首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
We calculate thermal fluctuational base pair opening probability and the drug binding constant of a daunomycin-bound Poly d(CGTA) · Poly d(TACG) at temperatures from room temperature to its melting temperature. For comparison we also carry out a calculation on a drug-free DNA with the same sequence. Our calculations are carried out by means of a statistical approach using microscopic structures and established force fields and with cooperative effects incorporated into the algorithm. Both hydrogen bond disruption probabilities and drug unstacking probability are determined self-consistently. These probabilities are then used to determine temperature dependent base pair opening probabilities and the drug binding constant. The calculated base pair opening probabilities and drug binding constant are found to be in fair agreement with experiments carried out at room temperature. Our calculation shows cooperative base pair disruption and drug dissociation at certain critical temperatures close to the observed melting temperatures for similar helices. We find that the temperature dependence of the drug binding constant fits well to the van't Hoff relation, in agreement with observations. Our calculation indicates the occurrence of a premelting transition in the drug-bound DNA helix. Some comments are made about this premelting transition.  相似文献   

2.
In Escherichia coli, the very short patch (VSP) repair system is a major pathway for removal of T·G mismatches in Dcm target sequences. In the VSP repair pathway, the very short patch repair (Vsr) endonuclease selectively recognizes a T·G mismatch in Dcm target sequences and hydrolyzes the 5′-phosphate group of the mismatched thymine. The hydrogen exchange NMR studies here revealed that the T5·G18 mismatch in the Dcm target sequence significantly stabilizes own base pair but destabilizes the two neighboring G4·C19 and A6·T17 base pairs compare to other T·G mismatches. These unusual patterns of base pair stability in the Dcm target sequence can explain how the Vsr endonuclease specifically recognizes the mismatched Dcm target sequence and intercalates into the DNA.  相似文献   

3.
Calf thymus nucleosomes containing H1 were treated with dichlorodiammineplatinum (DDP) at low binding ratios (r = 0.05–0.15). Change in the electrophoretic mobility of the extracted nucleosomal DNA was observed following treatment with cis-DDP and little change with trans-DDP. There was a decrease in the electrophoretic mobility of the nucleosomal DNA as well as obliteration of the nucleosomal repeat distance. The fluorescence intensity of terbium binding to the extracted DNA showed minimal change following drug treatment. However, the thermal melting behavior of the nucleosomal DNA was altered to a greater extent following cis-DDP treatment at 280 rather than 260 nm and a destabilization of the DNA helix was observed. These data suggest that in the whole nucleosome, cis-DDP produces greater structural effects on the packaged DNA than trans-DDP, although similar amounts of drug are bound with both isomers.  相似文献   

4.
Following the initial report of the use of SYBR Green I for real-time polymerase chain reaction (PCR) in 1997, little attention has been given to the development of alternative intercalating dyes for this application. This is surprising considering the reported limitations of SYBR Green I, which include limited dye stability, dye-dependent PCR inhibition, and selective detection of amplicons during DNA melting curve analysis of multiplex PCRs. We have tested an alternative to SYBR Green I and report the first detailed evaluation of the intercalating dye SYTO9. Our findings demonstrate that SYTO9 produces highly reproducible DNA melting curves over a broader range of dye concentrations than does SYBR Green I, is far less inhibitory to PCR than SYBR Green I, and does not appear to selectively detect particular amplicons. The low inhibition and high melting curve reproducibility of SYTO9 means that it can be readily incorporated into a conventional PCR at a broad range of concentrations, allowing closed tube analysis by DNA melting curve analysis. These features simplify the use of intercalating dyes in real-time PCR and the improved reproducibility of DNA melting curve analysis will make SYTO9 useful in a diagnostic context.  相似文献   

5.
Male northern water snakes (Nerodia sipedon) have high variancein reproductive success relative to females. We used DNA-basedpaternity analyses from a 3-year study of two marsh populationsof water snakes to investigate the factors that contributeto variation in male success. Male traits investigated includedbody size, condition, tail length, home range size, activityduring the mating season, and genetic profile (genetic similarityto females, heterozygosity, and genetic variability [d2]).We successfully assigned > 80% of offspring to sires froma sample of 811 offspring from 45 litters. Male reproductivesuccess did not vary significantly with body size, tail length,condition, home range size, or the number of microsatelliteloci at which males were heterozygous, nor with other featuresof their genetic profiles. However, we found evidence of positive assortative mating by size in the marsh in which receptive femaleswere not spatially clumped. Also, males that were most activeduring the mating season were more successful, particularlywhere females were not clumped. We failed to find evidenceof selection acting on male size through variance in reproductivesuccess, indicating that sexual selection does not have an important influence on sexual size dimorphism in this species(males are smaller than females). We propose that males aresmaller than females because the lack of advantage to largesize allows males to adopt a low-energy, low-growth strategythat reduces their risk of predation outside the mating season.  相似文献   

