedisulfonic acid (BCDS) for Cu(II) reduction. Rates of root Fe(III) and Cu(II) reduction were determined via spectrophotometric assay of the Fe(II)-BPDS or the Cu(I)-BCDS chromophore. Reductase activity was induced or stimulated by either Fe deficiency or Cu depletion of the seedlings. Roots from both Fe-deficient and Cu-depleted plants were able to reduce exogenous Cu(II)-chelate as well as Fe(III)-chelate. When this reductase was induced by Fe deficiency, the accumulation of a number of mineral cations (i.e., Cu, Mn, Fe, Mg, and K) in leaves of pea seedlings was significantly increased. We suggest that, in addition to playing a critical role in Fe absorption, this plasma-membrane reductase system also plays a more general role in the regulation of cation absorption by root cells, possibly via the reduction of critical sulfhydryl groups in transport proteins involved in divalent-cation transport (divalent-cation channels?) across the root-cell plasmalemma.  相似文献   

2.
Iron-efficient (WF9 corn and Coker 227 oat) and Fe-inefficient (ys1 corn and TAM 0–312 oat) cultivars were comparatively tested for their response to Fe-deficiency stress induced by the use of either ferrous or ferric chelators. Corn and oats were grown in 20 M Fe with 0, 60, and 120 M BPDS and 40 M Fe with 0, 120, and 240 M BPDS and 20 M Fe with 0 and 40 M EDDHA. All four cultivars tested, both Fe-efficient and Fe-inefficient, continuously reduced Fe3+ to Fe2+ at a low level as evidenced by the production of Fe2+ (BPDS)3 in test nutrient solutions over time. Severity of chlorosis increased as more BPDS was added to the nutrient solutions for both WF9 and ys1 corn, but unlike corn, Coker 227 and TAM 0-312 oats were both able to obtain Fe from the Fe2+ (BPDS)3 complex and were less chlorotic as a result. In short-term (4-hour) in vivo measurements, iron-stressed WF9 (Fe-efficient) corn reduced more Fe3+ to Fe2+ than similarly stressed ys1 corn, Coker 227 oat or TAM 0-312 oat. Thus, at the same time that Fe-efficient WF9 corn reduces more Fe than the other cultivars, it is also unable to compete with BPDS for that Fe in the nutrient solution. These differences coupled with the observation that only Coker 227 oat produced measureable iron solubilizing substances (phytosiderophores) suggest that these two species differ in their mechanisms for obtaining Fe during Fe-deficiency stress.  相似文献   

3.
T3238fer (Fe-inefficient) and T3238FER (Fe-efficient) tomato plants differ in their ability to utilize Fe and therefore can be used as test genotypes to locate sites of Fe uptake or to characterize changes that occur in roots in response to Fe stress (Fe deficiency). T3238fer does not respond to Fe stress. Release of hydrogen ions and reduction of Fe3+ to Fe2+ are two primary responses of T3238FER roots to Fe stress. Fe reduction sites were predominately in the young lateral roots, and between the regions of root elongation and maturation of the primary root. The use of BDPS (bathophenanthrolinedisulfonate) to trap Fe2+ did not affect the release of H+ ions or reduction by T3238FER roots. BPDS did not decrease Fe uptake until it exceeded the Fe concentration in the nutrient solution. A sevenfold increase in BPDS caused a threefold decrease in Fe taken up by the plant. Fe3+ is reduced to Fe2+ at root sites accessible to BPDS. Adding Zn decreased the response to Fe stress. Iron stress initiates the development of lateral roots, and we propose that most Fe enters the plant through these roots. The iron moves through protoxylem into the metaxylem of the primary root and then to the top of the plant as Fe citrate. Root environmental factors that are competitive or inhibit Fe-stress response, or genotypes that fail to respond to Fe stress, contribute to the development of Fe deficiency in plants.  相似文献   

4.
The form in which a micronutrient is found in the rhizosphere affects its availability to plants. We compared the availability to barley of the free hydrated cation form of Fe3+, Cu2+, Zn2+, and Mn2+ versus their total metal concentrations (free ion plus complexes) in chelator-buffered solutions. Free metal ion activities were estimated using the chemical equilibrium program GEOCHEM-PC with the corrected database. In experiment 1, barley was grown in nutrient solutions with different Fe3+ activities using chelators to control Fe levels. Chlorosis occurred at Fe3+ activities of 10–18 and 10–19 M for barley grown in HEDTA and EDTA solutions, respectively. In experiment 2, barley was grown in nutrient solutions with the same calculated Fe3+ activity and the same chelator, but different total Fe concentrations. Leaf, root and shoot Fe concentrations were higher from CDTA buffered solutions which had the higher total Fe concentration indicating the importance of the total Fe concentration on Fe uptake. Results from treatments using EDTA or HEDTA, with one exception, were similar to the results from the CDTA treatment. This suggests differences in critical Fe3+ activities found in experiment 1 were due to differences in the total Fe concentration and not errors in chelate formation constants used to estimate the critical activities. Results for Cu, Zn, and Mn were similar to Fe; despite solutions with equal free Cu2+, Zn2+ and Mn2+ activities, plant concentrations of these metals were generally greater when grown in the solutions with the greater total amount of Cu, Zn, or Mn. When the free Zn2+ activity was kept constant while the total amount of Zn was increased from 4.4 to 49 M, leaf Zn concentration increased from 77 to 146 g g-1. In order to predict metal availability to barley and other species in chelator-buffered nutrient solutions, both free and total metal concentrations in solution must be considered. The critical Fe3+ activities required by barley in this study are much higher than those from tomato and soybean, 10-28 M, which strongly supports the Strategy 2 model of Fe uptake for Poaceae. This is related to the importance of the Fe3+ (barley) and the Fe2+ (tomato and soybean) ions in Fe uptake. Fe-stressed barley is known to release phytosiderophores which compete for Fe3+ in the nutrient solution, while tomato and soybean reduce Fe3+ to Fe2+ at the epidermal cell membranes to allow uptake of Fe2+ from Fe3+ chelates in solution.Abbreviations CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetracetic acid - DTPA diethylenetriaminepentacetic acid - EDTA ethylenediaminetetracetic acid - EDDHA ethylenediamine-di(o-hydroxyphenylacetic acid) - HBED-N,N di(2-hydroxybenzoyl)-ethylenediamine-N,N-diacetic acid - HEDTA-N hydroxyethylenediaminetriacetic acid - MES-2 (N-morpholino)ethanesulfonic acid - NTA nitrilotriacetic acid  相似文献   

5.
Iron chlorosis is commonly corrected by the application of EDDHA chelates, whose industrial synthesis produces o,oEDDHA together with a mixture of regioisomers and other unknown by-products. HJB, an o,oEDDHA analogous, is a new chelating agent with a purer synthesis pathway than EDDHA. The HJB/Fe3+ stability constant is intermediate between the racemic and meso o,oEDDHA/Fe3+ stereoisomers. This work studied the efficacy of HJB as a Fe source in plant nutrition. No significant differences between o,oEDDHA/Fe3+, HJB/Fe3+ and HBED/Fe3+ were observed when they are used as substrates of the iron-chelate reductase of mild chlorotic cucumber plants. Chelates prepared with the stable isotope 57Fe were used in both soil and hydroponic experiments. In the hydroponic experiment, nutrient solutions with low doses of chelates were renewed weekly. Soybean plants treated with o,oEDDHA/57Fe3+ recorded the highest results in biomass, SPAD index and Fe nutrition. In the soil experiment, chelates were added once at a rate of 2.5 mg Fe per kg of a calcareous soil. Soybean plants treated with HJB/57Fe3+ recorded a higher biomass and SPAD index in young leaves than the plants treated with o,oEDDHA/57Fe3+; however, 57Fe and total Fe concentrations in leaves were lower. The results of both pot experiments are associated with a faster ability by o,oEDDHA to provide Fe to the plants and with a more continuous supply of Fe from HJB/Fe3+. HJB/57Fe3+ effectively alleviated the Fe-deficiency chlorosis of soybean with a longer lasting effect than o,oEDDHA/57Fe3+.  相似文献   