6.
It has earlier been shown that multiple positioning of nucleosomes on mouse satellite DNA is determined by its nucleotide sequence. To clarify whether other factors, such as boundary ones, can affect the positionings, we modified the environment of satellite DNA monomer by inserting it into a yeast plasmid between inducible GalCyc promoter and a structural region of the yeast FLP gene. We have revealed that the positions of nucleosomes on satellite DNA are identical to those detected upon reconstruction in vitro. The positioning signal (GAAAAA sequence) of satellite DNA governs nucleosome location at the adjacent nucleotide sequence as well. Upon promoter induction the nucleosome, translationally positioned on the GalCyc promoter, transfers to the satellite DNA and its location follows the positioning signal of the latter. Thus, the alternatives of positioning of a nucleosome on satellite DNA are controlled by its nucleotide sequence, though the choice of one of them is determined by the adjacent nucleosome.  相似文献   

7.
The DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT, alkyltransferase) is an important suicide enzyme involved in defense against O6-alkylating endogenous metabolites and environmental carcinogens. It also plays a pivotal role in primary and acquired resistance of tumors to alkylating anticancer drugs targeting the O6-position of guanine (i.e., methylating and chloroethylating agents). MGMT can thus be considered a crucial biomarker for individual susceptibility to alkylating carcinogens and tumor drug resistance. This implies a need for a fast and convenient method for determination of MGMT. Routinely, MGMT is being quantified by radioactive assays which are relatively laborious. Here we report a nonradioactive MGMT enzyme-linked immunosorbent assay (ELISA) for quantification of MGMT in cell and tissue homogenates. We compared the MGMT-ELISA with the standard radioactive assay and found it to be as sensitive but less time consuming. Therefore, it represents an alternative for the quantification of MGMT in cell and tissue homogenates. We applied the assay for determining MGMT in normal and tumor tissue of testes. In both normal and tumor tissue MGMT was quite variable, ranging from zero to 1300 fmol/mg protein. In various tumor samples MGMT was lower than MGMT in the normal tissue from the same patient or was even not detectable. The MGMT-ELISA might become a useful tool for MGMT determination in clinical routine and health control.  相似文献   

8.
Summary IndnaK7(Ts) mutant cells, scission of DNA strands occurred after temperature shift up. When cells at 30°C were labeled with [3H]-thymidine and then shifted to 46° or 49°C for 20 min, the profiles of sedimentation of thier cellular DNA in an alkaline sucrose gradient revealed a decrease in the size of DNA to a quarter of that at 30°C in the mutant, but not in wild-type cells. The level of manganese-containing superoxide dismutase (MnSOD) in the mutant was about twice that in wild-type cells, even at the permissive temperature, implying increased production of superoxide radical anion, which may cleave DNA strands directly or indirectly in the mutant. Moderate increase in the MnSOD level on temperature shift up was observed in both strains. These results indicated that some components of the DnaK protein participate in protection of cellular membrane functions from thermal damage resulting from elevated production of the superoxide anion radical.  相似文献   

9.
The isolation of DNA from whole blood by a modified rapid method (RM) was tested using various detergents and buffer conditions. Extraction of DNA with either NP-40 or Triton X-100 gave a high yield of undegraded DNA in less than an hour. The concentration of magnesium ion in the buffers was critical to obtaining intact, high molecular weight (HMW) DNA. Greater than 10 mM MgCl2 led to degradation. Addition of EDTA to the buffer inhibits this degradation. Preparation of DNA from blood stored at room temperature or incubated at 37°C for 24 hr resulted in the same amount and quality of DNA as from samples frozen at −70°C. DNA from blood samples that had undergone more than four freeze-thaw cycles was found to be partially degraded. The modified RM can be applied to extract DNA from as little as 10 μl of blood (340 ng of DNA) and from dried blood samples. DNA samples remained intact and undegraded for longer times when DNA was dissolved in higher concentrations of EDTA. This work was supported by grants from the Indiana Department of Mental Health and PHS RO1 AG10297.  相似文献   

10.
Translesion synthesis (TLS) is the mechanism in which DNA polymerases (TLS polymerases) bypass unrepaired template damage with high error rates. DNA polymerase η and ζ (Polη and Polζ) are major TLS polymerases that are conserved from yeast to humans. In this study, we quantified frequencies of base-substitutions by yeast Polη and Polζ on undamaged and abasic templates in vitro. For accurate quantification, we used a next generation sequencing (NGS)-based method where DNA products were directly analyzed by parallel sequencing. On undamaged templates, Polη and Polζ showed distinct base-substitution profiles, and the substitution frequencies were differently influenced by the template sequence. The base-substitution frequencies were influenced mainly by the adjacent bases both upstream and downstream of the substitution sites. Thus we present the base-substitution signatures of these polymerases in a three-base format. On templates containing abasic sites, Polη created deletions at the lesion in more than 50% of the TLS products, but the formation of the deletions was suppressed by the presence of Polζ. Polζ and Polη cooperatively facilitated the TLS reaction over an abasic site in vitro, suggesting that these two polymerases can cooperate in efficient and high fidelity TLS.  相似文献   

11.
Hackl EV  Blagoi YP 《Biopolymers》2005,77(6):315-324
The work examines the structural transitions of DNA under the action of Cu2+ and Ca2+ ions in aqueous solution at temperatures of 29 and 45 degrees C by ir spectroscopy. Upon binding to the divalent ions studied, DNA transits into the compact state both at 29 and 45 degrees C. In the compact state DNA remains in B-form limits. The compaction process is of high positive cooperativity. As temperature increases the divalent metal ion concentration required to induce DNA compaction decreases in the case of Cu(2+)-induced compaction and increases in the case of Ca(2+)-induced compaction. It is suggested that the mechanism of the temperature effect on DNA compaction in the presence of Cu2+ ions possessing higher affinity for DNA bases differs from that of the temperature influence on Ca(2+)-induced DNA compaction. In the case of copper ions the determining factor is the increase of binding constants of the Cu2+ ions interacting with the denatured parts formed on DNA while in the case of calcium ions it is the decreased screening action of counterions upon the increase of their hydration with temperature. The efficiency of divalent metal ions studied in inducing DNA compaction depends on hydration of counterions. DNA compaction occurs in a narrow interval of Cu2+ concentrations. As the Cu2+ ion concentration increases, DNA compaction is replaced with Cu(2+)-induced DNA aggregation. At elevated temperatures Cu(2+)-induced DNA compaction could acquire a phase transition character.  相似文献   

12.
A systematic computational study is carried out to investigate hydrogen bond (HB) interactions in the real crystalline structures of l-Cysteine at 30 and 298 K by density functional theory (DFT) calculations of electric field gradient (EFG) tensors at the sites of O-17, N-14, and H-2 nuclei. One-molecule (monomer) and nine-molecule (cluster) models of l-Cysteine are created by available crystal coordinates at both temperatures and the EFG tensors are calculated for both models to indicate the effect of HB interactions on the tensors. The calculated EFG tensors at the level of B3LYP and B3PW91 DFT methods and 6-311++G?? and cc-pVTZ basis sets are converted to those experimentally measurable nuclear quadrupole resonance (NQR) parameters i.e. quadrupole coupling constants (qcc) and asymmetry parameters (ηQ). The evaluated NQR parameters reveal that the EFG tensors of 17O, 14N, and 2H are influenced and show particular trends from monomer to the target molecule in the cluster due to the contribution of target molecule to classic N–H…O, and non-classic S–H…O and S–H…S types of HB interactions. On the other hand, atoms in molecules (AIM) analyses confirm the presence of HB interactions and rationalize the observed EFG trends. The results indicate different contribution of various nuclei to HB interactions in the cluster where O2 and N1 have major contributions. The EFG tensors as well as AIM analysis at the H6 site show that the N1-H6…O2 HB undergoes a significant change from 30 to 298 K where changes in other N–H…O interactions are almost negligible. There is a good agreement between the calculated 14N NQR parameters and reported experimental data.  相似文献   