6.
A genetically related response to iron deficiency stress in muskmelon   总被引:1,自引:0,他引:1  
A mutant muskmelon (Cucumis melo L.) with characteristic Fe-deficiency chlorosis symptoms was compared to related cultivars in its ability to obtain Fe via the widely known Fe-stress response mechanisms of dicotyledonous plants. The three cultivars (fefe, the Fe-inefficient mutant; Mainstream and Edisto, both Fe efficient plants) were grown in nutrient solution in either 0 or 3.5 mg L-1 Fe as FeCl3. None of the three cultivars released reductants or phytosiderophores, but both Edisto and Mainstream produced massive amounts of H+ ions to reduce and maintain the pH of nutrient solutions below pH 4.0. The roots of these two Fe-efficient cultivars were also capable of reducing Fe3+ to Fe2+. These responses maintained green plants, resulted in high leaf Fe in both Edisto and Mainstream, and produced Mn toxicity in Mainstream. The lack of Fe-deficiency stress response in fefe not only affected leaf Fe concentration and chlorosis, but also resulted in reduced uptake of Mn. The importance of reduced Fe (Fe2+) to the Fe-efficient cultivars was confirmed by growing the cultivars with BPDS (4, 7-diphenyl-1, 10-phenanthroline disulfonic acid, a ferrous chelator) and EDDHA [ethylene-diamine di (0-hydroxphenylacetic acid)] (a ferric chelator), and observing increased chlorosis and reduced Fe uptake in BPDS grown plants. The Fe-deficiency response observed in these cultivars points out the diversity of responses to Fe deficiency stress in plants. The fefe mutant has a limited ability to absorb Fe and Mn and perhaps could be used to better understand Mn uptake in plants.  相似文献   

7.
The Fe chelate o,p-EDDHA/Fe3+, in addition to o,o-EDDHA/Fe3+, was found recently to be a component of commercial EDDHA/Fe3+ chelates. The European Regulation on fertilisers has included o,p-EDDHA as an authorized chelating agent. The efficacy of o,o-EDDHA/Fe3+, o,p-EDDHA/Fe3+ and EDTA/Fe3+ chelates as Fe sources in plant nutrition was studied. Iron-chelate reductase (FC-R) in young cucumber plants (Cucumis sativus L.) roots reduced o,p-EDDHA/Fe3+ faster than o,o-EDDHA/Fe3+, EDTA/Fe3+ and a commercial source of EDDHA/Fe3+. The o,p-EDDHA/Fe3+ chelate was also more effective than the o,o-EDDHA/Fe3+ in decreasing the severity of Fe-deficiency chlorosis in leaves of young soybean (Glycine max L.) plants grown hydroponically. The o,p-EDDHA ligand was more effective in the short-term than the EDTA and o,o-EDDHA ligands at dissolving Fe from selected Fe minerals and soils. However, the ultimate quantity of dissolve Fe was greatest with the o,o-EDDHA ligand.  相似文献   

8.
The aim of this work was to clarify the role of S supply in the development of the response to Fe depletion in Strategy I plants. In S-sufficient plants, Fe-deficiency caused an increase in the Fe(III)-chelate reductase activity, 59Fe uptake rate and ethylene production at root level. This response was associated with increased expression of LeFRO1 [Fe(III)-chelate reductase] and LeIRT1 (Fe2+ transporter) genes. Instead, when S-deficient plants were transferred to a Fe-free solution, no induction of Fe(III)-chelate reductase activity and ethylene production was observed. The same held true for LeFRO1 gene expression, while the increase in 59Fe2+ uptake rate and LeIRT1 gene over-expression were limited. Sulphur deficiency caused a decrease in total sulphur and thiol content; a concomitant increase in 35SO4 2− uptake rate was observed, this behaviour being particularly evident in Fe-deficient plants. Sulphur deficiency also virtually abolished expression of the nicotianamine synthase gene (LeNAS), independently of the Fe growth conditions. Sulphur deficiency alone also caused a decrease in Fe content in tomato leaves and an increase in root ethylene production; however, these events were not associated with either increased Fe(III)-chelate reductase activity, higher rates of 59Fe uptake or over-expression of either LeFRO1 or LeIRT1 genes. Results show that S deficiency could limit the capacity of tomato plants to cope with Fe-shortage by preventing the induction of the Fe(III)-chelate reductase and limiting the activity and expression of the Fe2+ transporter. Furthermore, the results support the idea that ethylene alone cannot trigger specific Fe-deficiency physiological responses in a Strategy I plant, such as tomato.  相似文献   