13.
An estrogen and progesterone receptor-positive human breast carcinoma (T61) grown in nude mice was exposed to 1.0, 0.1, 0.01, and 0.001 mg 17 beta-estradiol. These doses resulted in serum peak concentrations (day 1) of estradiol ranging from 3.5 X 10(-8) to 6.9 X 10(-10) M. The effect of the treatment was evaluated using growth curves and flow cytometric DNA analysis. The treatment induced a dose-dependent growth delay and dose-dependent changes in the cell cycle distribution. The cell cycle changes comprised a decrease in the G1 phase, an accumulation of cells in the S phase, and an increasing fraction of polyploid cells. The results suggest that estradiol induces a dose-dependent cell killing effect in the T61 human breast carcinoma. The correlation between the treatment-induced growth delay and the effect on the cell cycle distribution indicates that the changes in the cell cycle are a reflection of the estradiol-induced cell destruction. Since no tumor growth stimulation could be observed even at very low serum estradiol concentrations, the T61 human breast carcinoma may represent a new aspect in the study of human breast cancer.  相似文献   

14.
It is often envisioned that cations might coordinate at specific sites of nucleic acids and play an important structural role, for instance in the transition between B‐DNA and Z‐DNA. However, nucleic acid models explicitly devoid of specific sites may also exhibit features previously considered as evidence for specific binding. Such is the case of the “composite cylinder” (or CC) model which spreads out localized features of DNA structure and charge by cylindrical averaging, while sustaining the main difference between the B and Z structures, namely the better immersion of the B‐DNA phosphodiester charges in the solution. Here, we analyze the non‐electrostatic component of the free‐energy difference between B‐DNA and Z‐DNA. We also compute the composition of the counterion sheath in a wide range of mixed‐salt solutions and of temperatures: in contrast with the large difference of composition between the B‐DNA and Z‐DNA forms, the temperature dependence of sheath composition, previously unknown, is very weak. In order to validate the model, the mixed‐salt predictions should be compared to experiment. We design a procedure for future measurements of the sheath composition based on Anomalous Small‐Angle X‐ray Scattering and complemented by 31P NMR. With due consideration for the kinetics of the B‐Z transition and for the capacity of generating at will the B or Z form in a single sample, the 5′‐d[T‐(m5C‐G)12‐T] 26‐mer emerges as a most suitable oligonucleotide for this study. Finally, the application of the finite element method to the resolution of the Poisson‐Boltzmann equation is described in detail. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 369–384, 2016.  相似文献   

15.
Allium roseum (Alliaceae) is an important medicinal and aromatic plant in the flora of Tunisia. It is widespread in southern Tunisia, where it is commonly used as a therapeutic agent. However, its existence is seriously threatened because of over-collection.  相似文献   

16.
A simple and sensitive technique for detection of strand breaks in DNA has been further developed. The method has been used to follow UV-induced excision-repair in human fibroblasts. It has been possible to study the kinetics of enzymic reactions in intact cells, in which strand breaks in DNA are produced and sealed again. Hydroxyurea, 5-fluorodeoxyuridine and 1-beta-D-arabinofuranosylcytosine, potent inhibitors of DNA synthesis, drastically increased the number of breaks observed during the repair process. This was probably due to a decreased polymerase activity, which will cause the strand breaks formed by endonuclease to remain open longer. The initial rate of strand-break formation did not seem to be influenced by hydroxyurea or araC, and was about 4000 breaks per minute in a diploid genome, at a dose of 20 J/m2. After 5--30 min, depending on the dose of UV, the number of breaks reached a maximum and started to decrease again. Hydroxyurea decreased the rate of polymerization in the sites under repair. However, there was no concomitant reduction of repair-induced incorporation of [3H]thymidine and no reduction of the excision of pyrimidine dimers. It therefore seems that the action of the polymerase was not a rate-limiting event, but rather an earlier step. It is likely that the endonucleolytic activity determined the rate of repair. As a consequence, the endonuclease and polymerase cannot be bound in a permanent complex. Under certain assumptions, the time for repair of a site, i.e. the time from incision to final ligase sealing, can be estimated as between 3 and 10 min. Essentially no breaks were produced in Xeroderma pigmentosum cells belonging to complementation group A, and there was no enhancement by hydroxyurea. Cells from the variant type of Xeroderma pigmentosum behaved like normal cells in this respect.  相似文献   