9.
Roots of Typha latifolia L. exposed to Fe2+ under reduced conditions in solution culture developed visible coatings (plaques) of an oxidized Fe compound that extended as much as 15-17 μm into the rhizosphere. Iron concentrations were significantly less and discoloration was not apparent on the surface of roots exposed to Fe-(BPDS)3, Fe3+, Fe-EDDHA, and Fe-EDTA. The extent of plaque formation increased with the concentration of Fe2+ in solution and with pH of the solution in the range of 3.0 to 4.6. Above pH 4.6, oxidation of Fe2+ in the culture solution may have reduced precipitation of Fe on the root surface. Plaque development was most extensive approximately 1.0 cm from the root tip, but all root surfaces showed some Fe staining. Scanning electron micrographs of plaqued roots, grown both in solution culture and in the field, provided support for a model of cast formation by oxidation and precipitation of Fe on external cell surfaces.  相似文献   

10.
The mechanism of adaptation to Fe-deficiency stress was investigated in the unicellular green alga, Chlamydomonas reinhardtii. Upon removal of nutritional Fe, the activity of a cell surface Fe(III)-chelate reductase was increased by at least 15-fold within 24 h. This increase was negatively corelated with the Fe concentration in the growth media. Incubation of cells in the presence of the Fe2+-specific chelator, bathophenanthrolinedisulphonic acid, led to an increased Fe3+ reductase activity, even when sufficient Fe was present. Growth of cells in Cu-free media for 48 h led to no statistically significant increase in Fe3+ reductase activity. The Fe(III)-chelate reductase activity in Fe-starved cells was saturable with an apparent Km of 31 M and was inhibited by uncouplers of the transmembrane proton gradient but not by SH-specific reagents.Fe uptake was only observed in Fe-deficient cells. Uptake was specific for Fe in that at 100-fold excess of a number of metal ions in the transport assay did not inhibit uptake activity. However, a 100-fold excess of Cu resulted in a 87% inhibition of Fe uptake. The Vmax for Fe3+ reduction activity was 250-fold greater than for Fe uptake; although the Km values for both processes differed by only 10-fold. Thus, the rate limiting step in Fe assimilation was transport and not reduction. These results indicate that Fe assimilation in C. reinhardtii involves a reductive step and thus resembles the mechanism of Fe uptake in Strategy I higher plants.Keywords: Ferric chelate reduction, iron assimilation, iron uptake, unicellular green algae, Chlamydomonas.   相似文献   

11.
Cohen CK  Garvin DF  Kochian LV 《Planta》2004,218(5):784-792
Fe uptake in dicotyledonous plants is mediated by a root plasma membrane-bound ferric reductase that reduces extracellular Fe(III)-chelates, releasing Fe2+ ions, which are then absorbed via a metal ion transporter. We previously showed that Fe deficiency induces an increased capacity to absorb Fe and other micronutrient and heavy metals such as Zn2+ and Cd2+ into pea (Pisum sativum L.) roots [Cohen et al. (1998) Plant Physiol 116:1063–1072). To investigate the molecular basis for this phenomenon, an Fe-regulated transporter that is a homologue of the Arabidopsis IRT1 micronutrient transporter was isolated from pea seedlings. This cDNA clone, designated RIT1 for root iron transporter, encodes a 348 amino acid polypeptide with eight putative membrane-spanning domains that is induced under Fe deficiency and can functionally complement yeast mutants defective in high- and low-affinity Fe transport. Chelate buffer techniques were used to control Fe2+ in the uptake solution at nanomolar activities representative of those found in the rhizosphere, and radiotracer methodologies were employed to show that RIT1 is a very high-affinity 59Fe2+ uptake system (K m =54–93 nM). Additionally, radiotracer (65Zn, 109Cd) flux techniques were used to show that RIT can also mediate a lower affinity Zn and Cd influx (K m of 4 and 100 M, for Zn2+ and Cd2+, respectively). These findings suggest that, in typical agricultural soils, RIT1 functions primarily as a high-affinity Fe2+ transporter that mediates root Fe acquisition. This is consistent with recent findings with Arabidopsis IRT1 knockout mutants that strongly suggest that this transporter plays a key role in root Fe uptake and nutrition. However, the ability of RIT1 to facilitate Zn and Cd uptake when these metals are present at elevated concentrations suggests that RIT1 may be one pathway for the entry of toxic metals into the food chain. Furthermore, the finding that plant Fe deficiency status may promote heavy metal uptake via increased expression of this transporter could have implications both for human nutrition and also for phytoremediation, the use of terrestrial plants to sequester toxic metals from contaminated soil.  相似文献   

12.
Morpho-physiological and biochemical responses of Arabidopsis thaliana (accession N1438) to bicarbonate-induced iron deficiency were investigated. Plants were grown in cabinet under controlled conditions, in a nutrient solution containing 5 μM Fe, added or not with 10 mM NaHCO3. After 30 days, bicarbonate-treated plants displayed significantly lower biomass, leaf number and leaf surface area as compared to control plants, and slight yellowing of their younger leaves was observed. Potassium (K+) content was not modified by bicarbonate treatment in roots, whereas it was significantly diminished in shoots. Their content in ferrous iron (Fe2+) and in leaf total chlorophylls was noticeably lower than in control plants. Root Fe(III)-chelate reductase and phosphoenolpyruvate carboxylase (PEPC) activities were significantly enhanced, but leaf ribulose 1.5-bisphosphate carboxylase (Rubisco) activity was decreased.  相似文献   

13.
While lupins suffer severely from Fe deficiency when grown on calcareous soils, field peas under the same conditions grow normally. This paper aimed to identify whether these differences were related to differences in either the pattern or capacity for rhizosphere acidification or Fe3+ reduction between these species. Two lupin species (Lupinus angustifolius, L. cosentinii) and field peas (Pisum sativum) were grown in solution culture for 5 weeks with both an adequate and a low supply of Fe. Plants were reliant on symbiotically fixed N. The extent of iron reduction was determined using the chelates TPTZ and BPDS. The pattern of reactions around roots was determined by placing roots in agar containing either bromocresol purple or TPTZ. The low supply of Fe decreased the growth of lupins by over 30% and induced severe chlorosis and necrosis. Growth of the peas was reduced by less than 15% and no symptoms appeared. All species acidified the solutions by about 1 pH unit regardless of the Fe treatment. The level of Fe3+ reduction was higher for all species grown with low Fe than with adequate Fe. Capacity for Fe3+ reduction was higher for all species grown with low Fe than with adequate Fe. Capacity for Fe3+ reduction was similar for all species. The pattern of acidification and reduction around roots was also similar between species. Thus it appears that the capacity of lupins to reduce Fe3+ in the rhizosphere is not the primary cause of Fe deficiency in lupins.  相似文献   

14.
It has been difficult to impose different degrees of Zn deficiency on Poaceae species in nutrient solution because most chelators which would control Zn to low activities also bind Fe3+ so strongly that Poaceae species cannot obtain adequate Fe. Recently, a method has been developed to provide buffered Fe2+ at levels adequate for rice using Ferrozine (FZ), and use of other chelators to buffer the other micronutrient cations. The use of Fe2+ buffered with FZ in nutrient solutions in which Zn is buffered with HEDTA or DTPA was evaluated for study of Zn deficiency in rice compared to a conventional nutrient solution technique. The results showed that growth of rice plants in FZ+HEDTA-buffered nutrient solution was similar to that in the conventional nutrient solution. Severe zinc deficiency symptoms were observed in 28-day-old rice seedlings cultured with HEDTA-buffered nutrient solution at Zn2+ activities < 10-10.6 M. With increasing free Zn2+ activities, concentrations of Zn, Fe, Cu, and Mn in shoots and roots were quite similar for the FZ+HEDTA-buffered nutrient solution and the conventional nutrient solution techniques. The percentages of water soluble Zn, Fe, Cu and Mn in shoots with HEDTA-buffered nutrient solution were also similar to those with the conventional solution. However, with DTPA-buffered nutrient solution, the rice seedlings suffered severe Fe deficiency; adding more FeFZ3 corrected the Fe-chlorosis but shifted microelement buffering. Further, much higher total Zn concentrations are required to provide adequate Zn2+ in DTPA-buffered solutions, and the contents of Mn and Cu in shoots and roots cultured with DTPA-buffered solutions were much higher than those with the conventional or HEDTA-buffered solutions. In conclusion, DTPA-buffered nutrient solutions are not suitable but the FZ/HEDTA-buffered nutrient solution technique can be used to evaluate genotypic differences in zinc efficiency in rice.  相似文献   