17.
The N-terminal domain of the Tn916 integrase protein (INT-DBD) is responsible for DNA binding in the process of strand cleavage and joining reactions required for transposition of the Tn916 conjugative transposon. Site-specific association is facilitated by numerous protein-DNA contacts from the face of a three-stranded beta-sheet inserted into the major groove. The protein undergoes a subtle conformational transition and is slightly unfolded in the protein-DNA complex. The conformation of many charged residues is poorly defined by NMR data but mutational studies have indicated that removal of polar side chains decreases binding affinity, while non-polar contacts are malleable. Based on analysis of the binding enthalpy and binding heat capacity, we have reasoned that dehydration of the protein-DNA interface is incomplete. This study presents results from a molecular dynamics investigation of the INT-DBD-DNA complex aimed at a more detailed understanding of the role of conformational dynamics and hydration in site-specific binding. Comparison of simulations (total of 13 ns) of the free protein and of the bound protein conformation (in isolation or DNA-bound) reveals intrinsic flexibility in certain parts of the molecule. Conformational adaptation linked to partial unfolding appears to be induced by protein-DNA contacts. The protein-DNA hydrogen-bonding network is highly dynamic. The simulation identifies protein-DNA interactions that are poorly resolved or only surmised from the NMR ensemble. Single water molecules and water clusters dynamically optimize the complementarity of polar interactions at the 'wet' protein-DNA interface. The simulation results are useful to establish a qualitative link between experimental data on individual residue's contribution to binding affinity and thermodynamic properties of INT-DBD alone and in complex with DNA.  相似文献   

18.
Summary Sixty-four eucaryotic nuclear DNA sequences, half of them coding and half noncoding, have been examined as expressions of first-, second-, or third-order Markov chains. Standard statistical tests found that most of the sequences required at least second-order Markov chains for their representation, and some required chains of third order. For all 64 sequences the observed one-step second-order transition count matrices were effective in predicting the two-step transition count matrices, and 56 of 64 were effective in predicting the three-step transition count matrices. The departure from random expectation of the observed first- and second-order transition count matrices meant that a considerable sample of eucaryotic nuclear DNA sequences, both protein coding and noncoding, have significant local structure over subsequences of three to five contiguous bases, and that this structure occurs throughout the total length of the sequence. These results suggested that present DNA sequences may have arisen from the duplication, concatenation, and gradual modification of very early short sequences.  相似文献   

19.
Advanced glycation end products (AGEs) play a significant role in the pathophysiology of diabetes leading to such conditions as atherosclerosis, cataract formation, and renal dysfunction. While the formation of nucleoside AGEs was previously demonstrated, no extensive studies have been performed to assess the effect of AGEs on DNA structure and folding. The objective of this study was to investigate the nonenzymatic glycation of two DNA oligonucleotide duplexes with one duplex consisting of deoxy-poly(A)15 and deoxy-poly(T)15 and the other consisting of deoxy-poly(GA)15 and deoxy-poly(CT)15. With D-glucose, D-galactose, D/L-glyceraldehyde, and D-glucosamine serving as the model glycating carbohydrates, D-glucosamine was found to exhibit the greatest effect on the stability and structure of the oligonucleotide duplexes, a finding that was confirmed by circular dichroism. The nonenzymatic glycation of deoxy-poly(AT) by D-glucosamine destabilized the deoxy-poly(AT) structure and changed its conformation from A form to X form. D-glucosamine also altered the conformation of deoxy-poly(GA)15 and deoxy-poly(CT)15 from A form to B form. Capillary electrophoresis and ultraviolet and fluorescence spectroscopy revealed that, of the various purines and pyrimidines, 2'-deoxyguanosine and guanine were most reactive with D-glucosamine. The nonenzymatic modification of nucleic acids warrants further investigation because this phenomenon may occur in vivo, altering DNA structure and/or function.  相似文献   

20.
The widespread use of Next Generation Sequencing has opened up new avenues for cancer research and diagnosis. NGS will bring huge amounts of new data on cancer, and especially cancer genetics. Current knowledge and future discoveries will make it necessary to study a huge number of genes that could be involved in a genetic predisposition to cancer. In this regard, we developed a Nextera design to study 11 complete genes involved in DNA damage repair. This protocol was developed to safely study 11 genes (ATM, BARD1, BRCA1, BRCA2, BRIP1, CHEK2, PALB2, RAD50, RAD51C, RAD80, and TP53) from promoter to 3''-UTR in 24 patients simultaneously. This protocol, based on transposase technology and gDNA enrichment, gives a great advantage in terms of time for the genetic diagnosis thanks to sample multiplexing. This protocol can be safely used with blood gDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号