15.
Roots of Fe-sufficient and Fe-Deficient pea (Pisum sativum L.) were studied to determine the effect of Fe-deficiency on the activity of the root-cell plasmalemma Fe2+ transport protein. Rates of Fe(III) reduction and short-term Fe2+ influx were sequentially determined in excised primary lateral roots using Fe(III)-ethylene-diaminetetraacetic acid (Fe[III]-EDTA). Since the extracellular Fe2+ for membrane transport was generated by root Fe(III) reduction, rates of Fe2+ influx for each root system were normalized on the basis of Fe(III) reducing activity. Ratios of Fe2+ influx to Fe(III) reduction (micromole Fe2+ absorbed/micromole Fe[III] reduced) revealed no enhanced Fe2+ transport capacity in roots of Fe-deficient peas (from the parental genotype, Sparkle) or the functional Fe-deficiency pea mutant, E107 (derived from Sparkle), relative to roots of Fe-sufficient Sparkle plants. Data from studies using 30 to 100 micromolar Fe(III)-EDTA indicated a linear relationship between Fe2+ influx and Fe(III) reduction (Fe2+ generation), while Fe2+ influx saturated at higher concentrations of Fe(III)-EDTA. Estimations based on current data suggest the Fe2+ transport protein may saturate in the range of 10−4.8 to 10−4 molar Fe2+. These results imply that for peas, the physiological rate limitation to Fe acquisition in most well-aerated soils would be the root system's ability to reduce soluble Fe(III)-compounds.  相似文献   

16.
Cadmium uptake kinetics in intact soybean plants   总被引:33,自引:3,他引:30       下载免费PDF全文
The absorption characteristics of Cd2+ by 10- to 12-day-old soybean plants (Glycine max cv Williams) were investigated with respect to influence of Cd concentration on adsorption to root surfaces, root absorption, transport kinetics and interaction with the nutrient cations Cu2+, Fe2+, Mn2+, and Zn2+. The fraction of nonexchangeable Cd bound to roots remained relatively constant at 20 to 25% of the absorbed fraction at solution concentration of 0.0025 to 0.5 micromolar, and increased to 45% at solution concentration in excess of 0.5 micromolar. The exchangeable fraction represented 1.4 to 32% of the absorbed fraction, and was concentration dependent. Using dinitrophenol as a metabolic inhibitor, the `metabolically absorbed' fraction was shown to represent 75 to 80% of the absorbed fraction at concentration less than 0.5 micromolar, and decreased to 55% at 5 micromolar. At comparatively low Cd concentrations, 0.0025 to micromolar 0.3, root absorption exhibited two isotherms with K2 values of 0.08 and 1.2 micromolar. Root absorption and transfer from root to shoot of Cd2+ was inhibited by Cu2+, Fe2+, Mn2+, and Zn2+. Analyses of kinetic interaction of these nutrient cations with Cd2+ indicated that Cu2+, Fe2+, Zn2+, and possibly Mn2+ inhibited Cd absorption competitively suggesting an involvement of a common transport site or process.  相似文献   

17.
Under iron-deficient conditions a high-affinity siderophore-mediated iron-transport system is induced in the green alga Scenedesmus incrassatulus R-83. Algal siderophores have a strong avidity for ferric versus ferrous iron, quickly oxidate FeII and efficiently solubilize FeIII hydroxides. The entire ferrated molecule is translocated across the membrane by the specific transport system. The iron-uptake rate in Fe-deficient cells is higher at higher pH adjusted with bicarbonate in the medium, suggesting the presence of an inducible membrane-bound translocator. The iron-reduction step is not involved in uptake of ferrated siderophores. The total absorbed iron from siderophores is high and does not strongly depend on the nutritional status of cells, showing that the critical step for iron uptake is siderophore secretion rather than the membrane-bound iron-transport system.Abbreviations DFOB desferrioxamine B - EDDHA ethylenediamine di (o-hydroxyphenyl) acetic acid - BPDS bathophenanthrolinedisulphonate This work was supported by grant No. B-69 from the National Fund for Scientific Investigations at the Ministery of Education and Science in Bulgaria.  相似文献   

18.
Christ RA 《Plant physiology》1974,54(4):582-585
The Fe requirements of four monocotyledonous plant species (Avena sativa L., Triticum aestivum L., Oryza sativa L., Zea mays L.) and of three dicotyledonous species (Lycopersicum esculentum Mill., Cucumis sativus L., Glycine maxima (L.) Merr.) in hydroponic cultures were ascertained. Fe was given as NaFe-EDDHA chelate (Fe ethylenediamine di (O-hydroxyphenylacetate). I found that the monocotyledonous species required a substantially higher Fe concentration in the nutrient solution in order to attain optimum growth than did the dicotyledonous species. Analyses showed that the process of iron uptake was less efficient with the monocotyledonous species. When the results obtained by using chelated Fe were compared with those using ionic Fe, it was shown that the inefficient species were equally inefficient in utilizing Fe3+ ions. However, the differences between the efficient and the inefficient species disappeared when Fe2+ was used. This confirms the work of others who postulated that Fe3+ is reduced before uptake of chelated iron by the root. In addition, it was shown that reduction also takes place when Fe is used in ionic form. The efficiency of Fe uptake seems to depend on the efficiency of the root system of the particular plant species in reducing Fe3+. The removal of Fe from the chelate complex after reduction to Fe2+ seems to present no difficulties to the various plant species.  相似文献   

19.
Tomato plants (Lycopersicum esculentum Mill.) were grown for 21-days in a complete hydroponic nutrient solution including Fe3+-ethylenediamine-di(o-hydroxyphenylacetate) and subsequently switched to nutrient solution withholding Fe for 8 days to induce Fe stress. The roots of Fe-stressed plants reduced chelated Fe at rates sevenfold higher than roots of plants grown under Fe-sufficient conditions. The response in intact Fe-deficient roots was localized to root hairs, which developed on secondary roots during the period of Fe stress. Plasma membranes (PM) isolated by aqueous two-phase partitioning from tomato roots grown under Fe stress exhibited a 94% increase in rates of NADH-dependent Fe3+-citrate reduction compared to PM isolated from roots of Fe-sufficient plants. Optimal detection of the reductase activity required the presence of detergent indicating structural latency. In contrast, NADPH-dependent Fe3+-citrate reduction was not significantly different in root PM isolated from Fe-deficient versus Fe-sufficient plants and proceeded at substantially lower rates than NADH-dependent reduction. Mg2+-ATPase activity was increased 22% in PM from roots of Fe-deficient plants compared to PM isolated from roots of Fe-sufficient plants. The results localized the increase in Fe reductase activity in roots grown under Fe stress to the PM.  相似文献   

20.
Lupins appear to be more sensitive than peas to Fe deficiency. However, when grown in nutrient solutions between pH 5–6, little difference existed between them in their ability to acidify the solution or to release FeIII reducing compounds. This experiment was aimed at determining whether differences between species which occurred when Fe deficiency was induced by withholding Fe from an acid solution, are maintained when Fe deficiency is induced by addition of HCO3 -. Lupins and peas were grown in nutrient solutions at 0, 2 and 6 μM of FeIII EDDHA and either with or without HCO3 - (6 mM). Bicarbonate induced symptoms of Fe deficiency (chlorosis) in both lupins and peas, and markedly decreased the growth of shoots. Symptoms appeared sooner and were more severe in lupins than in peas. Growing plants without HCO3 -, but at the lowest Fe level, decreased the growth and Fe concentration of shoots of lupins but did not induce chlorosis. Growing peas in this treatment, decreased Fe concentrations, but to a lesser extent than in lupins, and did not decrease growth. H+-ion extrusion and release of FeIII reducing compounds was greater in lupins than in peas. Bicarbonate also decreased the growth of roots of lupins but increased the growth of roots of peas. Results indicate that when Fe deficiency is induced by HCO3 -, then the response of lupins and peas are similar to their response in acid solution culture. Differences between species therefore could not be explained by their relative abilities to acidify or release FeIII reducing compounds. Greater control of the distribution of Fe within the shoots, the presence of a pool of Fe within the roots, a lower threshold for Fe uptake, or a higher content of seed-Fe, may therefore be the reason for the lower sensitivity of peas than lupins to Fe deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号